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Semiclassical complex interactions at a non-analytic
turning point

By

SETSURO FUJIIE*, AMINA LAHMAR-BENBERNOU**
and ANDRE MARTINEZ***

Abstract

We continue a dominant WKB solution of the Schrodinger equation in the classically
forbidden region to an outgoing WKB solution in the classically allowed region across a sim-
ple (multi-dimensional) turning point, without assuming the analyticity for the potential. This
report explains briefly the method used in [FLM], where we computed the semiclassical asymp-
totics of the width of shape resonances for non-globally analytic potentials.

§1. Introduction

In this article, we discuss a local connection formula of a WKB solution for the
Schrodinger equation in R™

(1.1) Pu=Eu, P=-h*A+V(x),

at a simple turning point of the non-analytic potential V' (x). Here h is the semiclassical
parameter which tends to 0, and E is a spectral parameter which we will assume to

be zero for simplicity although all the arguments also work when it depends on h:
E = Ey+ O(h).
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We assume that V' (z) is smooth in a neighborhood 2 of the origin = 0 and that
dV (0) # 0. Then we can choose Euclidean coordinates x = (2/, x,,) = (21,...,%Tn_1,Ty)
such that

V(z) = —Cx, + O(Jz]*) as x — 0,
for some constant C' > 0.

Let p(x,€) = [£]*> + V(z) be the classical Hamiltonian of P and let also ¢(z,&) =
£ — V(z). We consider the Hamilton flow exptH, and exp tH, passing through the
origin (0,0) in the phase space R} x R¢, where H), is the Hamilton vector field Hy, =
O¢p - Op — Ozp - Oc. If we write exptHp(0,0) = (x(t),£(t)), exptHy(0,0) = (y(t),n(t)),
they behave, as t — 0, like

' (t) = O(t*), ') = Ot?),
Ta(t) = Ct2 + O(t3), £, (1) = Ot + O(t2),

y'(t) = O(th), '(t) = O(t%),
Un(t) = —Ct2 + O(t%), na(t) = —Ct + O(t?),

In particular, for small ||, exptH,(0,0) is in the classically allowed region {z € ;V <
0} and exptH,(0,0) is in the classically forbidden region {z € ; V' > 0}.

Suppose we are given a solution u to (1.1) in Q. We assume the following two
conditions:

(C1) Let xp = exptoHy(0,0), with small {y < 0, be a point in £ in the classically
forbidden region. In a neighborhood of zg, u has an asymptotic expansion of WKB
form:

(1.2) u(z, h) ~ e ®@/h i ar(z)h*,  $(0) =0

k=0
whose associated Lagrangian manifold
={(2,£);¢ = 0x0(2)}
contains the Hamilton flow exptH,(0,0) for ¢ty <t < 0.

Remark that, since %(ﬁ(x(t)) = 2|£()]?, ¢(x) is increasing along the flow z(t), and
in particular, —¢(x(t)) > 0 for ¢ < 0 i.e. u is exponentially large.

(C2) In the classically allowed region, u is outgoing in the sense that the incoming flow
is not in the frequency set of u. More precisely, for any small negative t,

exptH,(0,0) ¢ FS (u).
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This means by definition that there exists a cut-off function y identically 1 in a
neighborhood of exptH,(0,0) such that the Bargmann transform of yu

T(xu) = / e IS 2R (y)uly; h)dy
is O(h*>) as h — 0.

The Lagrangian manifold A can be extended to a neighborhood of (x,£) = (0,0)
since H, does not vanish there: Hy|(g,0) = —C0¢,. More precisely, there exists a smooth
function g(a’,&,) such that

A= {(xag);gl = 893’9('7;/7571)7'7;71 = _8&19(3;/7571)}7

and there exist smooth functions b(z’') = O(|2'|?), §(z’) with §(0) > 0 and £5(a') =
O(|2’|?) such that

(1.3) 0e,9(2', &n) = b(a") + 8(2")(6n — &1(2"))* + O((&n — &(2"))?)

as &, — £5(a'). The phase function ¢(z), as well as the symbols ay(z), which satisfy the
transport equations along the Hamilton flow on A, are well defined within the x-space
projection of A, i.e. Q_ = {x € Q;z,, + b(2’) < 0} and the boundary of this domain
C:={z ez, +0b") =0} is called caustic set.

(C3) Let s(x) be such that s(x) = ¢(x) where ¢(z) < 0in Q_, and s(x) = 0 elsewhere
in Q. Then there exists Ny € N such that

||es(x)/hu||H1(Q) = O(h™ ™),

Our problem is

Problem Compute the asymptotic expansion of w in the domain Q = {x € Q;x,, +
b(z’) > 0} under the conditions (C1), (C2) and (C3).

This is a localized version of the problem considered for the study of the asymptotic
expansion of the width of shape resonances created by a well in an island, first in [HeSj]
in the analytic case and recently in [FLM] in the C*° case.

Following Maslov’s idea in [HeSj], we write u in a neighborhood of = = 0, as Laplace
transform in &, of a WKB solution e~ 9" &n)/he(a! £,:h) in @/, &y

(1.4) I, h) =12 / e (it SN Mo ;)
v()

where the contour v(x) will be suitably chosen to be a steepest descent path depending

on x.
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It turns out from (1.3) that, for z in Q_, the critical momentums &, of the phase
xn&n + g(2,&,) are real. In 0, however, they are imaginary if g is analytic, and they
are not defined if ¢ is only C°°, which is the case in general when the potential is not
analytic.

The purpose of this report is to explain the techniques used in [FLM]. Because of
the non-analyticity, we can extend u to Q4 only up to a distance of order (hln %)2/ 3
from the caustic.

In order to simplify the argument, we suppose that the dimension is 1, and after

that we make some remarks for the multi-dimensional case.

§2. Connection of WKB solutions

In this and the next sections, we assume that n = 1 and C' = 1, i.e. we consider
the equation

d2
(2.1) Pu = —th—xZ +V(@)u=0, V(z)=—-z+0(?).
Notice that the caustic C is a simple turning point z = 0. If Q = (—¢, ') for some
positive small ¢, ¢/, then Q_ = (—¢,0), Q4 = (0,¢'). The phase function ¢(z) is given

by
o(x) = / VV(z)dx, for —c<z<O0.
0

Remark that —¢(x) is the Agmon distance d(x) from 0 to x and

2
(2.2) —¢(z) = d(z) ~ §|CU|3/2.
The principal symbol ag(x) is known to be constant times (—2)~ /4. We take here
1
aO(aj) = (—$)1/4
Let us denote ]
k=hln—.
)

We will show step by step the following theorem:

Theorem 2.1.  There exist a function q;(aj, h) verifying

¢($, h) = ¢(x) in (_C7 0),

Re g(a, h) > O(h™)

Im d,é(z, h) = —v/x + O(x) + O(h™)
and, for any large N, a smooth function wy(z,h) € C®((—c, (Nk)?/3)) such that the
following properties hold:

} in (0, (Nk)*?),
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(i) There exist m; (j € N) and § > 0, both independent of N, such that
() wn(e,h) = O(hmsem Redwn/m,

Pwy(z,h) = O(hN e~ Red@h)/hy,

(ii) In (—c,0), wyn has the same asymptotic expansion as (1.2): for any L € N, one
has

L
(2.3) wy(z,h) = e ?@/h Z ai(x)ht + O(hET).

1=0
The coefficients a;(x) are of the form
filv—=)
()%

for some functions fi(y) smooth in a neighborhood of y = 0 and in particular fo(y) =
1.

a(z) =

(iii) Let = = (Nk)?/3% and suppose 0 < & < 1 is independent of h. Then there
exists a family of functions {by m ;j(Z)}i,m,; smooth in VI in [0,1) and in particular
bo,0,0(Z) = e™/* such that wy has the following asymptotic expansion: for any
L € N, there exists N € N such that

(2.4) wy(x,h) = e~ P@)/h
3L [3LIn+ b 1
Z S sy Et (v in D) 4 owEH)
F3ity h
I=0 m=0 j5=0

(In terms of T and k = Nlln%, _J)(hx) 2”0 (1 + O((NE)Y3)).)

§2.1. Airy type integral representation
We look for a solution to (2.1) near the origin z = 0 in the form of (1.4).
Suppose x < 0. Then ¢(§) is the Legendre transform of ¢(z), i.e.
9(&) = sup(—a§ + ¢(x)).
xT
By (2.2), the critical point z.(€) satisfies z.(£) = —£2 + O(£3), and the critical value
g(&) behaves like
1
o) = 3€8+ O(EY) as €0,
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Conversely, ¢(x) is the inverse Legendre transform in the sense:
¢(z) = inf (2€ + 9(£)).

Since ¢'(£) = &2 4+ O(&3), there exist, for negative small x, two real critical points
& (2),& (z) smooth with respect to /—x satisfying

£li(a:) =+v—z + O(2),

and z€ + g(£) takes a local minimum at £ = & (x) and a local maximum at & = & (z)
as a function of £ on the real line. Hence

B(x) = a6 (7) + (& (1)) ~ — 5 (~2)"%.

Let us define the integral contour () as a real interval containing §l+ (z) inside as
the only non degenerate minimum.

By the usual Laplace’s method, we have an asymptotic expansion of I(x, h) of the
form (2.3):

Lemma 2.2.  For each x < 0 close to 0, one has

_ - i - fiy)
I(x7 h) ~e #@)/h Z a; (x)hj7 CLJ([E) = y1j2(+3j |y=\/—_:c7
=0

for some functions f;(y) smooth in a neighborhood of y = 0 with fo(0) = /7.

The coefficients {a;(x)}; for negative small x are determined in a bijective way
by the coefficients {cx (&)} of the asymptotic expansion c(&;h) ~ > p cx(§)RF, for &
near & (z) ~ /—z. Thus we can define {c,(&)}r from {a;(x)}; given in (1.2). These
{cr(&)}r are defined near & = & (x) > 0, and extended to a full real neighborhood of
¢ = 0 by the transport equations in momentum variable.

§2.2. Holomorphic approximation

Definition 2.3. Let I C R be an open interval and f a smooth function on I.
We call the family of functions {fs}s=o holomorphic é-approximation of f on I if each
fs is holomorphic in I's = {z € C;dist(z, ) < §} and

dk

(2.5) —

(f—fs)=0(5>) as 6 > 0

uniformly on I for each k£ € N.
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A holomorphic d-approximation can be constructed as follows: Let f be an almost
analytic extension of f, which can be constructed, for example, by

o (i)" ®) (M)
kzzo = )

where €, tends to 0 rapidly enough and x € C§°(R™) is a cut-off function identically 1
near 0. Then

1 [ f(Re¢.Im()

fé(Z) - 2Z7T 7(5) z — C

d¢

with () = {¢ € C;dist(¢,I) = 26} is a holomorphic J-approximation in I's. In fact, it
is obvoiusly holomorphic in T's, and we have for all N and k

k
su —(f - < C(k,N)sN.
s | (= )l < €Ok )

In particular, this implies (2.5).
Let us define, for any large N € N,

Ty(z,h) = h-1/2 / e~ (PERINEM/E (¢ R)dg,
AN (z,h)

where gy (&, h), ¢n(&, h) are holomorphic (Nhln ¢ )1/3 approximation of g(£), c(§,h)
respectively.

Lemma 2.4.  For z € (0,(Nk)?/3), the equation
z+gy(&h) =0
has two complex roots & (x; h), & (x;h), holomorphic with respect to \/x satisfying
(23 h) = +ive + O(x) + O(h™).

Moreover, the critical value at & =&, (x; h)

Blas ) = w6y (a3 ) + G (6 (1) = =i 4 O(?) + O(h)
is a holomorphic function of /x and
(2.6) Re d(x, h) > O(h™).

Now, as integration contour, we define y(z,h) for € (—¢, (NE)?/3) (€ is a
sufficiently small constant) such that

e Yn(z;h) C {€ € C;|Im¢| < (Nk)Y/3}.
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o If € (—¢,0), then Jn(z; h) contains &' and there exists § > 0 such that
Re(s€ +9) — ¢ = 6(|2[V2 + 1€ = &M (@)Dl = &P on A,
1€ - & > S(NE)Y?  at the extremities.
o If z € (0, (Nk)?/3), then A (x; h) contains & and there exists § > 0 such that
(2.7) Re(z€ +§—¢) > 6(ja|"? + ¢ =& DIE= &7 on Aw,
€ — €71 > 6(Nk)Y?  at the extremities.
We have the following propositions:

Proposition 2.5.  There exists 6’ > 0 such that for any N € N and k € N, one

has
dk
dak
for x € (—¢,0).

( (z,h) — In(z, h)) =0 (h5/N—1/2—ke—¢(a;)/h)

Proposition 2.6.  There exists 8’ > 0 such that for any N, one has
PiN(:L', h) -0 (hélNe— Rqu(m;h)/h)
uniformly in x € (—e, (Nk)?/3).

Thus we obtain our global approximate solution wy in Theorem 2.1 by connecting
u(z, h), I(z,h) and Iy(z,h) with a suitable partition of unity.

§2.3. Asymptotic expansion for positive x

Here we compute the asymptotic expansion of our approximate solution I N(z, h)
for positive but small z of order £2/3. We do it by the Laplace’s method as for z < 0,
but we should be careful because, as h — 0, x tends to 0 where the critical point
degenerates.

Proposition 2.7. Let x = (Nk)'/3%. There exists a family of smooth functions
{b1,m.;(Z) }1,m,; in a neighborhood of & = 0 with

bo’o’o(.fi) = eﬂi/4ﬁ6N(0, 0),
such that for any positive integer L, there exist N(L) € N and €, > 0 such that if T is
in an interval (c1,c2), 0 < c1 < cg <1, then

[BL ln

(28) I (33 h Z Z Z bl m,j hl Nk)%_% ‘I’ O(kL—’_%) )

_|_
=0 m=0 ;=0 Faits

where k = hIn{ and k= h/(Nk) =1/(NIn4).
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Remark.  The formula by oo(#) = ¢™/* in Theorem 2.1 (iii) follows from

én(0,0) = ¢(0,0) = a(0,0)/v/7 = 1.
Proof Set

(2.9) r(w:h) = 53" (& (5:1) = ~iv/E (1 + O(VE) + O(h™))

The Taylor expansion of the phase at n:=& — ¢, (z) =0 is

7€+ §(8) = o(x) +r(x)n® + G, mn?,
where

Glan) =5 [ (=159 @) +noyi

is holomorphic both in v/z and in 7 in a disc centered at 0 with radius of order (Nk)*/3.

Put
r(@)n® + Gz, n)n’ =: r(z)¢?
which can be rewritten as
i+ Gla, )i’ = ¢
for fj = n/r, { = ¢/r. This can be solved with respect to 7 and 7j(x, ¢) is holomorphic in
a h-independent neighborhood of ¢ = 0, di/d(| ¢=o = 1. Since dn/d¢ = dn/d¢, we get

In(z:h) = h_l/zre_‘;/h/e_Tgéz/hF(%é; h)d¢

where g
~ n . _ R ~
F(z,Gh) = @ -en (& (x) +ri(x, Q) )
is holomorphic in g: in a h-independent neighborhood of é = 0, and the integration
contour is included in a h-independent neighborhood of ¢ = 0 and passes through the
origin é = 0 as the steepest descent path.
Set

(@) == (Nk)"3r(2) = —iVE(1 + O((NK)'/3)), t:=#/2(.

Remark that ¢ is real on the steepest descent path, and that e=9°/% = B°N_ Then we
have, for some positive small constants ¢ and e,

e_$/h’

1)
W {/_6 e_t /KF(x,f_g/Qt; h)dt + O(hEN)} .

The function F' has a classical asymptotic expansion in h: for each L € N,

fN($; h) =

L
F(2.Gh) = 3 fila, On' + O(RE*),
=0
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and hence
—¢/

(27 h 1“1/2 {Zhl —1/2/ t2/ﬁfl($,t)dt+0(hEN)+O(hL+1)},

Recall that each f; is holomorphic in é . Then Lemma 2.8 below says that there exists
a positive constant €7, small enough such that

rl/Qe‘;/th(:c; h)

L ler /K] .
1 K\ J
_E l E . - ) v eN L+1
= F(‘Hz) fr2i(0) (5) + Reles ) + OG™) + ORI,
with

2 2
(2.10) |Rp(z, k)| < —e~ct/r = ZpeLN,
€r, €r,

uniformly in a neighborhood of x = 0. Here we used ZlL:o nt < 2.

We finish the proof by taking for example N = 3L/ep, > —E2tL — and expanding

min(e,eyr, /2)

fi.2;(z) and () in Taylor series in vz = (Nk)/3V/7. O

Lemma 2.8.  Let f(t) = > 7, fmt™ be a holomorphic function of t at the
origin. Then there exists eg > 0 such that for any 0 < € < €y, any § > 0 and any small
enough Kk > 0, one has

5 /K]
B e 1 ‘
k12 /_5e EAVIOLEN F<]+§> fajk? + Re(k),

where

—E/Ii'

Proof There exists C' > 0 such that for each M

M
(2.11) FO =S fut™ +ra(t)

m=0
with
[fn| SO e (8)] < CMFR ML

We first show that

5
I(f; k) = /1_1/2/ e t/R f(t)dt
—5
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satisfies
[M/2] ) ,
1ir)= 3T (45 ) fad + Rarl)
with
) M
(2.12) |Ras (k)] < 2Ce™ /2% " (CPmr)™? + CPRM2(CPME)M2,
m=0

and then, taking M = [1/(eC?k)], in particular, that the error Ry is exponentially
small:

2
(2.13) |Ra (k)| < \/_‘/5106—62/% + \/502,.61/26—1/(2@02,.@)'
6 J—

By (2.11),

M E) 8
I(f;k) =K1/ Z fm/ et /Rgm gy 4 /@_1/2/ e_t2/””rM(t)dt
m=0 =90

-0

[M/2]

-3r <j+ %) Faji? + Raa ()

=0
with

é
et /mgm gy 4 n_l/Q/ e_tz/”rM(t)dt.
—5

M
Ry(r) =62 fm
Mm(K) =k m:Of /I

t|>0

Since e! > t™71/(m — 1)!, one has

/ e‘t2/ﬁ|t|mdt <24/ (m— 1)!/1”?1 o002k
[t|>d

6 2 M1 M M
/ et /E|MF dtgr(7+1> k2t
-6

Hence, one gets

M
m M
|Ra (k)| < 29 /2% Z C"y/(m - 1)lk% +CMTT (; + 1) Iﬁ:M2+1,
m=0
and we have the estimate (2.12) using (m — 1)! < m™, T'(M/2 + 1) < MM/2,
If we take M = [1/(eC?k)], we obtain (2.13) since C?mx < C*Mk < 1/e, M >
1/(eC?k) — 1. O



42 SETSURO FUJITE, AMINA LAHMAR-BENBERNOU AND ANDRE MARTINEZ

8§3. Accuracy of the approximation

We estimate vy := u — woy in (—(NE)?/3, (Nk)?/3) for sufficiently large C. We
do this in two steps; first we show, by using the Agmon estimate, that vy is at most of
polynomial order of h~1.

Proposition 3.1.  There exists Ny such that for all N

oN (= (Wry2/3, (N k)2/3)) = O(h~Noy.
Then we show, using this and the propagation theorem of singularity that

Theorem 3.2.  For any L € N large enough, there exists N € N such that
Nl g (- (vmy2re (viy2/ay) = O(RF).

§3.1. A priori estimate

The estimate in Proposition 3.1 is obvious in (0, (Nk)?/3) because both u and weon
satisfy it (see (C3), (2.7) and (2.6)). Hence it suffices to estimate vy in (—(Nk)?/3,0).
One sees that there exists Ny such that

1e?@ Mo iy = O(h ),

since this holds for v and wen instead of v. In particular, denoting by x4—4, the point
x < 0 such that d(x) = dy (recall d(x) = —¢(x) is the Agmon distance),

||UN||H1([33d=2k,0]) = O(h_NO_Q)'

In order to prove this estimate in (—(Nk)?/3, x4—01), we use the so called Agmon
esitmate:

Lemma 3.3. For any h > 0, V € L>®(R") real-valued, E € R, f € HY(R"),
and 1 real-valued and Lipschitz on R™, one has

Re (e¥/"(—h*A+ V) f,e¥/M f)
= |IkV (X" PIP + (V= V() [?)e?/ " f, e/ f) .

Let x5 be a cut-off function with support in [z, z4=k], which is identically 1 on
[z0 + €, Ta=2k]-

Recall that d(z) = — [ VVdzr < C|z|?/? for some constant C' > 0. With this C,
we define

Yn () = min(—d(z) + ONk + kd(x)*/?, (1 — EY/3)d(x)).
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This function 9 is non-negative in (—(Nk)?/3,0) since d(z) < CNk. Hence it suffices
to show that

(3.1) e Ay un || = O(hNo).

We apply Lemma 3.3 with ¢ = ¢¥n, f = xpvn. We check the following facts.
First, there exists a positive constant C'; such that

k

V- @) = &

Next, the support of x}, is included in [zg, 2o + €] U [zg=2k, Ta=x]. On [xo,z0 + €],
e?/hyn and its derivative are of O(h™) and hence so is e¥~N/" vy, On [24—ok, Ta=k], We
have e¥~/P = O(h=2).

Then we obtain

P21 xnon) |12+ Klle?™ Mxnon P = O(h* + =Nl Mo ]))
for some Ny. Thus we proved (3.1).

§3.2. Propagation of microsupport

The condition (C2) says that, for any h-independent small negative ¢, the point
(x(t),&(t)) = exptHp(0,0) does not belong to the frequency set of u. We can show, fur-
thermore, that this is true even for h-dependent small negative t =ty := —6 (N k)l/ 3,
More precisely, denoting by 7}, the scaled Bargman transform;

Tu(f) = / A S (O

we have

Lemma 3.4.  There exists 69 > 0 such that for any 0 < § < &g, for any N large
enough, and for ty := —0 1 (Nk)Y/3, one has

(3.2) Tu(Lo.eyw) = O(h*N), = (Nk)~V/2,
uniformly in

Wi(tn) = {(z,8); |z — x(tn)] < S(NK)*/?,|€ = £(tn)| < 6(NE)/}.
Here, 1(g o) is the characteristic function of the interval (0,c’).

This can be proved by using an improved microlocal exponential estimate with
h-dependent weight (see [FLM] §8.2).
The same estimate holds for the WKB solution wen:
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Lemma 3.5. For any L € N large enough, there exists 61, > 0 such that for any
5 €(0,01], for any N > L/, and for ty := —6~Y(Nk)Y/3, one has

(3.3) Ty (Lo nry2rs (Niysywen) = O(RON + b,
uniformly in Wh(tn).

These two lemmas, combined with Proposition 3.1, imply that the difference vy :=
xn (z)(u—wen), cut-off by xn () = xo(z/(Nk)?/3) where xo(z) € C§°(R) is identically
equal to 1 in a sufficiently large neighborhood of the origin, satisfies

(3.4) T,.(vx) = O(h*) uniformly in Wi, (tn),

for N=L/ér.
Let us introduce a scale change of the variables (x,&) as well as the semiclassical
parameter h:

(3.5)

t € R, one has

(3.6) exptHy = Ay o (exptH,) o An.
with £ = (Nk)~1/3¢,
We define
N (&) == (NE)Pun (NE)?3%),
so that ||[un|[z2(r,) = ||On]|22(R;)- Then
(3.7) T(0n)(E,&h) = (NE) 3T, (on) (2, & h),

with = (Nk)~1/3, and (3.4) means, for some 0 < &} < dp,
(3.8) T(by) = O(c~ /),
uniformly in Wy, (txy), which corresponds, in the (Z, 3 )-space, to
Wi o= {(#,€); |7 = 2(=071)| < §,|€ = (=6 1)| < 6},

where (Z(£),£(f)) = exptH;(0,0), and we used (3.6).

Recall V(z) = —z+W (x), W(x) = O(x?). Let Wy (z) be a holomorphic C'(Nk)?/3-
approximation of W with sufficiently large constant C, and put Vy(z) = —x + Wi (),
Py = —h2L, 4 Vy(z).
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By the above scale change, Py becomes

- - - d?
Py = (Nk)23Py, Py = _h2ﬁ — 2+ (NE)2BWy(NE)?/32).
It follows from Proposition 2.6 and (3.7) that there exists a positive constant € such
that

(3.9) TPyin = Oe™/M).

Now we can apply the usual propagation theorem of microsupport (see for example
[Ma]): (3.8) implies that the microsupport of oy is disjoint with the set W,. Notice
that the Hamilton flow of the principal symbol pg := §~2 — 7 of Py;

exptHp,(0,0) = (£2,7)

passes through this set W), for small enough h. Under the conditions of Proposition
3.1 and (3.9), the theorem says that the origin (i,é) = (0,0) does not belong to the
microsupport of vy

Proposition 3.6.  There exists a positive constant § such that
Tin = O(e™*/h)
in {(7,8);1a| < ,1€] < o).

On the other hand, pg is microlocally elliptic at (0,5) except at the origin. Thus
combining the above fact with this ellipticity, we conclude that Ty is uniformly expo-
nentially small with respect to h in a neighborhood of {0} x Rg, and hence On(Z, h) is
exponentially small with respect to h in a fixed neighborhood of £ = 0. Returning to
the variable x and paremeter h, this means Theorem 3.2.

8§4. Remark in the multi-dimensional case

As for the connection of the WKB solution wy, essentially the same argument as
in §1 works in the multi-dimensional case n > 2, replacing = by x,, +b(2’), which defines
the caustic C.

As for the accuracy, it is important to see to which distance in 2’ and & our
estimates are valid. Roughly speaking, |2/| and |¢'| should be of order (Nk)'/2 in the
classically allowed region, in order that £2 — x,, be the “principal term”. On the other
hand, in a neighborhood of the origin, |z’| should be of order (Nk)'/? since the phase
/|2

—Re ¢(z) increases with order (at most) |2’|? in the directions z’.
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The latter reasoning suggests to make a scale change
Tp = xn/(Nk)Q/ga gn = Sn/(Nk)l/?)a
(4.1)
7 = :C’/(Nk)l/Q, 5/ _ f//(Nk)l/Q,
corresponding to (3.5). Then defining
on(E) = (NK) T2 0((VR) 22, (NK)?2),

one has
Toy = (Nk)_(%—'_%)TNUN,

where Ty is a partially rescaled Bargmann transform:
Tyv(z, & h) = /ei(w—y)~£/h—{u(x’—y’)2+(wn—yn)z}/%v(y)dy, p=(Nk)~/3,
The scale change leads us to an operator Py whose h-semiclassical symbol is given by
- - 1
PN (%, €) = & — & + (NE)P(E)? + (NE)2O(2 + (N In E)_l)-

Notice that, for |Z| small enough, it is elliptic only for (Nk)Y/6|€'| 4 |€,| > & for some
positive 4.
Corresponding to (3.4), we can show

(4.2) Tyvy = O(h°Y)
in a h-dependent neighborhood of exp ¢ty H)p(0,0)

Wi(tn) = {lon — za(ty)] < S(NK)*/3, |60 — &nltn)| < 6(NE)'/?,
o — ' (tn)] < S(NK)YV3, |6 = €' (tn)] < S(NK)V? Y.

By the above scale change, this can be rewritten as
(4.3) Ty = O(e /M)

in the tubular domain

W = {|n — En(—071)| <3, €0 — En(—0" 1) <6,
& — & (=071 < S(Nk) MO, |E — & (=67 < 5(NK)~/0 .

Then by a (modified) analytic propagation theorem of microsupport, we can show,
corresponding to Proposition 3.6,



SEMICLASSICAL COMPLEX INTERACTIONS AT A NON-ANALYTIC TURNING POINT 47

Proposition 4.1.  There exists a positive constant § such that
Tiy = O(e™/M)
in V(8) := {(%,); |7] < 6, (Nk)O|'| + |€n] < 63

In ({|Z| < '} x ]Rg)\V((S), pn is elliptic for small enough ¢’ > 0, and we conclude

that oy is exponentially small with respect to h and that vy is of O(h*N) for some
positive 4.
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