Semiclassical complex interactions at a non-analytic turning point

By

SETSURO FUJIIÉ*, AMINA LAHMAR-BENBERNOU** and ANDRÉ MARTINEZ***

Abstract

We continue a dominant WKB solution of the Schrödinger equation in the classically forbidden region to an outgoing WKB solution in the classically allowed region across a simple (multi-dimensional) turning point, without assuming the analyticity for the potential. This report explains briefly the method used in [FLM], where we computed the semiclassical asymptotics of the width of shape resonances for non-globally analytic potentials.

§1. Introduction

In this article, we discuss a local connection formula of a WKB solution for the Schrödinger equation in \mathbb{R}^n

(1.1)
$$Pu = Eu, \quad P = -h^2 \Delta + V(x),$$

at a simple turning point of the non-analytic potential V(x). Here h is the semiclassical parameter which tends to 0, and E is a spectral parameter which we will assume to be zero for simplicity although all the arguments also work when it depends on h: $E = E_0 + O(h)$.

Received October 2, 2008.

²⁰⁰⁰ Mathematics Subject Classification(s): 81Q20.

Key Words: semi-classcal analysis, Schrödinger equation, turning point.

Supported by University of Bologna and JSPS Grants-in Aid for Scientific Research

^{*}Department of Mathematical Sciences, University of Hyogo, Himeji 671-2201, Japan.

^{**}Université de Mostaganem, Département de Mathématiques, B.P 227 27000 Mostaganem, ALGE-RIA.

^{***}Dipartamento di Matematica, Università di Bologna, 40127 Bologna, Italia.

We assume that V(x) is smooth in a neighborhood Ω of the origin x = 0 and that $dV(0) \neq 0$. Then we can choose Euclidean coordinates $x = (x', x_n) = (x_1, \ldots, x_{n-1}, x_n)$ such that

$$V(x) = -Cx_n + \mathcal{O}(|x|^2) \text{ as } x \to 0,$$

for some constant C > 0.

Let $p(x,\xi) = |\xi|^2 + V(x)$ be the classical Hamiltonian of P and let also $q(x,\xi) = |\xi|^2 - V(x)$. We consider the Hamilton flow $\exp tH_p$ and $\exp tH_q$ passing through the origin (0,0) in the phase space $\mathbb{R}^n_x \times \mathbb{R}^n_{\xi}$, where H_p is the Hamilton vector field $H_p = \partial_{\xi} p \cdot \partial_x - \partial_x p \cdot \partial_{\xi}$. If we write $\exp tH_p(0,0) = (x(t),\xi(t))$, $\exp tH_q(0,0) = (y(t),\eta(t))$, they behave, as $t \to 0$, like

$$\begin{cases} x'(t) = \mathcal{O}(t^4), & \xi'(t) = \mathcal{O}(t^3), \\ x_n(t) = Ct^2 + \mathcal{O}(t^3), \\ \xi_n(t) = Ct + \mathcal{O}(t^2), \end{cases}$$
$$\begin{cases} y'(t) = \mathcal{O}(t^4), & \eta'(t) = \mathcal{O}(t^3), \\ y_n(t) = -Ct^2 + \mathcal{O}(t^3), \\ \eta_n(t) = -Ct + \mathcal{O}(t^2) \end{cases}$$

In particular, for small |t|, exp $tH_p(0,0)$ is in the classically allowed region $\{x \in \Omega; V < 0\}$ and exp $tH_q(0,0)$ is in the classically forbidden region $\{x \in \Omega; V > 0\}$.

Suppose we are given a solution u to (1.1) in Ω . We assume the following two conditions:

(C1) Let $x_0 = \exp t_0 H_q(0,0)$, with small $t_0 < 0$, be a point in Ω in the classically forbidden region. In a neighborhood of x_0 , u has an asymptotic expansion of WKB form:

(1.2)
$$u(x,h) \sim e^{-\phi(x)/h} \sum_{k=0}^{\infty} a_k(x)h^k, \quad \phi(0) = 0$$

whose associated Lagrangian manifold

$$\Lambda = \{(x,\xi); \xi = \partial_x \phi(x)\}$$

contains the Hamilton flow $\exp tH_q(0,0)$ for $t_0 < t < 0$.

Remark that, since $\frac{d}{dt}\phi(x(t)) = 2|\xi(t)|^2$, $\phi(x)$ is increasing along the flow x(t), and in particular, $-\phi(x(t)) > 0$ for t < 0 i.e. u is exponentially large.

(C2) In the classically allowed region, u is *outgoing* in the sense that the incoming flow is not in the frequency set of u. More precisely, for any small negative t,

$$\exp tH_p(0,0)\notin \mathrm{FS}\,(u).$$

This means by definition that there exists a cut-off function χ identically 1 in a neighborhood of $\exp tH_p(0,0)$ such that the Bargmann transform of χu

$$T(\chi u) = \int e^{i(x-y)\cdot\xi/h - (x-y)^2/2h} \chi(y)u(y;h)dy$$

is $\mathcal{O}(h^{\infty})$ as $h \to 0$.

The Lagrangian manifold Λ can be extended to a neighborhood of $(x,\xi) = (0,0)$ since H_q does not vanish there: $H_q|_{(0,0)} = -C\partial_{\xi_n}$. More precisely, there exists a smooth function $g(x',\xi_n)$ such that

$$\Lambda = \{(x,\xi); \xi' = \partial_{x'}g(x',\xi_n), x_n = -\partial_{\xi_n}g(x',\xi_n)\},\$$

and there exist smooth functions $b(x') = \mathcal{O}(|x'|^2)$, $\delta(x')$ with $\delta(0) > 0$ and $\xi_n^c(x') = \mathcal{O}(|x'|^2)$ such that

(1.3)
$$\partial_{\xi_n} g(x',\xi_n) = b(x') + \delta(x')(\xi_n - \xi_n^c(x'))^2 + \mathcal{O}((\xi_n - \xi_n^c(x'))^3)$$

as $\xi_n \to \xi_n^c(x')$. The phase function $\phi(x)$, as well as the symbols $a_k(x)$, which satisfy the transport equations along the Hamilton flow on Λ , are well defined within the x-space projection of Λ , i.e. $\Omega_- := \{x \in \Omega; x_n + b(x') < 0\}$ and the boundary of this domain $\mathcal{C} := \{x \in \Omega; x_n + b(x') = 0\}$ is called *caustic set*.

(C3) Let s(x) be such that $s(x) = \phi(x)$ where $\phi(x) < 0$ in Ω_{-} , and s(x) = 0 elsewhere in Ω . Then there exists $N_0 \in \mathbb{N}$ such that

$$||e^{s(x)/h}u||_{H^1(\Omega)} = \mathcal{O}(h^{-N_0}),$$

Our problem is

Problem Compute the asymptotic expansion of u in the domain $\Omega_+ := \{x \in \Omega; x_n + b(x') > 0\}$ under the conditions (C1), (C2) and (C3).

This is a localized version of the problem considered for the study of the asymptotic expansion of the width of shape resonances created by a *well in an island*, first in [HeSj] in the analytic case and recently in [FLM] in the C^{∞} case.

Following Maslov's idea in [HeSj], we write u in a neighborhood of x = 0, as Laplace transform in ξ_n of a WKB solution $e^{-g(x',\xi_n)/h}c(x',\xi_n;h)$ in x',ξ_n :

(1.4)
$$I(x,h) := h^{-1/2} \int_{\gamma(x)} e^{-(x_n \xi_n + g(x',\xi_n))/h} c(x',\xi_n;h) d\xi,$$

where the contour $\gamma(x)$ will be suitably chosen to be a steepest descent path depending on x. It turns out from (1.3) that, for x in Ω_- , the critical momentums ξ_n of the phase $x_n\xi_n + g(x',\xi_n)$ are real. In Ω_+ , however, they are imaginary if g is analytic, and they are not defined if g is only C^{∞} , which is the case in general when the potential is not analytic.

The purpose of this report is to explain the techniques used in [FLM]. Because of the non-analyticity, we can extend u to Ω_+ only up to a distance of order $(h \ln \frac{1}{h})^{2/3}$ from the caustic.

In order to simplify the argument, we suppose that the dimension is 1, and after that we make some remarks for the multi-dimensional case.

§ 2. Connection of WKB solutions

In this and the next sections, we assume that n = 1 and C = 1, i.e. we consider the equation

(2.1)
$$Pu := -h^2 \frac{d^2 u}{dx^2} + V(x)u = 0, \quad V(x) = -x + \mathcal{O}(x^2).$$

Notice that the caustic C is a simple turning point x = 0. If $\Omega = (-c, c')$ for some positive small c, c', then $\Omega_{-} = (-c, 0), \ \Omega_{+} = (0, c')$. The phase function $\phi(x)$ is given by

$$\phi(x) = \int_0^x \sqrt{V(x)} dx$$
, for $-c < x < 0$.

Remark that $-\phi(x)$ is the Agmon distance d(x) from 0 to x and

(2.2)
$$-\phi(x) = d(x) \sim \frac{2}{3} |x|^{3/2}.$$

The principal symbol $a_0(x)$ is known to be constant times $(-x)^{-1/4}$. We take here

$$a_0(x) = \frac{1}{(-x)^{1/4}}$$

Let us denote

$$k = h \ln \frac{1}{h}$$

We will show step by step the following theorem:

Theorem 2.1. There exist a function $\tilde{\phi}(x,h)$ verifying

$$\begin{split} \tilde{\phi}(x,h) &= \phi(x) & \text{in } (-c,0), \\ & \text{Re } \tilde{\phi}(x,h) \geq \mathcal{O}(h^{\infty}) \\ & \text{Im } \partial_x \tilde{\phi}(x,h) = -\sqrt{x} + \mathcal{O}(x) + \mathcal{O}(h^{\infty}) \end{split} \right\} & \text{in } (0, (Nk)^{2/3}), \end{split}$$

and, for any large N, a smooth function $w_N(x,h) \in C^{\infty}((-c,(Nk)^{2/3}))$ such that the following properties hold:

(i) There exist m_j $(j \in \mathbb{N})$ and $\delta > 0$, both independent of N, such that

$$\left(\frac{d}{dx}\right)^{j} w_{N}(x,h) = \mathcal{O}(h^{-m_{j}} e^{-\operatorname{Re}\tilde{\phi}(x,h)/h}),$$
$$Pw_{N}(x,h) = \mathcal{O}(h^{\delta N} e^{-\operatorname{Re}\tilde{\phi}(x,h)/h}).$$

(ii) In (-c, 0), w_N has the same asymptotic expansion as (1.2): for any $L \in \mathbb{N}$, one has

(2.3)
$$w_N(x,h) = e^{-\phi(x)/h} \sum_{l=0}^{L} a_l(x)h^l + \mathcal{O}(h^{L+1}).$$

The coefficients $a_l(x)$ are of the form

$$a_l(x) = \frac{f_l(\sqrt{-x})}{(-x)^{\frac{1}{4} + \frac{3l}{2}}}$$

for some functions $f_l(y)$ smooth in a neighborhood of y = 0 and in particular $f_0(y) = 1$.

(iii) Let $x = (Nk)^{2/3}\tilde{x}$ and suppose $0 < \tilde{x} < 1$ is independent of h. Then there exists a family of functions $\{b_{l,m,j}(\tilde{x})\}_{l,m,j}$ smooth in $\sqrt{\tilde{x}}$ in [0,1) and in particular $b_{0,0,0}(\tilde{x}) = e^{\pi i/4}$ such that w_N has the following asymptotic expansion: for any $L \in \mathbb{N}$, there exists $N \in \mathbb{N}$ such that

(2.4)
$$w_N(x,h) = e^{-\tilde{\phi}(x)/h}$$

$$\times \left\{ \sum_{l=0}^{L} \sum_{m=0}^{3L} \sum_{j=0}^{[3L\ln\frac{1}{h}]} \frac{b_{l,m,j}(\tilde{x})}{\tilde{x}^{\frac{3}{2}j+\frac{1}{4}}} h^{l} (Nk)^{\frac{m}{3}-\frac{1}{6}} (N\ln\frac{1}{h})^{-j} + \mathcal{O}(k^{L+1/3}) \right\}.$$

(In terms of \tilde{x} and $\kappa = \frac{1}{N \ln \frac{1}{h}}, -\frac{\tilde{\phi}(x)}{h} = \frac{2i\tilde{x}^{3/2}}{3\kappa}(1 + \mathcal{O}((Nk)^{1/3})).)$

$\S 2.1.$ Airy type integral representation

We look for a solution to (2.1) near the origin x = 0 in the form of (1.4). Suppose x < 0. Then $g(\xi)$ is the Legendre transform of $\phi(x)$, i.e.

$$g(\xi) = \sup_{x} (-x\xi + \phi(x)).$$

By (2.2), the critical point $x_c(\xi)$ satisfies $x_c(\xi) = -\xi^2 + \mathcal{O}(\xi^3)$, and the critical value $g(\xi)$ behaves like

$$g(\xi) = \frac{1}{3}\xi^3 + \mathcal{O}(\xi^4) \quad \text{as} \quad \xi \to 0.$$

Conversely, $\phi(x)$ is the inverse Legendre transform in the sense:

$$\phi(x) = \inf_{\xi} \left(x\xi + g(\xi) \right).$$

Since $g'(\xi) = \xi^2 + \mathcal{O}(\xi^3)$, there exist, for negative small x, two real critical points $\xi_l^+(x), \xi_l^-(x)$ smooth with respect to $\sqrt{-x}$ satisfying

$$\xi_l^{\pm}(x) = \pm \sqrt{-x} + \mathcal{O}(x),$$

and $x\xi + g(\xi)$ takes a local minimum at $\xi = \xi_l^+(x)$ and a local maximum at $\xi = \xi_l^-(x)$ as a function of ξ on the real line. Hence

$$\phi(x) = x\xi_l^+(x) + g(\xi_l^+(x)) \sim -\frac{2}{3}(-x)^{3/2}.$$

Let us define the integral contour $\gamma(x)$ as a real interval containing $\xi_l^+(x)$ inside as the only non degenerate minimum.

By the usual Laplace's method, we have an asymptotic expansion of I(x, h) of the form (2.3):

Lemma 2.2. For each x < 0 close to 0, one has

$$I(x,h) \sim e^{-\phi(x)/h} \sum_{j=0}^{\infty} \tilde{a}_j(x)h^j, \quad \tilde{a}_j(x) = \frac{f_j(y)}{y^{1/2+3j}}|_{y=\sqrt{-x}},$$

for some functions $f_j(y)$ smooth in a neighborhood of y = 0 with $f_0(0) = \sqrt{\pi}$.

The coefficients $\{\tilde{a}_j(x)\}_j$ for negative small x are determined in a bijective way by the coefficients $\{c_k(\xi)\}_k$ of the asymptotic expansion $c(\xi;h) \sim \sum_{k=0}^{\infty} c_k(\xi)h^k$, for ξ near $\xi_l^+(x) \sim \sqrt{-x}$. Thus we can define $\{c_k(\xi)\}_k$ from $\{a_j(x)\}_j$ given in (1.2). These $\{c_k(\xi)\}_k$ are defined near $\xi = \xi_l^+(x) > 0$, and extended to a full real neighborhood of $\xi = 0$ by the transport equations in momentum variable.

§2.2. Holomorphic approximation

Definition 2.3. Let $I \subset \mathbb{R}$ be an open interval and f a smooth function on I. We call the family of functions $\{f_{\delta}\}_{\delta>0}$ holomorphic δ -approximation of f on I if each f_{δ} is holomorphic in $\Gamma_{\delta} = \{z \in \mathbb{C}; \text{dist}(z, I) < \delta\}$ and

(2.5)
$$\frac{d^k}{dx^k}(f - f_{\delta}) = \mathcal{O}(\delta^{\infty}) \text{ as } \delta \to 0$$

uniformly on I for each $k \in \mathbb{N}$.

A holomorphic δ -approximation can be constructed as follows: Let \tilde{f} be an almost analytic extension of f, which can be constructed, for example, by

$$\tilde{f}(x,y) = \sum_{k=0}^{\infty} \frac{(iy)^k}{k!} f^{(k)}(x) \chi\left(\frac{|y|}{\epsilon_k}\right),$$

where ϵ_k tends to 0 rapidly enough and $\chi \in C_0^{\infty}(\mathbb{R}^+)$ is a cut-off function identically 1 near 0. Then

$$f_{\delta}(z) = \frac{1}{2i\pi} \int_{\gamma(\delta)} \frac{f(\operatorname{Re}\zeta, \operatorname{Im}\zeta)}{z-\zeta} d\zeta$$

with $\gamma(\delta) = \{\zeta \in \mathbb{C}; \operatorname{dist}(\zeta, I) = 2\delta\}$ is a holomorphic δ -approximation in Γ_{δ} . In fact, it is obvoiusly holomorphic in Γ_{δ} , and we have for all N and k

$$\sup_{x+iy\in\Gamma_{\delta}}\left|\frac{d^{k}}{dx^{k}}(\tilde{f}-f_{\delta})\right| \leq C(k,N)\delta^{N}.$$

In particular, this implies (2.5).

Let us define, for any large $N \in \mathbb{N}$,

$$\tilde{I}_N(x,h) = h^{-1/2} \int_{\tilde{\gamma}_N(x,h)} e^{-(x\xi + \tilde{g}_N(\xi,h))/h} \tilde{c}_N(\xi,h) d\xi,$$

where $\tilde{g}_N(\xi, h)$, $\tilde{c}_N(\xi, h)$ are holomorphic $(Nh \ln \frac{1}{h})^{1/3}$ -approximation of $g(\xi)$, $c(\xi, h)$ respectively.

Lemma 2.4. For $x \in (0, (Nk)^{2/3})$, the equation

$$x + \tilde{g}'_N(\xi; h) = 0$$

has two complex roots $\xi_r^+(x;h)$, $\xi_r^-(x;h)$, holomorphic with respect to \sqrt{x} satisfying

$$\xi_r^{\pm}(x;h) = \pm i\sqrt{x} + \mathcal{O}(x) + \mathcal{O}(h^{\infty}).$$

Moreover, the critical value at $\xi = \xi_r^-(x;h)$

$$\tilde{\phi}(x;h) := x\xi_r^-(x;h) + \tilde{g}_N(\xi_r^-(x;h)) = -i\frac{2}{3}x^{3/2} + \mathcal{O}(x^2) + \mathcal{O}(h^\infty)$$

is a holomorphic function of \sqrt{x} and

(2.6)
$$\operatorname{Re} \tilde{\phi}(x,h) \ge \mathcal{O}(h^{\infty}).$$

Now, as integration contour, we define $\tilde{\gamma}_N(x,h)$ for $x \in (-\epsilon, (Nk)^{2/3})$ (ϵ is a sufficiently small constant) such that

• $\tilde{\gamma}_N(x;h) \subset \{\xi \in \mathbb{C}; |\operatorname{Im} \xi| < (Nk)^{1/3}\}.$

• If $x \in (-\epsilon, 0)$, then $\tilde{\gamma}_N(x; h)$ contains ξ_l^+ and there exists $\delta > 0$ such that

$$\operatorname{Re}(x\xi + \tilde{g}) - \phi \ge \delta(|x|^{1/2} + |\xi - \xi_l^+(x)|)|\xi - \xi_l^+|^2 \quad \text{on} \quad \tilde{\gamma}_N,$$
$$|\xi - \xi_l^+| \ge \delta(Nk)^{1/3} \quad \text{at the extremities.}$$

• If $x \in (0, (Nk)^{2/3})$, then $\tilde{\gamma}_N(x; h)$ contains ξ_r^- and there exists $\delta > 0$ such that

(2.7)
$$\operatorname{Re}(x\xi + \tilde{g} - \tilde{\phi}) \ge \delta(|x|^{1/2} + |\xi - \xi_r^-|)|\xi - \xi_r^-|^2 \quad \text{on} \quad \tilde{\gamma}_N,$$
$$|\xi - \xi_r^-| \ge \delta(Nk)^{1/3} \quad \text{at the extremities.}$$

We have the following propositions:

Proposition 2.5. There exists $\delta' > 0$ such that for any $N \in \mathbb{N}$ and $k \in \mathbb{N}$, one has

$$\frac{d^k}{dx^k} \left(I(x,h) - \tilde{I}_N(x,h) \right) = \mathcal{O} \left(h^{\delta'N - 1/2 - k} e^{-\phi(x)/h} \right)$$

for $x \in (-\epsilon, 0)$.

Proposition 2.6. There exists $\delta' > 0$ such that for any N, one has

$$P\tilde{I}_N(x,h) = \mathcal{O}\left(h^{\delta'N}e^{-\operatorname{Re}\tilde{\phi}(x;h)/h}\right)$$

uniformly in $x \in (-\epsilon, (Nk)^{2/3})$.

Thus we obtain our global approximate solution w_N in Theorem 2.1 by connecting u(x,h), I(x,h) and $\tilde{I}_N(x,h)$ with a suitable partition of unity.

\S 2.3. Asymptotic expansion for positive x

Here we compute the asymptotic expansion of our approximate solution $I_N(x,h)$ for positive but small x of order $k^{2/3}$. We do it by the Laplace's method as for x < 0, but we should be careful because, as $h \to 0$, x tends to 0 where the critical point degenerates.

Proposition 2.7. Let $x = (Nk)^{1/3}\tilde{x}$. There exists a family of smooth functions $\{b_{l,m,j}(\tilde{x})\}_{l,m,j}$ in a neighborhood of $\tilde{x} = 0$ with

$$b_{0,0,0}(\tilde{x}) = e^{\pi i/4} \sqrt{\pi} \tilde{c}_N(0,0),$$

such that for any positive integer L, there exist $N(L) \in \mathbb{N}$ and $\epsilon_L > 0$ such that if \tilde{x} is in an interval $(c_1, c_2), 0 < c_1 < c_2 \leq 1$, then

(2.8)
$$\tilde{I}_N(x,h) = e^{-\tilde{\phi}/h} \left\{ \sum_{l=0}^L \sum_{m=0}^{3L} \sum_{j=0}^{[3L\ln\frac{1}{h}]} \frac{b_{l,m,j}(\tilde{x})}{\tilde{x}^{\frac{3}{2}j+\frac{1}{4}}} h^l(Nk)^{\frac{m}{3}-\frac{1}{6}} \kappa^j + \mathcal{O}(k^{L+\frac{1}{3}}) \right\},$$

where $k = h \ln \frac{1}{h}$ and $\kappa = h/(Nk) = 1/(N \ln \frac{1}{h})$.

38

Remark. The formula $b_{0,0,0}(\tilde{x}) = e^{\pi i/4}$ in Theorem 2.1 (iii) follows from

$$\tilde{c}_N(0,0) = c(0,0) = a(0,0)/\sqrt{\pi} = 1.$$

 $\mathbf{Proof} \ \operatorname{Set}$

(2.9)
$$r(x;h) := \frac{1}{2}\tilde{g}''(\xi_r^-(x;h)) = -i\sqrt{x}\left(1 + \mathcal{O}(\sqrt{x}) + \mathcal{O}(h^\infty)\right).$$

The Taylor expansion of the phase at $\eta := \xi - \xi_r^-(x) = 0$ is

$$x\xi + \tilde{g}(\xi) = \tilde{\phi}(x) + r(x)\eta^2 + G(x,\eta)\eta^3,$$

where

$$G(x,\eta) = \frac{1}{2} \int_0^1 (1-t)^2 \tilde{g}^{(3)}(\xi_r^-(x) + \eta t) dt$$

is holomorphic both in \sqrt{x} and in η in a disc centered at 0 with radius of order $(Nk)^{1/3}$.

Put

$$r(x)\eta^2 + G(x,\eta)\eta^3 =: r(x)\zeta^2$$

which can be rewritten as

$$\hat{\eta}^2 + G(x, r\hat{\eta})\hat{\eta}^3 = \hat{\zeta}^2$$

for $\hat{\eta} = \eta/r$, $\hat{\zeta} = \zeta/r$. This can be solved with respect to $\hat{\eta}$ and $\hat{\eta}(x, \hat{\zeta})$ is holomorphic in a *h*-independent neighborhood of $\hat{\zeta} = 0$, $d\hat{\eta}/d\hat{\zeta}|_{\hat{\zeta}=0} = 1$. Since $d\eta/d\zeta = d\hat{\eta}/d\hat{\zeta}$, we get

$$\tilde{I}_N(x;h) = h^{-1/2} r e^{-\tilde{\phi}/h} \int e^{-r^3 \hat{\zeta}^2/h} F(x,\hat{\zeta};h) d\hat{\zeta}$$

where

$$F(x,\hat{\zeta};h) := \frac{d\hat{\eta}}{d\hat{\zeta}} \cdot \tilde{c}_N(\xi_r^-(x) + r\hat{\eta}(x,\hat{\zeta});h)$$

is holomorphic in $\hat{\zeta}$ in a *h*-independent neighborhood of $\hat{\zeta} = 0$, and the integration contour is included in a *h*-independent neighborhood of $\hat{\zeta} = 0$ and passes through the origin $\hat{\zeta} = 0$ as the steepest descent path.

 Set

$$\tilde{r}(\tilde{x}) := (Nk)^{-1/3} r(x) = -i\sqrt{\tilde{x}}(1 + \mathcal{O}((Nk)^{1/3})), \quad t := \tilde{r}^{3/2}\hat{\zeta}.$$

Remark that t is real on the steepest descent path, and that $e^{-\delta^2/\kappa} = h^{\delta^2 N}$. Then we have, for some positive small constants δ and ϵ ,

$$\tilde{I}_N(x;h) = \frac{e^{-\tilde{\phi}/h}}{(\kappa r)^{1/2}} \left\{ \int_{-\delta}^{\delta} e^{-t^2/\kappa} F(x,\tilde{r}^{-3/2}t;h)dt + \mathcal{O}(h^{\epsilon N}) \right\}.$$

The function F has a classical asymptotic expansion in h: for each $L \in \mathbb{N}$,

$$F\left(x,\hat{\zeta};h\right) = \sum_{l=0}^{L} f_l(x,\hat{\zeta})h^l + \mathcal{O}(h^{L+1}),$$

and hence

$$\tilde{I}_N(x;h) = \frac{e^{-\tilde{\phi}/h}}{r^{1/2}} \left\{ \sum_{l=0}^L h^l \kappa^{-1/2} \int_{-\delta}^{\delta} e^{-t^2/\kappa} f_l(x,t) dt + \mathcal{O}(h^{\epsilon N}) + \mathcal{O}(h^{L+1}) \right\}.$$

Recall that each f_l is holomorphic in $\hat{\zeta}$. Then Lemma 2.8 below says that there exists a positive constant ϵ_L small enough such that

$$r^{1/2}e^{\phi/h}\tilde{I}_N(x;h)$$

$$=\sum_{l=0}^L h^l \sum_{j=0}^{[\epsilon_L/\kappa]} \Gamma\left(j+\frac{1}{2}\right) f_{l,2j}(x) \left(\frac{\kappa}{\tilde{r}^3}\right)^j + R_L(x,\kappa) + \mathcal{O}(h^{\epsilon N}) + \mathcal{O}(h^{L+1}),$$

with

(2.10)
$$|R_L(x,\kappa)| \le \frac{2}{\epsilon_L} e^{-\epsilon_L/\kappa} = \frac{2}{\epsilon_L} h^{\epsilon_L N},$$

uniformly in a neighborhood of x = 0. Here we used $\sum_{l=0}^{L} h^l \leq 2$. We finish the proof by taking for example $N = 3L/\epsilon_L \geq \frac{L+1}{\min(\epsilon,\epsilon_L/2)}$ and expanding $f_{l,2j}(x)$ and r(x) in Taylor series in $\sqrt{x} = (Nk)^{1/3}\sqrt{\tilde{x}}$.

Let $f(t) = \sum_{m=0}^{\infty} f_m t^m$ be a holomorphic function of t at the Lemma 2.8. origin. Then there exists $\epsilon_0 > 0$ such that for any $0 < \epsilon < \epsilon_0$, any $\delta > 0$ and any small enough $\kappa > 0$, one has

$$\kappa^{-1/2} \int_{-\delta}^{\delta} e^{-t^2/\kappa} f(t) dt = \sum_{j=0}^{[\epsilon/\kappa]} \Gamma\left(j + \frac{1}{2}\right) f_{2j} \kappa^j + R_{\epsilon}(\kappa),$$

where

$$R_{\epsilon}(\kappa) \leq \frac{1}{\epsilon} e^{-\epsilon/\kappa}.$$

Proof There exists C > 0 such that for each M

(2.11)
$$f(t) = \sum_{m=0}^{M} f_m t^m + r_M(t)$$

with

$$|f_m| \le C^{m+1}, \quad |r_M(t)| \le C^{M+2} |t|^{M+1}.$$

We first show that

$$I(f;\kappa) := \kappa^{-1/2} \int_{-\delta}^{\delta} e^{-t^2/\kappa} f(t) dt$$

satisfies

$$I(f;\kappa) = \sum_{j=0}^{[M/2]} \Gamma\left(j+\frac{1}{2}\right) f_{2j}\kappa^j + R_M(\kappa)$$

with

(2.12)
$$|R_M(\kappa)| \le 2Ce^{-\delta^2/2\kappa} \sum_{m=0}^M (C^2 m \kappa)^{m/2} + C^2 \kappa^{1/2} (C^2 M \kappa)^{M/2},$$

and then, taking $M = [1/(eC^2\kappa)]$, in particular, that the error R_M is exponentially small:

(2.13)
$$|R_M(\kappa)| \le \frac{2\sqrt{e}}{\sqrt{e}-1} C e^{-\delta^2/2\kappa} + \sqrt{e} C^2 \kappa^{1/2} e^{-1/(2eC^2\kappa)}$$

By (2.11),

$$I(f;\kappa) = \kappa^{-1/2} \sum_{m=0}^{M} f_m \int_{-\delta}^{\delta} e^{-t^2/\kappa} t^m dt + \kappa^{-1/2} \int_{-\delta}^{\delta} e^{-t^2/\kappa} r_M(t) dt$$
$$= \sum_{j=0}^{[M/2]} \Gamma\left(j + \frac{1}{2}\right) f_{2j} \kappa^j + R_M(\kappa)$$

with

$$R_M(\kappa) = \kappa^{-1/2} \sum_{m=0}^M f_m \int_{|t|>\delta} e^{-t^2/\kappa} t^m dt + \kappa^{-1/2} \int_{-\delta}^{\delta} e^{-t^2/\kappa} r_M(t) dt.$$

Since $e^t > t^{m-1}/(m-1)!$, one has

$$\int_{|t|>\delta} e^{-t^2/\kappa} |t|^m dt \le 2\sqrt{(m-1)!} \kappa^{\frac{m+1}{2}} e^{-\delta^2/2\kappa},$$
$$\int_{-\delta}^{\delta} e^{-t^2/\kappa} |t|^{M+1} dt \le \Gamma\left(\frac{M}{2}+1\right) \kappa^{\frac{M}{2}+1}.$$

Hence, one gets

$$|R_M(\kappa)| \le 2e^{-\delta^2/2\kappa} \sum_{m=0}^M C^{m+1} \sqrt{(m-1)!} \kappa^{\frac{m}{2}} + C^{M+2} \Gamma\left(\frac{M}{2} + 1\right) \kappa^{\frac{M+1}{2}},$$

and we have the estimate (2.12) using $(m-1)! \leq m^m$, $\Gamma(M/2+1) \leq M^{M/2}$. If we take $M = [1/(eC^2\kappa)]$, we obtain (2.13) since $C^2m\kappa \leq C^2M\kappa \leq 1/e$, M > 1/e $1/(eC^2\kappa) - 1.$

\S 3. Accuracy of the approximation

We estimate $v_N := u - w_{CN}$ in $(-(Nk)^{2/3}, (Nk)^{2/3})$ for sufficiently large C. We do this in two steps; first we show, by using the Agmon estimate, that v_N is at most of polynomial order of h^{-1} .

Proposition 3.1. There exists N_0 such that for all N

$$||v_N||_{H^1((-(Nk)^{2/3},(Nk)^{2/3}))} = \mathcal{O}(h^{-N_0}).$$

Then we show, using this and the propagation theorem of singularity that

Theorem 3.2. For any $L \in \mathbb{N}$ large enough, there exists $N \in \mathbb{N}$ such that

$$||v_N||_{H^1((-(Nk)^{2/3},(Nk)^{2/3}))} = \mathcal{O}(h^L).$$

§3.1. A priori estimate

The estimate in Proposition 3.1 is obvious in $(0, (Nk)^{2/3})$ because both u and w_{CN} satisfy it (see (C3), (2.7) and (2.6)). Hence it suffices to estimate v_N in $(-(Nk)^{2/3}, 0)$.

One sees that there exists N_0 such that

$$||e^{\phi(x)/h}v_N||_{H^1(\Omega_-)} = \mathcal{O}(h^{-N_0}),$$

since this holds for u and w_{CN} instead of v. In particular, denoting by $x_{d=d_0}$ the point x < 0 such that $d(x) = d_0$ (recall $d(x) = -\phi(x)$ is the Agmon distance),

$$||v_N||_{H^1([x_{d=2k},0])} = \mathcal{O}(h^{-N_0-2}).$$

In order to prove this estimate in $(-(Nk)^{2/3}, x_{d=2k})$, we use the so called Agmon esitmate:

Lemma 3.3. For any h > 0, $V \in L^{\infty}(\mathbb{R}^n)$ real-valued, $E \in \mathbb{R}$, $f \in H^1(\mathbb{R}^n)$, and ψ real-valued and Lipschitz on \mathbb{R}^n , one has

$$\operatorname{Re}\left\langle e^{\psi/h}(-h^{2}\Delta+V)f, e^{\psi/h}f\right\rangle$$
$$= ||h\nabla(e^{\psi/h}f)||^{2} + \left\langle (V-|\nabla\psi(x)|^{2})e^{\psi/h}f, e^{\psi/h}f\right\rangle.$$

Let χ_h be a cut-off function with support in $[x_0, x_{d=k}]$, which is identically 1 on $[x_0 + \epsilon, x_{d=2k}]$.

Recall that $d(x) = -\int_0^x \sqrt{V} dx \le C |x|^{3/2}$ for some constant C > 0. With this C, we define

$$\psi_N(x) = \min(-d(x) + CNk + kd(x)^{1/3}, (1 - k^{1/3})d(x)).$$

This function ψ_N is non-negative in $(-(Nk)^{2/3}, 0)$ since d(x) < CNk. Hence it suffices to show that

(3.1)
$$||e^{\psi_N/h}\chi_h v_N||_{H^1} = \mathcal{O}(h^{-N_0}).$$

We apply Lemma 3.3 with $\psi = \psi_N$, $f = \chi_h v_N$. We check the following facts. First, there exists a positive constant C_1 such that

$$V - |\psi'_N(x)|^2 \ge \frac{k}{C_1}.$$

Next, the support of χ'_h is included in $[x_0, x_0 + \epsilon] \cup [x_{d=2k}, x_{d=k}]$. On $[x_0, x_0 + \epsilon]$, $e^{\phi/h}v_N$ and its derivative are of $\mathcal{O}(h^{\infty})$ and hence so is $e^{\psi_N/h}v_N$. On $[x_{d=2k}, x_{d=k}]$, we have $e^{\psi_N/h} = \mathcal{O}(h^{-2})$.

Then we obtain

$$h^{2}||(e^{\psi_{N}/h}\chi_{h}v_{N})'||^{2} + k||e^{\psi_{N}/h}\chi_{h}v_{N}||^{2} = \mathcal{O}(h^{\infty} + h^{-N_{0}}||e^{\psi_{N}/h}\chi_{h}v_{N}||)$$

for some N_0 . Thus we proved (3.1).

§ 3.2. Propagation of microsupport

The condition (C2) says that, for any *h*-independent small negative *t*, the point $(x(t), \xi(t)) = \exp t H_p(0, 0)$ does not belong to the frequency set of *u*. We can show, furthermore, that this is true even for *h*-dependent small negative $t = t_N := -\delta^{-1} (Nk)^{1/3}$. More precisely, denoting by T_{μ} the scaled Bargman transform;

$$T_{\mu}(f) = \int e^{i(x-y)\cdot\xi - \mu(x-y)^2/2h} f(y;h) dy,$$

we have

Lemma 3.4. There exists $\delta_0 > 0$ such that for any $0 < \delta < \delta_0$, for any N large enough, and for $t_N := -\delta^{-1}(Nk)^{1/3}$, one has

(3.2)
$$T_{\mu}(\mathbf{1}_{(0,c')}u) = \mathcal{O}(h^{\delta N}), \quad \mu = (Nk)^{-1/3},$$

uniformly in

$$\mathcal{W}_h(t_N) := \{ (x,\xi); |x - x(t_N)| < \delta(Nk)^{2/3}, |\xi - \xi(t_N)| < \delta(Nk)^{1/3} \}.$$

Here, $\mathbf{1}_{(0,c')}$ is the characteristic function of the interval (0,c').

This can be proved by using an improved microlocal exponential estimate with h-dependent weight (see [FLM] §8.2).

The same estimate holds for the WKB solution w_{CN} :

Lemma 3.5. For any $L \in \mathbb{N}$ large enough, there exists $\delta_L > 0$ such that for any $\delta \in (0, \delta_L]$, for any $N \ge L/\delta_L$ and for $t_N := -\delta^{-1}(Nk)^{1/3}$, one has

(3.3)
$$T_{\mu}(\mathbf{1}_{(\epsilon(Nk)^{2/3},(Nk)^{2/3})}w_{CN}) = \mathcal{O}(h^{\delta N} + h^{L}),$$

uniformly in $\mathcal{W}_h(t_N)$.

These two lemmas, combined with Proposition 3.1, imply that the difference $v_N := \chi_N(x)(u-w_{CN})$, cut-off by $\chi_N(x) = \chi_0(x/(Nk)^{2/3})$ where $\chi_0(x) \in C_0^{\infty}(\mathbb{R})$ is identically equal to 1 in a sufficiently large neighborhood of the origin, satisfies

(3.4)
$$T_{\mu}(v_N) = \mathcal{O}(h^L) \text{ uniformly in } \mathcal{W}_h(t_N),$$

for $N = L/\delta_L$.

Let us introduce a scale change of the variables (x, ξ) as well as the semiclassical parameter h:

(3.5)
$$\begin{cases} \tilde{x} = x/(Nk)^{2/3}, & \tilde{\xi} = \xi/(Nk)^{1/3}, \\ \tilde{h} = h/(Nk) = (N\ln\frac{1}{h})^{-1} & \text{i.e.} \quad h = e^{-1/(N\tilde{h})} \end{cases}$$

Setting $(x,\xi) = A_N(\tilde{x},\tilde{\xi})$ and $\tilde{p}(\tilde{x},\tilde{\xi}) = (Nk)^{-2/3}p \circ A_N(\tilde{x},\tilde{\xi})$, one sees that for all $\tilde{t} \in \mathbb{R}$, one has

(3.6)
$$\exp \tilde{t}H_{\tilde{p}} = A_N^{-1} \circ (\exp tH_p) \circ A_N.$$

with $\tilde{t} = (Nk)^{-1/3}t$.

We define

$$\tilde{v}_N(\tilde{x}) := (Nk)^{1/3} v_N((Nk)^{2/3} \tilde{x}),$$

so that $||v_N||_{L^2(\mathbb{R}_x)} = ||\tilde{v}_N||_{L^2(\mathbb{R}_{\tilde{x}})}$. Then

(3.7)
$$T(\tilde{v}_N)(\tilde{x}, \tilde{\xi}; \tilde{h}) = (Nk)^{-1/3} T_{\mu}(v_N)(x, \xi; h),$$

with $\mu = (Nk)^{-1/3}$, and (3.4) means, for some $0 < \delta'_L < \delta_L$,

(3.8)
$$T(\tilde{v}_N) = \mathcal{O}(e^{-\delta'_L/\tilde{h}}),$$

uniformly in $\mathcal{W}_h(t_N)$, which corresponds, in the $(\tilde{x}, \tilde{\xi})$ -space, to

$$\tilde{\mathcal{W}}_h := \{ (\tilde{x}, \tilde{\xi}); |\tilde{x} - \tilde{x}(-\delta^{-1})| < \delta, |\tilde{\xi} - \tilde{\xi}(-\delta^{-1})| < \delta \},\$$

where $(\tilde{x}(\tilde{t}), \tilde{\xi}(\tilde{t})) = \exp \tilde{t}H_{\tilde{p}}(0, 0)$, and we used (3.6).

Recall V(x) = -x + W(x), $W(x) = \mathcal{O}(x^2)$. Let $W_N(x)$ be a holomorphic $C(Nk)^{2/3}$ approximation of W with sufficiently large constant C, and put $V_N(x) = -x + W_N(x)$, $P_N = -h^2 \frac{d^2}{dx^2} + V_N(x)$.

By the above scale change, P_N becomes

$$P_N = (Nk)^{2/3} \tilde{P}_N, \quad \tilde{P}_N = -\tilde{h}^2 \frac{d^2}{d\tilde{x}^2} - \tilde{x} + (Nk)^{-2/3} W_N((Nk)^{2/3} \tilde{x}).$$

It follows from Proposition 2.6 and (3.7) that there exists a positive constant ϵ such that

(3.9)
$$T\tilde{P}_N\tilde{v}_N = \mathcal{O}(e^{-\epsilon/h}).$$

Now we can apply the usual propagation theorem of *microsupport* (see for example [Ma]): (3.8) implies that the microsupport of \tilde{v}_N is disjoint with the set $\tilde{\mathcal{W}}_h$. Notice that the Hamilton flow of the principal symbol $\tilde{p}_0 := \tilde{\xi}^2 - \tilde{x}$ of \tilde{P}_N ;

$$\exp \tilde{t}H_{\tilde{p}_0}(0,0) = (\tilde{t}^2,\tilde{t})$$

passes through this set $\tilde{\mathcal{W}}_h$ for small enough h. Under the conditions of Proposition 3.1 and (3.9), the theorem says that the origin $(\tilde{x}, \tilde{\xi}) = (0, 0)$ does not belong to the microsupport of \tilde{v}_N :

Proposition 3.6. There exists a positive constant δ such that

$$T\tilde{v}_N = \mathcal{O}(e^{-\delta/h})$$

 $in \{ (\tilde{x}, \tilde{\xi}); |\tilde{x}| < \delta, |\tilde{\xi}| < \delta \}.$

On the other hand, \tilde{p}_0 is microlocally elliptic at $(0, \tilde{\xi})$ except at the origin. Thus combining the above fact with this ellipticity, we conclude that $T\tilde{v}_N$ is uniformly exponentially small with respect to \tilde{h} in a neighborhood of $\{0\} \times \mathbb{R}_{\tilde{\xi}}$, and hence $\tilde{v}_N(\tilde{x}, h)$ is exponentially small with respect to \tilde{h} in a fixed neighborhood of $\tilde{x} = 0$. Returning to the variable x and paremeter h, this means Theorem 3.2.

§4. Remark in the multi-dimensional case

As for the connection of the WKB solution w_N , essentially the same argument as in §1 works in the multi-dimensional case $n \ge 2$, replacing x by $x_n + b(x')$, which defines the caustic C.

As for the accuracy, it is important to see to which distance in x' and ξ' our estimates are valid. Roughly speaking, |x'| and $|\xi'|$ should be of order $(Nk)^{1/3}$ in the classically allowed region, in order that $\xi_n^2 - x_n$ be the "principal term". On the other hand, in a neighborhood of the origin, |x'| should be of order $(Nk)^{1/2}$ since the phase $-\operatorname{Re} \tilde{\phi}(x)$ increases with order (at most) $|x'|^2$ in the directions x'. The latter reasoning suggests to make a scale change

(4.1)
$$\begin{cases} \tilde{x}_n = x_n / (Nk)^{2/3}, & \tilde{\xi}_n = \xi_n / (Nk)^{1/3}, \\ \tilde{x}' = x' / (Nk)^{1/2}, & \tilde{\xi}' = \xi' / (Nk)^{1/2}, \end{cases}$$

corresponding to (3.5). Then defining

$$\tilde{v}_N(\tilde{x}) = (Nk)^{\frac{n}{4} + \frac{1}{12}} v((Nk)^{1/2} \tilde{x}', (Nk)^{2/3} \tilde{x}_n),$$

one has

$$T\tilde{v}_N = (Nk)^{-(\frac{n}{4} + \frac{1}{12})} \mathbf{T}_N v_N,$$

where \mathbf{T}_N is a partially rescaled Bargmann transform:

$$\mathbf{T}_N v(x,\xi;h) := \int e^{i(x-y)\cdot\xi/h - \{\mu(x'-y')^2 + (x_n-y_n)^2\}/2h} v(y) dy, \ \mu = (Nk)^{-1/3}.$$

The scale change leads us to an operator \tilde{P}_N whose \tilde{h} -semiclassical symbol is given by

$$\tilde{p}_N(\tilde{x},\tilde{\xi}) = \tilde{\xi}_n^2 - \tilde{x}_n + (Nk)^{1/3} (\tilde{\xi}')^2 + (Nk)^{1/3} \mathcal{O}(|\tilde{x}|^2 + (N\ln\frac{1}{h})^{-1}).$$

Notice that, for $|\tilde{x}|$ small enough, it is elliptic only for $(Nk)^{1/6}|\tilde{\xi}'| + |\tilde{\xi}_n| > \delta$ for some positive δ .

Corresponding to (3.4), we can show

(4.2)
$$\mathbf{T}_N v_N = \mathcal{O}(h^{\delta N})$$

in a *h*-dependent neighborhood of $\exp t_N H_p(0,0)$

$$\mathcal{W}_{h}(t_{N}) = \{ |x_{n} - x_{n}(t_{N})| \leq \delta(Nk)^{2/3}, |\xi_{n} - \xi_{n}(t_{N})| \leq \delta(Nk)^{1/3}, |x' - x'(t_{N})| \leq \delta(Nk)^{1/3}, |\xi' - \xi'(t_{N})| \leq \delta(Nk)^{1/3} \}.$$

By the above scale change, this can be rewritten as

(4.3)
$$T\tilde{v}_N = \mathcal{O}(e^{-\delta/h})$$

in the tubular domain

$$\tilde{\mathcal{W}} = \{ |\tilde{x}_n - \tilde{x}_n(-\delta^{-1})| \le \delta, \qquad |\tilde{\xi}_n - \tilde{\xi}_n(-\delta^{-1})| \le \delta, \\ |\tilde{x}' - \tilde{x}'(-\delta^{-1})| \le \delta(Nk)^{-1/6}, |\tilde{\xi}' - \tilde{\xi}'(-\delta^{-1})| \le \delta(Nk)^{-1/6} \}.$$

Then by a (modified) analytic propagation theorem of microsupport, we can show, corresponding to Proposition 3.6,

Proposition 4.1. There exists a positive constant δ such that

$$T\tilde{v}_N = \mathcal{O}(e^{-\delta/\tilde{h}})$$

 $in \; V(\delta) := \{(\tilde{x}, \tilde{\xi}); |\tilde{x}| < \delta, (Nk)^{1/6} |\tilde{\xi}'| + |\tilde{\xi}_n| < \delta\}.$

In $(\{|\tilde{x}| < \delta'\} \times \mathbb{R}^n_{\tilde{\xi}}) \setminus V(\delta)$, \tilde{p}_N is elliptic for small enough $\delta' > 0$, and we conclude that \tilde{v}_N is exponentially small with respect to \tilde{h} and that v_N is of $\mathcal{O}(h^{\delta N})$ for some positive δ .

References

- [FLM] Fujiié, S., Lahmar-Benbernou, A., Martinez, A.: Width of shape resonances for non-globally analytic potentials, J. Math. Soc. Japan, 63 (2011), No. 1, 1–78.
- [HeSj] Helffer, B., Sjöstrand, J.: Résonances en limite semiclassique, Bull. Soc. Math. France, Mémoire **24/25**,(1986).
 - [Ma] Martinez, A.: Introduction to Semiclassical and Microlocal Analysis, Springer (2002).