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Semiclassical complex interactions at a non‐analytic
turning point
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,
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Abstract

We continue a dominant WKB solution of the Schrödinger equation in the classically
forbidden region to an outgoing WKB solution in the classically allowed region across a sim‐

ple (multi‐dimensional) turning point, without assuming the analyticity for the potential. This

report explains briey the method used in [FLM], where we computed the semiclassical asymp‐

totics of the width of shape resonances for non‐globally analytic potentials.

§1. Introduction

In this article, we discuss a local connection formula of a WKB solution for the

Schrödinger equation in \mathbb{R}^{n}

(1.1) Pu=Eu, P=-h^{2}\triangle+V(x) ,

at a simple turning point of the non‐analytic potential V(x) . Here h is the semiclassical

parameter which tends to 0 ,
and E is a spectral parameter which we will assume to

be zero for simplicity although all the arguments also work when it depends on h :

E=E_{0}+\mathcal{O}(h) .
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We assume that V(x) is smooth in a neighborhood  $\Omega$ of the origin  x=0 and that

dV(0)\neq 0 . Then we can choose Euclidean coordinates x=(x', x_{n})=(x\mathrm{l}, . . . , x_{n-1}, x_{n})
such that

V(x)=-Cx_{n}+\mathcal{O}(|x|^{2}) as x\rightarrow 0,

for some constant C>0.

Let p(x,  $\xi$)=| $\xi$|^{2}+V(x) be the classical Hamiltonian of P and let also q(x,  $\xi$)=
| $\xi$|^{2}-V(x) . We consider the Hamilton flow \exp tH_{p} and \exp tH_{q} passing through the

origin (0,0) in the phase space \mathbb{R}_{x}^{n}\times \mathbb{R}_{ $\xi$}^{n} ,
where H_{p} is the Hamilton vector field H_{p}=

\partial_{ $\xi$}p\cdot\partial_{x}-\partial_{x}p\cdot\partial_{ $\xi$} . If we write \exp tH_{p}(0,0)=(x(t),  $\xi$(t)) , \exp tH_{q}(0,0)=(y(t),  $\eta$(t)) ,

they behave, as t\rightarrow 0 ,
like

\{ x'(t)=\mathcal{O} (t4); $\xi$'(t)=\mathcal{O} (t3);

\{ y'(t)=\mathcal{O}(t^{4}) , $\eta$'(t)=\mathcal{O}(t^{3}) ,

x_{n}(t)=Ct^{2}+\mathcal{O} (t3); $\xi$_{n}(t)=Ct +\mathcal{O} (t2);

y_{n}(t)=-Ct^{2}+\mathcal{O} (t3); $\eta$_{n}(t)=-Ct+\mathcal{O} (t2);

In particular, for small |t|, \exp tH_{p}(0,0) is in the classically allowed region \{x\in $\Omega$;V<
0\} and \exp tH_{q}(0,0) is in the classically forbidden region \{x\in $\Omega$;V>0\}.

Suppose we are given a solution u to (1.1) in  $\Omega$ . We assume the following two

conditions:

(C1) Let  x_{0}=\exp t_{0}H_{q}(0,0) ,
with small t_{0}<0 ,

be a point in  $\Omega$ in the classically
forbidden region. In a neighborhood of  x_{0}, u has an asymptotic expansion of WKB

form:

(1.2) u(x, h)\displaystyle \sim e^{- $\phi$(x)/h}\sum_{k=0}^{\infty}a_{k}(x)h^{k},  $\phi$(0)=0

whose associated Lagrangian manifold

 $\Lambda$=\{(x,  $\xi$); $\xi$=\partial_{x} $\phi$(x)\}

contains the Hamilton flow \exp tH_{q}(0,0) for t_{0}<t<0.

Remark that, since \displaystyle \frac{d}{dt} $\phi$(x(t))=2| $\xi$(t)|^{2},  $\phi$(x) is increasing along the flow x(t) ,
and

in particular, - $\phi$(x(t))>0 for t<0 i.e. u is exponentially large.

(C2) In the classically allowed region, u is outgoing in the sense that the incoming flow

is not in the frequency set of u . More precisely, for any small negative t,

\exp tH_{p}(0,0)\not\in \mathrm{F}\mathrm{S}(u) .
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This means by denition that there exists a cut‐off function  $\chi$ identically 1 in a

neighborhood of \exp tH_{p}(0,0) such that the Bargmann transform of  $\chi$ u

T( $\chi$ u)=\displaystyle \int e^{i(x-y)\cdot $\xi$/h-(x-y)^{2}/2h} $\chi$(y)u(y;h)dy
is \mathcal{O}(h^{\infty}) as h\rightarrow 0.

The Lagrangian manifold  $\Lambda$ can be extended to a neighborhood of (x,  $\xi$)=(0,0)
since H_{q} does not vanish there: H_{q}|_{(0,0)}=-C\partial_{$\xi$_{n}} . More precisely, there exists a smooth

function g(x', $\xi$_{n}) such that

 $\Lambda$=\{(x,  $\xi$);$\xi$'=\partial_{x'}g(x', $\xi$_{n}) , x_{n}=-\partial_{$\xi$_{n}}g(x', $\xi$_{n}

and there exist smooth functions b(x')=\mathcal{O}(|x'|^{2}) ,  $\delta$(x') with  $\delta$(0)>0 and $\xi$_{n}^{c}(x')=
\mathcal{O}(|x'|^{2}) such that

(1.3) \partial_{$\xi$_{n}}g(x', $\xi$_{n})=b(x')+ $\delta$(x')($\xi$_{n}-$\xi$_{n}^{c}(x'))^{2}+\mathcal{O}(($\xi$_{n}-$\xi$_{n}^{c}(x'))^{3})

as $\xi$_{n}\rightarrow$\xi$_{n}^{c}(x') . The phase function  $\phi$(x) ,
as well as the symbols a_{k}(x) ,

which satisfy the

transport equations along the Hamilton flow on  $\Lambda$
,

are well dened within the  x‐space

projection of  $\Lambda$
,

i.e.  $\Omega$_{-}:=\{x\in $\Omega$;x_{n}+b(x')<0\} and the boundary of this domain

C :=\{x\in $\Omega$;x_{n}+b(x')=0\} is called caustic set.

(C3) Let s(x) be such that s(x)= $\phi$(x) where  $\phi$(x)<0 in $\Omega$_{-}
,

and s(x)=0 elsewhere

in  $\Omega$ . Then there exists  N_{0}\in \mathbb{N} such that

||e^{s(x)/h}u||_{H^{1}( $\Omega$)}=\mathcal{O}(h^{-N_{0}}) ,

Our problem is

Problem Compute the asymptotic expansion of u in the domain  $\Omega$+:=\{x\in $\Omega$;x_{n}+
b(x')>0\} under the conditions (C1), (C2) and (C3).

This is a localized version of the problem considered for the study of the asymptotic

expansion of the width of shape resonances created by a well in an island, first in [\mathrm{H}\mathrm{e}\mathrm{S}\mathrm{j}]
in the analytic case and recently in [FLM] in the C^{\infty} case.

Following Maslov�s idea in [\mathrm{H}\mathrm{e}\mathrm{S}\mathrm{j}] ,
we write u in a neighborhood of x=0 ,

as Laplace
transform in $\xi$_{n} of a WKB solution e^{-g(x',$\xi$_{n})/h}c(x', $\xi$_{n};h) in x', $\xi$_{n} :

(1.4) I(x, h):=h^{-1/2}\displaystyle \int_{ $\gamma$(x)}e^{-(x_{n}$\xi$_{n}+g(x',$\xi$_{n}))/h}c(x', $\xi$_{n};h)d $\xi$,
where the contour  $\gamma$(x) will be suitably chosen to be a steepest descent path depending
on x.
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It turns out from (1.3) that, for x in $\Omega$_{-}
,

the critical momentums $\xi$_{n} of the phase

x_{n}$\xi$_{n}+g(x', $\xi$_{n}) are real. In $\Omega$_{+} , however, they are imaginary if g is analytic, and they
are not dened if g is only C^{\infty} ,

which is the case in general when the potential is not

analytic.
The purpose of this report is to explain the techniques used in [FLM]. Because of

the non‐analyticity, we can extend u to  $\Omega$+ only up to a distance of order ( hln \displaystyle \frac{1}{h})^{2/3}
from the caustic.

In order to simplify the argument, we suppose that the dimension is 1, and after

that we make some remarks for the multi‐dimensional case.

§2. Connection of WKB solutions

In this and the next sections, we assume that n=1 and C=1 ,
i.e. we consider

the equation

(2.1) Pu:=-h^{2}\displaystyle \frac{d^{2}u}{dx^{2}}+V(x)u=0, V(x)=-x+\mathcal{O}(x^{2}) .

Notice that the caustic C is a simple turning point x=0 . If  $\Omega$=(-c, c') for some

positive small c, c'
,

then $\Omega$_{-}=(-c, 0) , $\Omega$_{+}=(0, c The phase function  $\phi$(x) is given

by

 $\phi$(x)=\displaystyle \int_{0}^{x}\sqrt{V(x)}dx ,
for -c<x<0.

Remark that - $\phi$(x) is the Agmon distance d(x) from 0 to x and

(2.2) - $\phi$(x)=d(x)\displaystyle \sim\frac{2}{3}|x|^{3/2}
The principal symbol a(x) is known to be constant times (-x)^{-1/4} . We take here

a_{0}(x)=\displaystyle \frac{1}{(-x)^{1/4}}.
Let us denote

k=h\displaystyle \ln\frac{1}{h}.
We will show step by step the following theorem:

Theorem 2.1. There exist a function \tilde{ $\phi$}(x, h) verify ing

\tilde{ $\phi$}(x, h)= $\phi$(x) in (-c, 0) ,

{\rm Re}\tilde{ $\phi$}(x, h)\geq \mathcal{O}(h^{\infty}){\rm Im}\partial_{x}\tilde{ $\phi$}(x, h)=-\sqrt{x}+\mathcal{O}(x)+\mathcal{O}(h^{\infty})\} in (0, (Nk)^{2/3}) ,

and, for any large N
,

a smooth function w_{N}(x, h)\in C^{\infty}((-c, (Nk)^{2/3})) such that the

following properties hold:
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(i) There exist m_{j}(j\in \mathbb{N}) and  $\delta$>0 ,
both independent of N

,
such that

(\displaystyle \frac{d}{dx})^{j}w_{N}(x, h)=\mathcal{O}(h^{-m_{j}}e^{-{\rm Re}\tilde{ $\phi$}(x,h)/h}) ,

Pw_{N}(x, h)=\mathcal{O}(h^{ $\delta$ N}e^{-{\rm Re}\tilde{ $\phi$}(x,h)/h}) .

(ii) In (-c, 0) , w_{N} has the same asymptotic expansion as (1.2): for any L\in \mathbb{N} , one

has

(2.3) w_{N}(x, h)=e^{- $\phi$(x)/h}\displaystyle \sum_{l=0}^{L}a_{l}(x)h^{l}+\mathcal{O}(h^{L+1}) .

The coefficients a(x) are of the form

a_{l}(x)=\displaystyle \frac{f_{l}(\sqrt{-x})}{(-x)^{\frac{1}{4}+\frac{3l}{2}}}
for some functions f(y) smooth in a neighborhood ofy=0 and in particular f_{0}(y)=
1.

(iii) Let x=(Nk)^{2/3}\tilde{x} and suppose 0<\tilde{x}<1 is independent of h . Then there

exists a family of functions \{b_{l,m,j}(\tilde{x})\}_{l,m,j} smooth in \sqrt{\tilde{x}} in [0 , 1) and in particular

b_{0,0,0}(\tilde{x})=e^{ $\pi$ i/4} such that w_{N} has the following asymptotic expansion: for any

L\in \mathbb{N} , there exists N\in \mathbb{N} such that

(2.4) w_{N}(x, h)=e^{-\tilde{ $\phi$}(x)/h}

\displaystyle \times\{\sum_{l=0}^{L}\sum_{m=0}^{3L}\sum_{j=0}^{[3L\ln\frac{1}{h}]}\frac{b_{l,m,j}(\tilde{x})}{\tilde{x}^{\frac{3}{2}j+\frac{1}{4}}}h^{l}(Nk)^{\frac{m}{3}-\frac{1}{6}}(N\ln\frac{1}{h})^{-j}+\mathcal{O}(k^{L+1/3})\}
(In terms of \tilde{x} and  $\kappa$=\displaystyle \frac{\mathrm{l}}{N\ln\frac{1}{h}}, -\displaystyle \frac{\tilde{ $\phi$}(x)}{h}=\frac{2i\tilde{x}^{3/2}}{3 $\kappa$}(1+\mathcal{O}((Nk)^{1/3})). )

§2.1. Airy type integral representation

We look for a solution to (2.1) near the origin x=0 in the form of (1.4).
Suppose x<0 . Then g() is the Legendre transform of  $\phi$(x) ,

i.e.

g( $\xi$)=\displaystyle \sup_{x}(-x $\xi$+ $\phi$(x)) .

By (2.2), the critical point x() satises x_{c}( $\xi$)=-$\xi$^{2}+\mathcal{O}($\xi$^{3}) ,
and the critical value

g() behaves like

g( $\xi$)=\displaystyle \frac{1}{3}$\xi$^{3}+\mathcal{O}($\xi$^{4}) as  $\xi$\rightarrow 0.
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Conversely,  $\phi$(x) is the inverse Legendre transform in the sense:

 $\phi$(x)=\displaystyle \inf_{ $\xi$}(x $\xi$+g( $\xi$)) .

Since g'( $\xi$)=$\xi$^{2}+\mathcal{O}($\xi$^{3}) ,
there exist, for negative small x

,
two real critical points

$\xi$_{l}^{+}(x) , $\xi$_{l}^{-}(x) smooth with respect to \sqrt{-x} satisfying

$\xi$_{l}^{\pm}(x)=\pm\sqrt{-x}+\mathcal{O}(x) ,

and x $\xi$+g() takes a local minimum at  $\xi$=$\xi$_{l}^{+}(x) and a local maximum at  $\xi$=$\xi$_{l}^{-}(x)
as a function of  $\xi$ on the real line. Hence

 $\phi$(x)=x$\xi$_{l}^{+}(x)+g($\xi$_{l}^{+}(x))\displaystyle \sim-\frac{2}{3}(-x)^{3/2}
Let us dene the integral contour  $\gamma$(x) as a real interval containing $\xi$_{l}^{+}(x) inside as

the only non degenerate minimum.

By the usual Laplace�s method, we have an asymptotic expansion of I(x, h) of the

form (2.3):

Lemma 2.2. For each x<0 close to 0,
one has

I(x, h)\displaystyle \sim e^{- $\phi$(x)/h}\sum_{j=0}^{\infty} ãj (x)h^{j} ,
ãj (x)=\displaystyle \frac{f_{j}(y)}{y^{1/2+3j}}|_{y=\sqrt{-x}},

for some functions f(y) smooth in a neighborhood of y=0 with f_{0}(0)=\sqrt{ $\pi$}.

The coefficients {ã(x)}j for negative small x are determined in a bijective way

by the coefficients \{c_{k}( $\xi$)\}_{k} of the asymptotic expansion c( $\xi$;h)\displaystyle \sim\sum_{k=0}^{\infty}c_{k}( $\xi$)h^{k} ,
for  $\xi$

near  $\xi$_{l}^{+}(x)\sim\sqrt{-x} . Thus we can dene \{c_{k}( $\xi$)\}_{k} from \{a_{j}(x)\}_{j} given in (1.2). These

\{c_{k}( $\xi$)\}_{k} are dened near  $\xi$=$\xi$_{l}^{+}(x)>0 ,
and extended to a full real neighborhood of

 $\xi$=0 by the transport equations in momentum variable.

§2.2. Holomorphic approximation

Denition 2.3. Let I\subset \mathbb{R} be an open interval and f a smooth function on I.

We call the family of functions \{f_{ $\delta$}\}_{ $\delta$>0} holomorphic  $\delta$ ‐approximation of  f on I if each

f_{ $\delta$} is holomorphic in $\Gamma$_{ $\delta$}= { z\in \mathbb{C}; dist (z, I)< $\delta$ } and

(2.5) \displaystyle \frac{d^{k}}{dx^{k}}(f-f_{ $\delta$})=\mathcal{O}($\delta$^{\infty}) as  $\delta$\rightarrow 0

uniformly on I for each k\in \mathbb{N}.
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A holomorphic  $\delta$‐approximation can be constructed as follows: Let \tilde{f} be an almost

analytic extension of f ,
which can be constructed, for example, by

\displaystyle \tilde{f}(x, y)=\sum_{k=0}^{\infty}\frac{(iy)^{k}}{k!}f^{(k)}(x) $\chi$(\frac{|y|}{$\epsilon$_{k}}) ,

where $\epsilon$_{k} tends to 0 rapidly enough and  $\chi$\in C_{0}^{\infty}(\mathbb{R}^{+}) is a cut‐off function identically 1

near 0 . Then

 f_{ $\delta$}(z)=\displaystyle \frac{1}{2i $\pi$}\int_{ $\gamma$( $\delta$)}\frac{\tilde{f}({\rm Re} $\zeta$,{\rm Im} $\zeta$)}{z- $\zeta$}d $\zeta$
with  $\gamma$( $\delta$)= {  $\zeta$\in \mathbb{C}; dist ( $\zeta$, I)=2 $\delta$ } is a holomorphic  $\delta$‐approximation in  $\Gamma$_{ $\delta$} . In fact, it

is obvoiusly holomorphic in $\Gamma$_{ $\delta$} ,
and we have for all N and k

\displaystyle \sup_{x+iy\in$\Gamma$_{ $\delta$}}|\frac{d^{k}}{dx^{k}}(\tilde{f}-f_{ $\delta$})|\leq C(k, N)$\delta$^{N}
In particular, this implies (2.5).

Let us dene, for any large N\in \mathbb{N},

\displaystyle \tilde{I}_{N}(x, h)=h^{-1/2}\int_{\tilde{ $\gamma$}_{N}(x,h)}e^{-(x $\xi$+\tilde{g}_{N}( $\xi$,h))/h}\tilde{c}_{N}(_{;}h)d $\xi$,
where \tilde{g}_{N}(; h) , \tilde{c}_{N} (; h) are holomorphic (Nh \displaystyle \ln\frac{1}{h})^{1/3} ‐approximation of g( $\xi$) , c( $\xi$, h)
respectively.

Lemma 2.4. For x\in(0, (Nk)^{2/3}) ,
the equation

x+\tilde{g}_{N}'( $\xi$;h)=0

has two complex roots $\xi$_{r}^{+}(x;h) , $\xi$_{r}^{-}(x;h) , holomorphic with respect to \sqrt{x} satisfy ing

$\xi$_{r}^{\pm}(x;h)=\pm i\sqrt{x}+\mathcal{O}(x)+\mathcal{O}(h^{\infty}) .

Moreover, the critical value at  $\xi$=$\xi$_{r}^{-}(x;h)

\displaystyle \tilde{ $\phi$}(x;h) :=x$\xi$_{r}^{-}(x;h)+\tilde{g}_{N}($\xi$_{r}^{-}(x;h))=-i\frac{2}{3}x^{3/2}+\mathcal{O}(x^{2})+\mathcal{O}(h^{\infty})
is a holomorphic function of \sqrt{x} and

(2.6) {\rm Re}\tilde{ $\phi$}(x, h)\geq \mathcal{O}(h^{\infty}) .

Now, as integration contour, we dene Ñ (x, h) for  x\in (; (Nk)^{2/3})( $\epsilon$ is a

sufficiently small constant) such that

\bullet Ñ (x;h)\subset\{ $\xi$\in \mathbb{C};|{\rm Im} $\xi$|<(Nk)^{1/3}\}.
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\bullet If  x\in (; 0) ,
then Ñ (x;h) contains $\xi$_{l}^{+} and there exists  $\delta$>0 such that

{\rm Re}(x $\xi$+\tilde{g})- $\phi$\geq $\delta$(|x|^{1/2}+| $\xi-\xi$_{l}^{+}(x)|)| $\xi-\xi$_{l}^{+}|^{2} on Ñ,

| $\xi-\xi$_{l}^{+}|\geq $\delta$(Nk)^{1/3} at the extremities:

\bullet If  x\in(0, (Nk)^{2/3}) ,
then Ñ (x;h) contains $\xi$_{r}^{-} and there exists  $\delta$>0 such that

(2.7) {\rm Re}(x $\xi$+\tilde{g}-\tilde{ $\phi$})\geq $\delta$(|x|^{1/2}+| $\xi-\xi$_{r}^{-}|)| $\xi-\xi$_{r}^{-}|^{2} on Ñ;

| $\xi-\xi$_{r}^{-}|\geq $\delta$(Nk)^{1/3} at the extremities:

We have the following propositions:

Proposition 2.5. There exists $\delta$'>0 such that for any N\in \mathbb{N} and k\in \mathbb{N} , one

has

\displaystyle \frac{d^{k}}{dx^{k}}(I(x, h)-\tilde{I}_{N}(x, h))=\mathcal{O}(h^{$\delta$'N-1/2-k}e^{- $\phi$(x)/h})
for x\in(- $\epsilon$, 0) .

Proposition 2.6. There exists $\delta$'>0 such that for any N
,

one has

P\tilde{I}_{N}(x, h)=\mathcal{O}(h^{$\delta$'N}e^{-{\rm Re}\tilde{ $\phi$}(x;h)/h})
uniformly in  x\in (; (Nk)^{2/3}) .

Thus we obtain our global approximate solution w_{N} in Theorem 2.1 by connecting

u(x, h) , I(x, h) and \tilde{I}_{N}(x, h) with a suitable partition of unity.

§2.3. Asymptotic expansion for positive x

Here we compute the asymptotic expansion of our approximate solution \tilde{I}_{N}(x, h)
for positive but small x of order k^{2/3} . We do it by the Laplace�s method as for x<0,
but we should be careful because, as h\rightarrow 0, x tends to 0 where the critical point

degenerates.

Proposition 2.7. Let x=(Nk)^{1/3}\tilde{x} . There exists a family of smooth functions

\{b_{l,m,j}(\tilde{x})\}_{l,m,j} in a neighborhood of \tilde{x}=0 with

b_{0,0,0}(\tilde{x})=e^{ $\pi$ i/4}\sqrt{ $\pi$}\tilde{c}_{N}(0,0) ,

such that for any positive integer L
,

there exist N(L)\in \mathbb{N} and $\epsilon$_{L}>0 such that if \tilde{x} is

in an interval (c_{1}, c_{2}) , 0<c_{1}<c_{2}\leq 1 ,
then

(2.8) \displaystyle \tilde{I}_{N}(x, h)=e^{-\tilde{ $\phi$}/h}\{\sum_{l=0}^{L}\sum_{m=0}^{3L}\sum_{j=0}^{[3L\ln\frac{1}{h}]}\frac{b_{l,m,j}(\tilde{x})}{\tilde{x}^{\frac{3}{2}j+\frac{1}{4}}}h^{l} (Nk ) \displaystyle \frac{m}{3}-\frac{1}{6}$\kappa$^{j}+\mathcal{O}(k^{L+\frac{1}{3}})\},
where k=h\displaystyle \ln\frac{1}{h} and  $\kappa$=h/(Nk)=1/(N\displaystyle \ln\frac{1}{h}) .
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Remark. The formula b_{0,0,0}(\tilde{x})=e^{ $\pi$ i/4} in Theorem 2.1 (iii) follows from

\tilde{c}_{N}(0,0)=c(0,0)=a(0,0)/\sqrt{ $\pi$}=1.

Proof Set

(2.9) r(x;h) :=\displaystyle \frac{1}{2}\tilde{g}''($\xi$_{r}^{-}(x;h))=-i\sqrt{x}(1+\mathcal{O}(\sqrt{x})+\mathcal{O}(h^{\infty}))
The Taylor expansion of the phase at  $\eta$:= $\xi-\xi$_{\overline{r}}(x)=0 is

x $\xi$+\tilde{g}( $\xi$)=\tilde{ $\phi$}(x)+r(x)$\eta$^{2}+G(x,  $\eta$)$\eta$^{3},

where

G(x,  $\eta$)=\displaystyle \frac{1}{2}\int_{0}^{1}(1-t)^{2}\tilde{g}^{(3)}($\xi$_{r}^{-}(x)+ $\eta$ t)dt
is holomorphic both in \sqrt{x} and in  $\eta$ in a disc centered at  0 with radius of order (Nk)^{1/3}.

Put

r(x)$\eta$^{2}+G(x,  $\eta$)$\eta$^{3}=:r(x)$\zeta$^{2}
which can be rewritten as

\hat{ $\eta$}^{2}+G(x, r\hat{ $\eta$})\hat{ $\eta$}^{3}=\hat{ $\zeta$}^{2}
for \hat{ $\eta$}= $\eta$/r, \hat{ $\zeta$}= $\zeta$/r . This can be solved with respect to \hat{ $\eta$} and \hat{ $\eta$}(x,\hat{ $\zeta$}) is holomorphic in

a h‐independent neighborhood of \hat{ $\zeta$}=0, d\hat{ $\eta$}/d\hat{ $\zeta$}|_{\hat{ $\zeta$}=0}=1 . Since d $\eta$/d $\zeta$=d\hat{ $\eta$}/d\hat{ $\zeta$} ,
we get

\displaystyle \tilde{I}_{N}(x;h)=h^{-1/2}re^{-\tilde{ $\phi$}/h}\int e^{-r^{3}\hat{ $\zeta$}^{2}/h}F(x,\hat{ $\zeta$};h)d\hat{ $\zeta$}
where

F(x,\displaystyle \hat{ $\zeta$};h) :=\frac{d\hat{ $\eta$}}{d\hat{ $\zeta$}}\cdot\tilde{c}_{N}($\xi$_{r}^{-}(x)+r\hat{ $\eta$}(x,\hat{ $\zeta$});h)
is holomorphic in \hat{ $\zeta$} in a h‐independent neighborhood of \hat{ $\zeta$}=0 ,

and the integration
contour is included in a h‐independent neighborhood of \hat{ $\zeta$}=0 and passes through the

origin \hat{ $\zeta$}=0 as the steepest descent path.
Set

\tilde{r}(\tilde{x}):=(Nk)^{-1/3}r(x)=-i\sqrt{\tilde{x}}(1+\mathcal{O}((Nk)^{1/3})) , t:=\tilde{r}^{3/2}\hat{ $\zeta$}.
Remark that t is real on the steepest descent path, and that e^{-$\delta$^{2}/ $\kappa$}=h^{$\delta$^{2}N} . Then we

have, for some positive small constants  $\delta$ and  $\epsilon$,

\displaystyle \tilde{I}_{N}(x;h)=\frac{e^{-\tilde{ $\phi$}/h}}{( $\kappa$ r)^{1/2}}\{\int_{- $\delta$}^{ $\delta$}e^{-t^{2}/ $\kappa$}F(x,\tilde{r}^{-3/2}t;h)dt+\mathcal{O}(h^{ $\epsilon$ N})\}
The function F has a classical asymptotic expansion in h : for each L\in \mathbb{N},

F(x,\displaystyle \hat{ $\zeta$};h)=\sum_{l=0}^{L}f_{l}(x,\hat{ $\zeta$})h^{l}+\mathcal{O}(h^{L+1}) ,
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and hence

\displaystyle \tilde{I}_{N}(x;h)=\frac{e^{-\tilde{ $\phi$}/h}}{r^{1/2}}\{\sum_{l=0}^{L}h^{l}$\kappa$^{-1/2}\int_{- $\delta$}^{ $\delta$}e^{-t^{2}/ $\kappa$}f_{l}(x, t)dt+\mathcal{O}(h^{ $\epsilon$ N})+\mathcal{O}(h^{L+1})\}
Recall that each f_{l} is holomorphic in \hat{ $\zeta$} . Then Lemma 2.8 below says that there exists

a positive constant $\epsilon$_{L} small enough such that

r^{1/2}e^{\tilde{ $\phi$}/h}\tilde{I}_{N}(x;h)

=\displaystyle \sum_{l=0}^{L}h^{l}\sum_{j=0}^{[$\epsilon$_{L}/ $\kappa$]} $\Gamma$(j+\frac{1}{2})fi_{2j}(x)(\frac{ $\kappa$}{\tilde{r}^{3}})^{j}+R_{L}(x,  $\kappa$)+\mathcal{O}(h^{ $\epsilon$ N})+\mathcal{O}(h^{L+1}) ,

with

(2.10) |R_{L}(x,  $\kappa$)|\displaystyle \leq\frac{2}{$\epsilon$_{L}}e^{-$\epsilon$_{L}/ $\kappa$}=\frac{2}{$\epsilon$_{L}}h^{$\epsilon$_{L}N},
uniformly in a neighborhood of x=0 . Here we used \displaystyle \sum_{l=0}^{L}h^{l}\leq 2.

We finish the proof by taking for example N=3L/$\epsilon$_{L}\displaystyle \geq\frac{L+1}{\min( $\epsilon,\epsilon$_{L}/2)} and expanding

f(x) and r(x) in Taylor series in \sqrt{x}=(Nk)^{1/3}\sqrt{\tilde{x}}. \square 

Lemma 2.8. Let f(t)=\displaystyle \sum_{m=0}^{\infty}f_{m}t^{m} be a holomorphic function of t at the

origin. Then there exists $\epsilon$_{0}>0 such that for any 0< $\epsilon$<$\epsilon$_{0} , any  $\delta$>0 and any small

enough  $\kappa$>0 ,
one has

$\kappa$^{-1/2}\displaystyle \int_{- $\delta$}^{ $\delta$}e^{-t^{2}/ $\kappa$}f(t)dt=\sum_{j=0}^{[ $\epsilon$/ $\kappa$]} $\Gamma$(j+\frac{1}{2})f_{2j}$\kappa$^{j}+R_{ $\epsilon$}( $\kappa$) ,

where

R_{ $\epsilon$}( $\kappa$)\displaystyle \leq\frac{1}{ $\epsilon$}e^{- $\epsilon$/ $\kappa$}
Proof There exists C>0 such that for each M

(2.11) f(t)=\displaystyle \sum_{m=0}^{M}f_{m}t^{m}+r_{M}(t)
with

|f_{m}|\leq C^{m+1}, |r_{M}(t)|\leq C^{M+2}|t|^{M+1}

We first show that

I(f; $\kappa$):=$\kappa$^{-1/2}\displaystyle \int_{- $\delta$}^{ $\delta$}e^{-t^{2}/ $\kappa$}f(t)dt
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satises

I(f; $\kappa$)=\displaystyle \sum_{j=0}^{[M/2]} $\Gamma$(j+\frac{1}{2})f_{2j}$\kappa$^{j}+R_{M}( $\kappa$)
with

(2.12) |R_{M}( $\kappa$)|\displaystyle \leq 2Ce^{-$\delta$^{2}/2 $\kappa$}\sum_{m=0}^{M}(C^{2}m $\kappa$)^{m/2}+C^{2}$\kappa$^{1/2}(C^{2}M $\kappa$)^{M/2},
and then, taking M=[1/(eC^{2} $\kappa$)] ,

in particular, that the error R_{M} is exponentially
small:

(2.13) |R_{M}( $\kappa$)|\displaystyle \leq\frac{2\sqrt{e}}{\sqrt{e}-1}Ce^{-$\delta$^{2}/2 $\kappa$}+\sqrt{e}C^{2}$\kappa$^{1/2}e^{-1/(2eC^{2} $\kappa$)}.
By (2.11),

I(f; $\kappa$)=$\kappa$^{-1/2}\displaystyle \sum_{m=0}^{M}f_{m}\int_{- $\delta$}^{ $\delta$}e^{-t^{2}/ $\kappa$}t^{m}dt+$\kappa$^{-1/2}\int_{- $\delta$}^{ $\delta$}e^{-t^{2}/ $\kappa$}r_{M}(t)dt

=\displaystyle \sum_{j=0}^{[M/2]} $\Gamma$(j+\frac{1}{2})f_{2j}$\kappa$^{j}+R_{M}( $\kappa$)
with

R_{M}() =$\kappa$^{-1/2}\displaystyle \sum_{m=0}^{M}f_{m}\int_{|t|> $\delta$}e^{-t^{2}/ $\kappa$}t^{m}dt+$\kappa$^{-1/2}\int_{- $\delta$}^{ $\delta$}e^{-t^{2}/ $\kappa$}r_{M}(t)dt.
Since e^{t}>t^{m-1}/(m-1)! ,

one has

\displaystyle \int_{|t|> $\delta$}\frac{m+1}{2},

\displaystyle \int_{- $\delta$}^{ $\delta$}e^{-t^{2}/ $\kappa$}|t|^{M+1}dt\leq $\Gamma$(\frac{M}{2}+1)$\kappa$^{\frac{M}{2}+1}
Hence, one gets

|R_{M}( $\kappa$)|\displaystyle \leq 2e^{-$\delta$^{2}/2 $\kappa$}\sum_{m=0}^{M}C^{m+1}\sqrt{(m-1)!}$\kappa$^{\frac{m}{2}}+C^{M+2} $\Gamma$(\frac{M}{2}+1) $\kappa$\frac{M+1}{2},
and we have the estimate (2.12) using (m-1)!\leq m^{m},  $\Gamma$(M/2+1)\leq M^{M/2}.

If we take M=[1/(eC^{2} $\kappa$)] ,
we obtain (2.13) since C^{2}m $\kappa$\leq C^{2}M $\kappa$\leq 1/e, M>

1/(eC^{2} $\kappa$)-1. \square 
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§3. Accuracy of the approximation

We estimate v_{N}:=u-W_{CN} in (-(Nk)^{2/3}, (Nk)^{2/3}) for sufficiently large C . We

do this in two steps; first we show, by using the Agmon estimate, that v_{N} is at most of

polynomial order of h^{-1}.

Proposition 3.1. There exists N_{0} such that for all N

||v_{N}||_{H^{1}((-(Nk)^{2/3},(Nk)^{2/3}))}=\mathcal{O}(h^{-N_{0}}) .

Then we show, using this and the propagation theorem of singularity that

Theorem 3.2. For any L\in \mathbb{N} large enough, there exists N\in \mathbb{N} such that

||v_{N}||_{H^{1}((-(Nk)^{2/3},(Nk)^{2/3}))}=\mathcal{O}(h^{L}) .

§3.1. A priori estimate

The estimate in Proposition 3.1 is obvious in ( 0 , (Nk)) because both u and w_{CN}

satisfy it (see (C3), (2.7) and (2.6)). Hence it suffices to estimate v_{N} in (-(Nk)^{2/3},0) .

One sees that there exists N_{0} such that

||e^{ $\phi$(x)/h}v_{N}||_{H^{1}( $\Omega$-)}=\mathcal{O}(h^{-N_{0}}) ,

since this holds for u and w_{CN} instead of v . In particular, denoting by x_{d=d_{0}} the point
x<0 such that d(x)=d_{0} (recall d(x)=- $\phi$(x) is the Agmon distance),

||v_{N}||_{H^{1}([x_{d=2k},0])}=\mathcal{O}(h^{-N_{0}-2}) .

In order to prove this estimate in (-(Nk)^{2/3}, x_{d=2k}) ,
we use the so called Agmon

esitmate:

Lemma 3.3. For any h>0, V\in L^{\infty}(\mathbb{R}^{n}) real‐valued, E\in \mathbb{R}, f\in H^{1}(\mathbb{R}^{n}) ,

and  $\psi$ real‐valued and Lipschitz on \mathbb{R}^{n}
,

one has

{\rm Re}\langle e^{ $\psi$/h}(-h^{2}\triangle+V)f, e^{ $\psi$/h}f\rangle

=||h\nabla(e^{ $\psi$/h}f)||^{2}+\langle(V-|\nabla $\psi$(x)|^{2})e^{ $\psi$/h}f, e^{ $\psi$/h}f\rangle.

Let $\chi$_{h} be a cut‐off function with support in [x_{0}, x_{d=k}] ,
which is identically 1 on

[x_{0}+ $\epsilon$, x_{d=2k}].
Recall that d(x)=-\displaystyle \int_{0}^{x}\sqrt{V}dx\leq C|x|^{3/2} for some constant C>0 . With this C,

we dene

$\psi$_{N}(x)=\displaystyle \min(-d(x)+CNk+kd(x)^{1/3}, (1-k^{1/3})d(x)) .
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This function $\psi$_{N} is non‐negative in (-(Nk)^{2/3},0) since d(x)<CNk . Hence it suffices

to show that

(3.1) ||e^{$\psi$_{N}/h}$\chi$_{h}v_{N}||_{H^{1}}=\mathcal{O}(h^{-N_{0}}) .

We apply Lemma 3.3 with  $\psi$=$\psi$_{N}, f=$\chi$_{h}v_{N} . We check the following facts.

First, there exists a positive constant C_{1} such that

V-|$\psi$_{N}'(x)|^{2}>\underline{k}.
-C_{1}

Next, the support of $\chi$_{h}' is included in [x_{0}, x_{0}+ $\epsilon$]\cup[x_{d=2k}, x_{d=k}] . On [x_{0}, x_{0}+ $\epsilon$],
e^{ $\phi$/h}v_{N} and its derivative are of \mathcal{O}(h^{\infty}) and hence so is e^{$\psi$_{N}/h}v_{N} . On [x_{d=2k}, x_{d=k}] ,

we

have e^{$\psi$_{N}/h}=\mathcal{O}(h^{-2}) .

Then we obtain

h^{2}||(e^{$\psi$_{N}/h}$\chi$_{h}v_{N})'||^{2}+k||e^{$\psi$_{N}/h}$\chi$_{h}v_{N}||^{2}=\mathcal{O}(h^{\infty}+h^{-N_{0}}||e^{$\psi$_{N}/h}$\chi$_{h}v_{N}||)

for some N_{0} . Thus we proved (3.1).

§3.2. Propagation of microsupport

The condition (C2) says that, for any h‐independent small negative t
,

the point

(x(t),  $\xi$(t))=\exp tH_{p}(0,0) does not belong to the frequency set of u . We can show, fur‐

thermore, that this is true even for h‐dependent small negative t=t_{N}:=-$\delta$^{-1}(Nk)^{1/3}.
More precisely, denoting by T_{ $\mu$} the scaled Bargman transform;

T_{ $\mu$}(f)=\displaystyle \int e^{i(x-y)\cdot $\xi$- $\mu$(x-y)^{2}/2h}f(y;h)dy,
we have

Lemma 3.4. There exists $\delta$_{0}>0 such that for any 0< $\delta$<$\delta$_{0} , for any N large

enough, and for t_{N}:=-$\delta$^{-1}(Nk)^{1/3} ,
one has

(3.2) T_{ $\mu$}(1_{(0,c')}u)=\mathcal{O}(h^{ $\delta$ N}) ,  $\mu$=(Nk)^{-1/3},

uniformly in

\mathcal{W}_{h}(t_{N}) :=\{(x,  $\xi$);|x-x(t_{N})|< $\delta$(Nk)^{2/3}, | $\xi$- $\xi$(t_{N})|< $\delta$(Nk)^{1/3}\}.

Here, 1_{(0,c')} is the characteristic function of the interval (0, c') .

This can be proved by using an improved microlocal exponential estimate with

h‐dependent weight (see [FLM] §8.2).
The same estimate holds for the WKB solution w_{CN} :
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Lemma 3.5. For any L\in \mathbb{N} large enough, there exists $\delta$_{L}>0 such that for any

 $\delta$\in(0, $\delta$_{L}] , for any N\geq L/$\delta$_{L} and for t_{N}:=-$\delta$^{-1}(Nk)^{1/3} ,
one has

(3.3) T_{ $\mu$}(1_{( $\epsilon$(Nk)^{2/3},(Nk)^{2/3})}w_{CN})=\mathcal{O}(h^{ $\delta$ N}+h^{L}) ,

uniformly in \mathcal{W}_{h}(t_{N}) .

These two lemmas, combined with Proposition 3.1, imply that the difference v_{N}:=

$\chi$_{N}(x)(u-W_{CN}) ,
cut‐off by $\chi$_{N}(x)=$\chi$_{0}(x/(Nk)^{2/3}) where $\chi$_{0}(x)\in C_{0}^{\infty}() is identically

equal to 1 in a sufficiently large neighborhood of the origin, satises

(3.4) T_{ $\mu$}(v_{N})=\mathcal{O}(h^{L}) uniformly in \mathcal{W}_{h}(t_{N}) ,

for N=L/$\delta$_{L}.
Let us introduce a scale change of the variables (x,  $\xi$) as well as the semiclassical

parameter h :

(3.5) \left\{\begin{array}{l}
\tilde{x}=x/(Nk)^{2/3}, \tilde{ $\xi$}= $\xi$/(Nk)^{1/3},\\
\tilde{h}=h/(Nk)=(N\ln\frac{1}{h})^{-1} \mathrm{i}.\mathrm{e}. h=e^{-1/(N\tilde{h})}.
\end{array}\right.
Setting (x,  $\xi$)=A_{N}(\tilde{x},\tilde{ $\xi$}) and p(\tilde{x},\tilde{ $\xi$})=(Nk)^{-2/3}p\circ A_{N}(\tilde{x},\tilde{ $\xi$}) ,

one sees that for all

\tilde{t}\in \mathbb{R} , one has

(3.6) \exp\tilde{t}H_{\overline{p}}=A_{N}^{-1}\circ(\exp tH_{p})\circ A_{N}.

with \tilde{t}=(Nk)^{-1/3}t.
We dene

\tilde{v}_{N}(\tilde{x}) :=(Nk)^{1/3}v_{N}((Nk)^{2/3}\tilde{x}) ,

so that ||v_{N}||_{L^{2}(\mathbb{R}_{x})}=||\tilde{v}_{N}||_{L^{2}(\mathbb{R}_{\overline{x}})} . Then

(3.7) T(\tilde{v}_{N})(\tilde{x},\tilde{ $\xi$};\tilde{h})=(Nk)^{-1/3}T_{ $\mu$}(v_{N})(x,  $\xi$;h) ,

with  $\mu$=(Nk)^{-1/3} ,
and (3.4) means, for some 0<$\delta$_{L}'<$\delta$_{L},

(3.8) T(\tilde{v}_{N})=\mathcal{O}(e^{-$\delta$_{L}'/\tilde{h}}) ,

uniformly in \mathcal{W}_{h}(t_{N}) ,
which corresponds, in the (\tilde{x},\tilde{ $\xi$}) ‐space, to

\tilde{\mathcal{W}}_{h}:=\{(\tilde{x},\tilde{ $\xi$});|\tilde{x}-\tilde{x}(-$\delta$^{-1})|< $\delta$, |\tilde{ $\xi$}-\tilde{ $\xi$}(-$\delta$^{-1})|< $\delta$\},

where (\tilde{x}(\tilde{t}),\tilde{ $\xi$}(\tilde{t}))=\exp\tilde{t}H_{\overline{p}}(0,0) ,
and we used (3.6).

Recall V(x)=-x+W(x) , W(x)=\mathcal{O}(x^{2}) . Let W_{N}(x) be a holomorphic C(Nk)^{2/3_{-}}
approximation of W with sufficiently large constant C ,

and put V_{N}(x)=-x+W_{N}(x) ,

P_{N}=-h^{2}\displaystyle \frac{d^{2}}{dx^{2}}+V_{N}(x) .
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By the above scale change, P_{N} becomes

P_{N}=(Nk)^{2/3}\displaystyle \tilde{P}_{N}, \tilde{P}_{N}=-\tilde{h}^{2}\frac{d^{2}}{d\tilde{x}^{2}}-\tilde{x}+(Nk)^{-2/3}W_{N}((Nk)^{2/3}\tilde{x}) .

It follows from Proposition 2.6 and (3.7) that there exists a positive constant  $\epsilon$ such

that

(3.9)  T\tilde{P}_{N}\tilde{v}_{N}=\mathcal{O}(e^{- $\epsilon$/\tilde{h}}) .

Now we can apply the usual propagation theorem of microsupport (see for example

[Ma]): (3.8) implies that the microsupport of \tilde{v}_{N} is disjoint with the set \tilde{\mathcal{W}}_{h} . Notice

that the Hamilton flow of the principal symbol p_{0}:=\tilde{ $\xi$}^{2}-\tilde{x} of \tilde{P}_{N} ;

\exp\tilde{t}H_{\overline{p}_{0}}(0,0)=(\tilde{t}^{2},\tilde{t})

passes through this set \tilde{\mathcal{W}}_{h} for small enough h . Under the conditions of Proposition
3.1 and (3.9), the theorem says that the origin (\tilde{x},\tilde{ $\xi$})=(0,0) does not belong to the

microsupport of \tilde{v}_{N} :

Proposition 3.6. There exists a positive constant  $\delta$ such that

 T\tilde{v}_{N}=\mathcal{O}(e^{- $\delta$/\tilde{h}})

in \{(\tilde{x},\tilde{ $\xi$});|\tilde{x}|< $\delta$, |\tilde{ $\xi$}|< $\delta$\}.

On the other hand, p_{0} is microlocally elliptic at (0,\tilde{ $\xi$}) except at the origin. Thus

combining the above fact with this ellipticity, we conclude that T\tilde{v}_{N} is uniformly expo‐

nentially small with respect to \tilde{h} in a neighborhood of \{0\}\times \mathbb{R}_{\overline{ $\xi$}} , and hence \tilde{v}_{N}(\tilde{x}, h) is

exponentially small with respect to \tilde{h} in a fixed neighborhood of \tilde{x}=0 . Returning to

the variable x and paremeter h
,

this means Theorem 3.2.

§4. Remark in the multi‐dimensional case

As for the connection of the WKB solution w_{N} , essentially the same argument as

in §1 works in the multi‐dimensional case n\geq 2 , replacing x by x_{n}+b(x') ,
which denes

the caustic C.

As for the accuracy, it is important to see to which distance in x' and $\xi$' our

estimates are valid. Roughly speaking, |x'| and |$\xi$'| should be of order (Nk)^{1/3} in the

classically allowed region, in order that $\xi$_{n}^{2}-x_{n} be the �principal term�. On the other

hand, in a neighborhood of the origin, |x'| should be of order (Nk)^{1/2} since the phase

-{\rm Re}\tilde{ $\phi$}(x) increases with order (at most) |x'|^{2} in the directions x'
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The latter reasoning suggests to make a scale change

(4.1) \left\{\begin{array}{l}
\tilde{x}_{n}=x_{n}/(Nk)^{2/3}, \tilde{ $\xi$}_{n}=$\xi$_{n}/(Nk)^{1/3},\\
\tilde{x}'=x'/(Nk)^{1/2}, \tilde{ $\xi$}'=$\xi$'/(Nk)^{1/2},
\end{array}\right.
corresponding to (3.5). Then dening

\displaystyle \tilde{v}_{N}(\tilde{x})=(Nk) \frac{n}{4}+\frac{1}{12}v((Nk)^{1/2}\tilde{x}', (Nk)^{2/3}\tilde{x}_{n}) ,

one has

T\tilde{v}_{N}=(Nk)^{-(\frac{n}{4}+\frac{1}{12})}\mathrm{T}_{N}v_{N},
where \mathrm{T}_{N} is a partially rescaled Bargmann transform:

\mathrm{T}_{N}v(x,  $\xi$;h) :=\displaystyle \int e^{i(x-y)\cdot $\xi$/h-\{ $\mu$(x'-y')^{2}+(x_{n}-y_{n})^{2}\}/2h}v(y)dy,  $\mu$=(Nk)^{-1/3}

The scale change leads us to an operator \tilde{P}_{N} whose \tilde{h}‐semiclassical symbol is given by

p_{N}(\displaystyle \tilde{x},\tilde{ $\xi$})=\tilde{ $\xi$}_{n}^{2}-\tilde{x}_{n}+(Nk)^{1/3}(\tilde{ $\xi$}')^{2}+(Nk)^{1/3}\mathcal{O}(|\tilde{x}|^{2}+(N\ln\frac{1}{h})^{-1}) .

Notice that, for |\tilde{x}| small enough, it is elliptic only for (Nk)^{1/6}|\tilde{ $\xi$}'|+|\tilde{ $\xi$}_{n}|> $\delta$ for some

positive  $\delta$.

Corresponding to (3.4), we can show

(4.2) \mathrm{T}_{N}v_{N}=\mathcal{O}(h^{ $\delta$ N})

in a h‐dependent neighborhood of \exp t_{N}H_{p}(0,0)

\mathcal{W}_{h}(t_{N})=\{|x_{n}-x_{n}(t_{N})|\leq $\delta$(Nk)^{2/3}, |$\xi$_{n}-$\xi$_{n}(t_{N})|\leq $\delta$(Nk)^{1/3},
|x'-x'(t_{N})|\leq $\delta$(Nk)^{1/3}, |$\xi$'-$\xi$'(t_{N})|\leq $\delta$(Nk)^{1/3}\}.

By the above scale change, this can be rewritten as

(4.3) T\tilde{v}_{N}=\mathcal{O}(e^{- $\delta$/\tilde{h}})

in the tubular domain

\tilde{\mathcal{W}}=\{|\tilde{x}_{n}-\tilde{x}_{n}(-$\delta$^{-1})|\leq $\delta$, |\tilde{ $\xi$}_{n}-\tilde{ $\xi$}_{n}(-$\delta$^{-1})|\leq $\delta$,
|\tilde{x}'-\tilde{x}'(-$\delta$^{-1})|\leq $\delta$(Nk)^{-1/6}, |\tilde{ $\xi$}'-\tilde{ $\xi$}'(-$\delta$^{-1})|\leq $\delta$(Nk)^{-1/6}\}.

Then by \mathrm{a} (modied) analytic propagation theorem of microsupport, we can show,

corresponding to Proposition 3.6,
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Proposition 4.1. There exists a positive constant  $\delta$ such that

 T\tilde{v}_{N}=\mathcal{O}(e^{- $\delta$/\tilde{h}})

in V( $\delta$) :=\{(\tilde{x},\tilde{ $\xi$});|\tilde{x}|< $\delta$, (Nk)^{1/6}|\tilde{ $\xi$}'|+|\tilde{ $\xi$}_{n}|< $\delta$\}.

In (\{|\tilde{x}|<$\delta$'\}\times \mathbb{R}_{\overline{ $\xi$}}^{n})\backslash V() , p_{N} is elliptic for small enough $\delta$'>0 ,
and we conclude

that \tilde{v}_{N} is exponentially small with respect to \tilde{h} and that v_{N} is of \mathcal{O}(h^{ $\delta$ N}) for some

positive  $\delta$.

References

[FLM] Fujiié, S., Lahmar‐Benbernou, A., Martinez, A.: Width of shape resonances for

non‐globally analytic potentials, J. Math. Soc. Japan, 63 (2011), No. 1, 1‐78.

[HeSj] Helffer, B., Sjöstrand, J.: Résonances en limite semiclassique, Bull. Soc. Math.

France, Mémoire 24/25,(1986).
[Ma] Martinez, A.: Introduction to Semiclassical and Microlocal Analysis, Springer

(2002).


