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Two proofs for the convergence of formal solutions of

singular first order nonlinear partial differential

equations in complex domain

By

Masatake MIYAKE * and Akira Shirai **

Abstract

This paper is a summary of the papers which were written by M. Miyake and A. Shirai [7]
�Structure of Formal Solutions of Nonlinear First Order Singular Partial Diffe rential Equations
in Complex Domain, Funkcial. Ekvac., 48, (2005)

'' and by A. Shirai [10] �Alternative Proof
for the Convergence of Formal Solutions of Singular First Order Nonlinear Partial Differential
Equations, University Journal of Department of Education, Sugiyama Jogakuen University, 1,

(2008)
''

The purpose of this paper is to have already introduced two known proofs for the con‐

vergence of formal solutions of the equation f(t, x, u, \partial_{t}u, \partial_{x}u)=0, u(0, x)\equiv 0 where (t, x)\in
\mathrm{C}_{t}^{d}\times \mathrm{C}_{x}^{n} . In [7], M. Miyake and A. Shirai proved the convergence of the formal solution from

the viewpoint as evolution equation in t variables. On the other hand, in [10], A. Shirai gave

the alternative proof of the result of Miyake and Shirai from the viewpoint that the roles of

variables t and x are equivalent.

§1. Theorem

Let \mathrm{C} be the set of complex numbers and (t, x)=(t\mathrm{l}, . :. ; t_{d}, x_{1}, . :. ; x_{n})\in \mathrm{C}_{t}^{d}\times \mathrm{C}_{x}^{n}
be (d+n) ‐dimensional complex variables. We consider the following first order nonlinear

partial differential equations:

(1.1) f(t, x, u, \partial_{t}u, \partial_{x}u)=0 with u(0, x)\equiv 0,
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where u=u(t, x) is an unknown function, \partial_{t}u denotes \partial_{t}u=(\partial_{t_{1}}u, \ldots, \partial_{t_{d}}u)(\partial_{t_{j}}=
@=@t) and \partial_{x} is similar to \partial_{t}.

Throughout this paper, we assume the following assumptions:

[A1] Let  $\tau$= (;::. ; $\tau$_{d})\in \mathrm{C}^{d},  $\xi$=($\xi$_{1}, \ldots, $\xi$_{n})\in \mathrm{C}^{n} . Then we assume that the

function f(t, x, u,  $\tau$,  $\xi$) is holomorphic in a neighborhood of the origin of \mathrm{C}^{d+n+1+d+n}.

Moreover, f(t, x, u,  $\tau$,  $\xi$) is an entire function in  $\tau$ variables for any fixed  t, x, u and  $\xi$
in the denite domain.

[A2] (Singular Equations). The equation (1.1) is singular in  t variables in the

sense that

(1.2) f(0, x, 0,  $\tau$, 0)\equiv 0 and \displaystyle \frac{\partial f}{\partial$\xi$_{k}}(0, x, 0,  $\tau$, 0)\equiv 0(k=1,2, \ldots, n) .

In order to state our theorem we need to prepare some notations. We denote by

\mathcal{O}_{x} the ring of germs of holomorphic functions or the convergent power series in the

variables x at x=0 . We denote by \mathcal{O}_{x}[[t]] the ring of formal power series of t with

coefficients in \mathcal{O}_{x} . Moreover, we set \mathcal{M}_{x}[[t]]=\{u(t, x)\in \mathcal{O}_{x}[[t]] ; u(0, x)\equiv 0\} ,
that is,

(1.3) u(t, x)\displaystyle \in \mathcal{M}_{x}[[t]]\Leftrightarrow u(t, x)=\sum_{| $\alpha$|\geq 1}u_{ $\alpha$}(x)t^{ $\alpha$}, u_{ $\alpha$}(x)\in \mathcal{O}_{x},
where | $\alpha$|=$\alpha$_{1}+\cdots+$\alpha$_{d} and t^{ $\alpha$}=(t_{1})^{$\alpha$_{1}}\cdots(t_{d})^{$\alpha$_{d}} for  $\alpha$=($\alpha$_{1}, \ldots, $\alpha$_{d})\in \mathrm{N}^{d}.

[A3] (Existence of Formal Solutions). The equation (1.1) has a formal solution

u(t, x)=\displaystyle \sum_{| $\alpha$|\geq 1}u_{ $\alpha$}(x)t^{ $\alpha$}\in \mathcal{M}_{x}[[t]].
Let  $\varphi$(x)=($\varphi$_{1}(x), . ::, $\varphi$_{d}(x))\in \mathcal{O}_{x}^{d} be the collection of coefficients of t_{j} . Then

$\varphi$_{1}(x) ,
. .

:; $\varphi$_{d}(x) satisfy the following system of functional equations:

(1.4) \displaystyle \frac{\partial}{\partial t_{i}}f(t, x, u(t, x), \partial_{t}u(t, x), \partial_{x}u(t, x)) t=0

\displaystyle \equiv\frac{\partial f}{\partial t_{i}}(0, x, 0,  $\varphi$(x), 0)+\frac{\partial f}{\partial u}(0, x, 0,  $\varphi$(x), 0)$\varphi$_{i}(x)=0,
for i=1

, 2, . . .

;
d.

We set a(x)=(0, x, 0,  $\varphi$(x), 0) for the simplicity of notation. We dene holomorphic
functions a_{ij}(x)(i, j=1,2, . :. ; d) by

(1.5) a_{ij}(x)=\displaystyle \frac{\partial^{2}f}{\partial t_{i}\partial$\tau$_{j}}(a(x))+\frac{\partial^{2}f}{\partial u\partial$\tau$_{j}}(a(x))$\varphi$_{i}(x) .

Under the above assumptions and notations, our theorem is stated as follows:
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Theorem 1.1 (M. Miyake and A. Shirai [7], A. Shirai [10]). Suppose the assump‐

tions [A1], [A2] and [A3]. Let \{$\lambda$_{1}, ::. ; $\lambda$_{d}\} be the eigenvalues of the matrix (a_{ij}(0))_{i,j=1,\ldots,d}.
If \{$\lambda$_{j}\} satises the condition (1.6) and (1.7) below which we call the Poincaré condition

and the nonresonance condition respectively, then the formal solution u(t, x) of the form

(1.3) is holomorphic in a neighborhood of the origin:

(1.6) \mathrm{C}\mathrm{h}($\lambda$_{1}, \ldots, $\lambda$_{d})\ni 0 (Poincaré condition)

where \mathrm{C}\mathrm{h}($\lambda$_{1}, . ::, $\lambda$_{d}) denotes the convex hull of \{$\lambda$_{1}, :. :; $\lambda$_{d}\}.

(1.7) \displaystyle \sum_{j=1}^{d}$\lambda$_{j}$\alpha$_{j}+\frac{\partial f}{\partial u}(a(0))\neq 0 (Nonresonance condition)

for all  $\alpha$\in \mathrm{N}^{d} with | $\alpha$|\geq 2.

§2. Related result and Examples

In [7], the following result, which is often called the Maillet type theorem, was also

proved:

Theorem 2.1 (Divergent Case (M. Miyake and A. Shirai [7])). Suppose that

A(x)=(a_{ij}(x))_{i,j=1,\ldots,d} is a nilpotent matrix, and take an integer N with 1\leq N\leq d

such that A(x)^{N}\equiv 0 ,
but A(x)^{j}\not\equiv 0 forj=0 , 1, .

::,
N-1

,
where 0 denotes the null

matrix. Then if f_{u}(a(0))\neq 0 ,
the formal solution u(t, x)\in \mathcal{M}_{x}[[t]] may diverge in

general, and it belongs to the Gevrey class of order at most 2N in t variables, which

means that the formal 2N ‐Gevrey transfO rmation \displaystyle \sum_{| $\alpha$|\geq 1}u_{ $\alpha$}(x)t^{ $\alpha$}/| $\alpha$|!^{2N-1} of u(t, x) is

convergent in a neighborhood of the origin.

Example 2.2. Let (t, x)\in \mathrm{C}^{2} be the variables. We consider the following equa‐

tion:

(2.1) \{u-a(x)t\}u_{t}-uu_{x}=p(x)t^{2}, u(0, x)\equiv 0,

where u_{t}= @u= @t, u_{x}= @u= @x and a(x) , p(x)\in \mathcal{O}_{x} with a(0)\neq 0 . Let u(t, x)=
\displaystyle \sum_{n=1}^{\infty}u_{n}(x)t^{n} be a formal solution. Then u(x) should satisfy

\{u_{1}(x)-a(x)\}u_{1}(x)\equiv 0.

Therefore, u_{1}(x)\equiv 0 or u_{1}(x)=a(x) ,
and after a choice of u(x) we can see that the

formal solution is determined uniquely.
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\bullet The case  u_{1}(x)\equiv 0 . The formal solution u(t, x) satises

a(x)tu_{t}=-p(x)t^{2}+uu_{t}-uu_{x}, u=O(t^{2})_{:}

Since a(0)\neq 0 ,
the Poincaré condition and the nonresonance condition are sat‐

iSed. Therefore by Theorem 1.1, the formal solution u(t, x) is convergent in a

neighborhood of the origin.

\bullet The case  u_{1}(x)=a(x) . Let u(t, x)=a(x)t+v(t, x)(v=O(t^{2})) . Then v(t, x)
satises

a(x)v=(p(x)+a(x)a'(x))t^{2}-vv_{t}+a'(x)tv+a(x)tv_{x}+vv_{x}, v=O(t^{2})_{:}

This equation corresponds to the null matrix case for the matrix A(x) , therefore, by
Theorem 2.1, the formal solution v(t, x) belongs to a class of Gevrey order 2(=21)
in t variable, if p(x)+a(x)a'(x)\neq 0 . On the other hand, if p(x)+a(x)a'(x)=0,
we have v(t, x)\equiv 0.

Example 2.3. Let (t_{1}, t_{2}, x)\in \mathrm{C}^{3} be the variables. We consider the following
first order nonlinear partial differential equation:

(2.2) (1-u_{t_{1}})u-\sqrt{2}t_{2}u_{t_{1}}u_{t_{2}}+uu_{x}-a(x)t_{1}t_{2}=0, u(0,0, x)\equiv 0

where u=u(t_{1}, t_{2}, x) , u_{t_{j}}=\partial u/\partial t_{j}(j=1,2) , u_{x} = @u=@x, a(x)\in \mathcal{O}_{x}.

Put \left\{\begin{array}{l}
f(t, x, u,  $\tau$,  $\xi$)=(1-$\tau$_{1})u-\sqrt{2}t_{2}$\tau$_{1}$\tau$_{2}+u $\xi$-a(x)t_{1}t_{2}\\
u(t, x)=$\varphi$_{1}(x)t_{1}+$\varphi$_{2}(x)t_{2}+v(t, x) (v=O(|t|^{2})) .
\end{array}\right.
Then the coefficients ($\varphi$_{1}(x), $\varphi$_{2}(x)) of the linear part in t in the formal solution satisfy
the following system of functional equations:

\left\{\begin{array}{l}
\frac{\partial}{\partial t_{1}}f(t, x, u(t, x), \partial_{t}u(t, x), \partial_{x}u(t, x))t=0=(1-$\varphi$_{1}(x))$\varphi$_{1}(x)=0,\\
\frac{\partial}{\partial t_{2}}f(t, x, u(t, x), \partial_{t}u(t, x), \partial_{x}u(t, x))t=0=-\sqrt{2}$\varphi$_{1}(x)$\varphi$_{2}(x)+(1-$\varphi$_{1}(x))$\varphi$_{2}(x)=0.
\end{array}\right.
The holomorphic solutions of the above system of functional equations are ($\varphi$_{1}(x), $\varphi$_{2}(x))
\equiv(1,0) , (0,0) . We remark that after a choice of the pair ($\varphi$_{1}(x), $\varphi$_{2}(x)) ,

the formal

solution v(t, x) is determined uniquely.

Next we calculate a matrix A(x)=\left(\begin{array}{l}
a_{11}(x)a_{12}(x)\\
a_{21}(x)a_{22}(x)
\end{array}\right).
By the formula

a_{ij}(x)=\displaystyle \frac{\partial^{2}f}{\partial t_{i}\partial$\tau$_{j}}(0, x, 0,  $\varphi$(x), 0)+\frac{\partial^{2}f}{\partial u\partial$\tau$_{j}}(0, x, 0,  $\varphi$(x), 0)$\varphi$_{i}(x) (i, j=1,2) ,
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we have

A(x)=(_{-\sqrt{2}$\varphi$_{2}(x)}-$\varphi$_{1}(x) -\sqrt{2}$\varphi$_{1}(x)0)
\bullet The case ($\varphi$_{1}(x), $\varphi$_{2}(x))\equiv(1,0) . A(x)\equiv A(0)=(^{-10}0-\sqrt{2}) . Since $\lambda$_{1}=-1, $\lambda$_{2}=

-\sqrt{2} ,
the Poincaré condition is satiSed. Moreover, by f_{u}(a(0))=1-$\varphi$_{1}(0)=0,

the nonresonance condition is also satised. Therefore, the formal solution v(t, x) is

uniquely detemined and it is convergent in a neighborhood of the origin by Theorem

1.1.

\bullet The case ($\varphi$_{1}(x), $\varphi$_{2}(x))\equiv(0,0) . A(x)\equiv\left(\begin{array}{l}
00\\
00
\end{array}\right) and f_{u}(a(0))=1-$\varphi$_{1}(0)=1\neq 0.

Therefore, the formal solution v(t, x) is determined uniquely, and it belongs to the

Gevrey class of order at most 2N=2 by Theorem 2.1.

§3. Sketch of the Proof of Theorem 1.1.

In this section, we shall give two proofs of Theorem 1.1. Firstly, in the subsection

3.1, we shall give a reduction of the equation (1.1).
Secondly, in the subsection 3.2, we shall introduce the sketch of the proof in [7],

which is from the viewpoint as evolution equation in t variables.

Finally, in the subsection 3.3, we shall introduce the sketch of the proof in [10],
which is from the viewpoint that the roles of variables t and x are equivalent.

§3.1. Reduction of the Equation

We can prove the followig inequality by the Poincaré condition and the nonreso‐

nance condition:

�For all  $\alpha$\in \mathrm{N}^{d} with | $\alpha$|\geq 2 ,
there exists a positive constant C_{0}>0 independent

of  $\alpha$ such that

(3.1) |\displaystyle \sum_{j=1}^{d}$\lambda$_{j}$\alpha$_{j}+\frac{\partial f}{\partial u}(a(0))|\geq C_{0}| $\alpha$| (Nonresonance‐Poincaré condition):�

We put v(t, x)=u(t, x)-\displaystyle \sum_{j=1}^{d}$\varphi$_{j}(x)t_{j}(=O(|t|^{2})) as a new unknown function.

By substituting this into the equation (1.1), we see that v(t, x) satises the following

singular nonlinear partial differential equation:

(3.2) (\displaystyle \sum_{i,j=1}^{d}a_{ij}(x)t_{i}\partial_{t_{j}}+\frac{\partial f}{\partial u}(a(x)))v(t, x)=\sum_{| $\alpha$|=2}d_{ $\alpha$}(x)t^{ $\alpha$}+f_{3}(t, x, v, \partial_{t}v, \partial_{x}v)
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with v(t, x)=O(|t|^{2}) ,
where d_{ $\alpha$}(x)\in \mathcal{O}_{x} and f_{3}(t, x, v,  $\tau$,  $\xi$) is holomorphic in a neigh‐

borhood of the origin with the Taylor expansion

(3.3) f_{3}(t, x, v,  $\tau$,  $\xi$)=\displaystyle \sum_{| $\alpha$|+2p+|q|+2|r|\geq 3}f_{ $\alpha$ pqr}(x)t^{ $\alpha$}v^{p}$\tau$^{q}$\xi$^{r}
where (; p, q, r)\in \mathrm{N}^{d}\times \mathrm{N}\times \mathrm{N}^{d}\times \mathrm{N}^{n} and f_{ $\alpha$ pqr}(x)\in \mathcal{O}_{x}.

Remark. The equation (3.2) is similar to the one which was studied by Gérard

and Tahara in their joint works (cf. [4]). However, their equation is not general than

ours. Indeed, they assume that the vector field \displaystyle \sum_{i,j=1}^{d}a_{ij}(x)t_{i}\partial_{t_{j}} on the left hand side

is triangular, that is, a_{ij}(x)\equiv 0(i>j) . Moreover, they assume that the t derivatives

appearing in the nonlinear part f_{3} are of the form \{t_{i}\partial_{t_{j}}v\} instead of \partial_{t}v.

Next, we take a regular matrix Q such that

Q(a_{ij}(0))Q^{-1}=\left(\begin{array}{llll}
$\lambda$_{1} &  &  & \\
$\delta$_{1} & $\lambda$_{2} &  & \\
 & \ddots & \ddots & \\
 &  & $\delta$_{d-1} & $\lambda$_{d}
\end{array}\right) (Jordan canonical form):

By a linear change of variables (;:. :; $\tau$_{d})=(t\mathrm{l}, . . :; t_{d})Q ,
the equation (3.2) is reduced

to the following:

(3.4) ($\Lambda$_{0}+\displaystyle \triangle-L_{1}-L_{2})v(t, x)=\sum_{| $\alpha$|=2}$\zeta$_{ $\alpha$}(x)t^{ $\alpha$}+g_{3}(t, x, v, \partial_{t}v, \partial_{x}v)
with v=O(|t|^{2}) ,

where we rewrite the variables  $\tau$ by  t again, and the operators $\Lambda$_{0}, \triangle,

L_{1} and L_{2} are given by

(3.5) \left\{\begin{array}{ll}
$\Lambda$_{0}=\sum_{j=1}^{d}$\lambda$_{j}t_{j}\partial_{t_{j}}+\frac{\partial f}{\partial u}(a(0)) , & \triangle=\sum_{j=1}^{d-1}$\delta$_{j}t_{j+1}\partial_{t_{j}},\\
L_{1}=\sum_{i,j=1}^{d}$\alpha$_{ij}(x)t_{i}\partial_{t_{j}}, & L_{2}=\frac{\partial f}{\partial u}(a(0))-\frac{\partial f}{\partial u}(a(x))=: $\eta$(x) .
\end{array}\right.
Moreover, the functions $\alpha$_{ij}(x) and  $\eta$(x) vanish at x=0 ,

that is, $\alpha$_{ij}(x)=O(|x|) ,

 $\eta$(x)=O(|x|) , $\zeta$_{ $\alpha$}(x)\in \mathcal{O}_{x} and g_{3}(t, x, v,  $\tau$,  $\xi$) is holomorphic in a neighborhood of the

origin with the same Taylor expansion as f_{3}.
In the following subsections 3.2 and 3.3, we give the convergence of formal solution

of the equation (3.4) by the two methods. If we can prove the convergence of formal

solution v(t, x) of (3.4), we give the convergence of the formal solution u(t, x) of (1.1),
because u(t, x)=v(t, x)+\displaystyle \sum_{j=1}^{d}$\varphi$_{j}(x)t_{j} and  $\varphi$(x)=($\varphi$_{1}(x), . . :, $\varphi$_{d}(x))\in \mathcal{O}_{x}^{d}.
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§3.2. Sketch of the Proof in [7] (Original Proof)

In [7], the proof of convergence of formal solution is done from the viewpoint as

evolution equation in t variables. Let P=$\Lambda$_{0}+\triangle-L_{1}-L_{2}.
Let

\displaystyle \mathcal{O}_{x}(R)[t]_{L}=\{\sum_{| $\alpha$|=L}u_{ $\alpha$}(x)t^{ $\alpha$} ; u_{ $\alpha$}(x)\in \mathcal{O}_{x} on |x|\leq R\}
be the set of homogeneous polynomials of degree L in t variables with holomorphic
coefficients.

Here we dene a majorant series and a majorant operator. For two formal power

series f(t)=\displaystyle \sum_{| $\alpha$|\geq 0}f_{ $\alpha$}t^{ $\alpha$}\in \mathrm{C}[[t]] and F(t)=\displaystyle \sum_{| $\alpha$|\geq 0}F_{ $\alpha$}t^{ $\alpha$}\in \mathrm{C}[[t]] ,
we say that F(t)

is a majorant series of f(t) ,
if |f_{ $\alpha$}|\leq F_{ $\alpha$} hold for all  $\alpha$\in \mathrm{N}^{d} and we write this relation

f(t)\ll F(t) .

Next, for two formal power series f(t, x)=\displaystyle \sum_{| $\alpha$|\geq 0}f_{ $\alpha$}(x)t^{ $\alpha$}\in \mathcal{O}_{x}(R)[[t]] and F(t)=

\displaystyle \sum_{| $\alpha$|\geq 0}F_{ $\alpha$}(x)t^{ $\alpha$}\in \mathcal{O}_{x}(R)[[t]] ,
we say that F(t, x) is a majorant series of f(t, x) ,

if

f_{ $\alpha$}(x)\ll F(x) hold for all  $\alpha$\in \mathrm{N}^{d} and we write this relation f(t, x)\ll F(t, x) .

Moreover, for two formal power series f(t, x) and F(t, x) such that f(t, x)\ll F(t, x)
and for two operators P_{1} and P_{2} ,

we say that P_{2} is a majorant operator of P_{1} (we write

this relation P_{1}\ll P_{2} ), if P_{1}f(t, x)\ll P_{2}F(t, x) holds.

Lemma 3.1. (i) For all L\geq 2 ,
the mapping P:\mathcal{O}_{x}(R)[t]_{L}\rightarrow \mathcal{O}_{x}(R)[t]_{L} is

invertible for sufficiently small R>0.

(ii) For u(t, x)\in \mathcal{O}_{x}(R)[t]_{L} ,
we suppose a majorant relation

u(t, x)\ll W(x)(t_{1}+\cdots+t_{d})^{L}

does hold by a function W(x) with non‐negative Ta ylor coefficients. Then for sufficiently
small R>0 ,

there exists a positive constant F>0 independent of L such that

(3.6) P^{-1}u(t, x)\displaystyle \ll\frac{1}{L}\frac{F}{R-X}W(x)(t_{1}+\cdots+t_{d})^{L}
=(T\displaystyle \partial_{T})^{-1}\frac{F}{R-X}W(x)T^{L},

where T=t_{1}+\cdots+t_{d} and X=x_{1}+\cdots+x_{n}.

You can find the proof of Lemma 3.1 in [7, Proposition 6.2]. So we omit the proof.

Let U(t, x)=Pv(t, x) be a new unknown function. Then U(t, x) satises the

following equation:

(3.7) U=\displaystyle \sum_{| $\alpha$|=2}$\zeta$_{ $\alpha$}(x)t^{ $\alpha$}+g_{3}(t, x, P^{-1}U, \partial_{t}P^{-1}U, \partial_{x}P^{-1}U)
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with U=O(|t|^{2}) .

In order to prove the convergence of formal solution U(t, x) ,
we prepare convergent

majorant functions by some positive constants R>0, A>0 and G_{ $\alpha$ pqr}\geq 0 as follows.

\displaystyle \sum_{| $\alpha$|=2}$\zeta$_{ $\alpha$}(x)t^{ $\alpha$}\ll\frac{A}{(R-X)^{2}}T^{2} (T=t_{1}+\cdots+t_{d}, X=x_{1}+\cdots+x_{n}) ,

g_{3}(t, x, u,  $\tau$,  $\xi$)\displaystyle \ll\sum_{| $\alpha$|+2p+|q|+2|r|\geq 3}\frac{G_{ $\alpha$ pqr}}{(R-X)^{| $\alpha$|+p+|q|+|r|}}T^{| $\alpha$|}u^{p}$\tau$^{q}$\xi$^{r}
=:G_{3}(T, X, u,  $\tau$,  $\xi$) .

We consider the following equation:

(3.8) W(T, X)=\displaystyle \frac{A}{(R-X)^{2}}T^{2}+G_{3}(T, X, \frac{F}{R-X}W,
\displaystyle \{\frac{F}{R-X}\frac{W}{T}\}_{j=1}^{d}, \{\partial_{X}(T\partial_{T})^{-1}\frac{F}{R-X}W\}_{k=1}^{n})

with W=O (T2). We put a formal solution W(T, X) by W(T, X)=\displaystyle \sum_{K\geq 2}W_{K}(X)T^{K}.
By substituting W(T, X) into (3.8), we have the following majorant relations: W_{2}(X)=
A/(R-X)^{2} and for K\geq 3,

W_{K}(X)=\displaystyle \sum_{| $\alpha$|+2p+|q|+2|r|\geq 3}\{\frac{G_{ $\alpha$ pqr}}{(R-X)^{| $\alpha$|+p+|q|+|r|}}
\displaystyle \times\sum^{*}\prod_{\ell=1}^{p}\frac{FW_{K_{l}}(X)}{R-X}\prod_{j=1}^{d}\prod_{\ell=1}^{q_{j}}\frac{FW_{L_{jl}}(X)}{R-X}\prod_{j=1}^{n}\prod_{\ell=1}^{r_{j}}\partial_{X}\frac{FW_{M_{jl}}(X)}{M_{j\ell}(R-X)}\},

where \displaystyle \sum^{*} is a summation which is taken over

| $\alpha$|+\displaystyle \sum_{\ell=1}^{p}K_{\ell}+\sum_{j=1}^{d}\sum_{\ell=1}^{q_{j}}(L_{j\ell}-1)+\sum_{j=1}^{d}\sum_{\ell=1}^{r_{j}}M_{j\ell}=K.
By the above recurrence formulas, we can see that the formal solution W(T, X) of (3.8)
exists uniquely, and W(T, X) satises U(t, x)\ll W(T, X) ,

because the functions are

replaced by majorant functions and P^{-1}\displaystyle \ll(T\partial_{T})^{-1}\frac{F}{R-X}\ll\frac{F}{R-X} hold by Lemma 3.1.

The following lemma is obtained by estimating the powers of 1/(R-X) in the

above recurrence formulas.

Lemma 3.2. The coefficients \{W_{K}(X)\}_{K\geq 2} are given by

(3.9) W_{K}(X)=\displaystyle \sum_{\ell=2}^{10K-18}\frac{W_{K\ell}}{(R-X)^{\ell}} , by some W_{K\ell}\geq 0.
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We omit the details of the proof of Lemma 3.2. (see [7, Lemma 6.6]).

By using Lemma 3.2, we have

(3.10) \displaystyle \partial_{X}(T\partial_{T})^{-1}\frac{F}{R-X}W(T, X)=\sum_{K\geq 2}\sum_{\ell=2}^{10K-18}\frac{\ell+1}{K}\frac{FW_{K\ell}}{(R-X)^{\ell+2}}T^{K}
\displaystyle \ll\frac{10F}{(R-X)^{2}}W(T, X) .

Now we consider the following equation:

(3.11) V(T, X)=\displaystyle \frac{A}{(R-X)^{2}}T^{2}
+G_{3}(T, X, \displaystyle \frac{F}{R-X}V, \{\frac{F}{R-X}\frac{V}{T}\}_{j=1}^{d}, \{\frac{10F}{(R-X)^{2}}V\}_{k=1}^{n})

with V=O (T2). By setting V(T, X)=T^{2}\hat{V}(T, X) ,
the above equation is reduced

to that for \hat{V} for which the existence of unique formal solution \hat{V} which is convergent
follows from the classical implicit function theorem. The above considerations show

that U(t, x)\ll W(T, X)\ll V(T, X) which proves the convergence of U(t, x) .

This implies that

v(t, x)=P^{-1}U(t, x)\displaystyle \ll(T\partial_{T})^{-1}\frac{F}{R-X}W(T, X)
\displaystyle \ll\frac{F}{R-X}W(T, X)\ll\frac{F}{R-X}V(T, X)\in \mathrm{C}\{t, x\},

which proves the convergence of v(t, x)=u(t, x)-\displaystyle \sum_{j=1}^{d}$\varphi$_{j}(x)t_{j}.

§3.3. Sketch of the Proof in [10] (Alternative Proof)

The equation (3.4) is rewritten by

(3.12) ($\Lambda$_{0}+\displaystyle \triangle)v(t, x)=\sum_{i,j=1}^{d}$\alpha$_{ij}(x)t_{i}\partial_{t_{j}}v(t, x)+ $\eta$(x)v(t, x)
+\displaystyle \sum_{| $\alpha$|=2}$\zeta$_{ $\alpha$}(x)t^{ $\alpha$}+g_{3}(t, x, v, \partial_{t}v, \partial_{x}v)

with v=O(|t|^{2}) where

(3.13) $\Lambda$_{0}=\displaystyle \sum_{j=1}^{d}$\lambda$_{j}t_{j}\partial_{t_{j}}+\frac{\partial f}{\partial u}(a(0)) , \triangle=\sum_{j=1}^{d-1}$\delta$_{j}t_{j+1}\partial_{t_{j}}.
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We recall that the functions $\alpha$_{ij}(x) and  $\eta$(x) vanish at x=0 ,
that is, $\alpha$_{ij}(x)=O(|x|) ,

 $\eta$(x)=O(|x|) , $\zeta$_{ $\alpha$}(x)\in \mathcal{O}_{x} and g_{3}(t, x, v,  $\tau$,  $\xi$) is holomorphic in a neighborhood of the

origin with the same Taylor expansion as f_{3}.

3.3.1. Existence of Formal solution. Let \mathrm{C}[t]_{L}[x]_{M} be the set of quasi‐homogeneous

polynomials of degree L in t and of degree M in x
,
that is,

\displaystyle \mathrm{C}[t]_{L}[x]_{M}=\{v_{LM}(t, x)=\sum_{| $\alpha$|=L,| $\beta$|=M}v_{ $\alpha \beta$}t^{ $\alpha$}x^{ $\beta$} ; v_{ $\alpha \beta$}\in \mathrm{C}\}
We dene as \mathrm{C}[[x]][t]_{L} the set of homogeneous polynomials of degree L in t with coef‐

ficients of formal power series in x
,
that is,

\displaystyle \mathrm{C}[[x]][t]_{L}=\{v_{L}(t, x)=\sum_{M\geq 0}v_{LM}(t, x);v_{LM}(t, x)\in \mathrm{C}[t]_{L}[x]_{M}\}
=\displaystyle \{v_{L}(t, x)=\sum_{| $\alpha$|=L}v_{ $\alpha$}(x)t^{ $\alpha$};v_{ $\alpha$}(x)\in \mathrm{C}[[x]]\}

By substituting v(t, x)=\displaystyle \sum_{L\geq 2}v_{L}(t, x)\in \mathrm{C}[[t, x]](v_{L}(t, x)\in \mathrm{C}[[x]][t]) into

(3.12), we obtain the following recurrence formulas:

(3.14) ($\Lambda$_{0}+\displaystyle \triangle)v_{L}(t, x)=\sum_{i,j=1}^{d}$\alpha$_{ij}(x)t_{i}\partial_{t_{j}}v_{L}(t, x)+ $\eta$(x)v_{L}(t, x)
+H_{L}(t, x, \{v_{L'}\}_{L'<L}, \{\partial_{t}v_{L''}\}_{L''<L}, \{\partial_{x}v_{L'''}\}_{L'''<L}) ,

where H_{L} denotes a homogeneous polynomial of degree L in t which is determined from

the nonlinear part g_{3} . Especially, if L=2
,

we put H_{2}=\displaystyle \sum_{| $\alpha$|=2}$\zeta$_{ $\alpha$}(x)t^{ $\alpha$}.
Next, by subsutituting v_{L}(t, x)=\displaystyle \sum_{M\geq 0}v_{LM}(t, x)\in \mathrm{C}[[x]][t]_{L} with  v_{LM}(t, x)\in

\mathrm{C}[t]_{L}[x]_{M} into the recurrence formulas (3.14), we obtain the following recurrence for‐

mulas for every L and M :

(3.15) ($\Lambda$_{0}+\triangle)v_{LM}(t, x)=H_{LM}(t, x, \{v_{L'M'}(t, x) and its derivatives);

where H_{LM} is a homogeneous polynomials of degree L in t and of degree M in x which

is determined from the right hand side of (3.14). Moreover, L' and M' satisfy

L'<L, M'\leq M or L'=L, M'<M.

Here the following lemma plays an important role:
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Lemma 3.3. Let  P_{0}=$\Lambda$_{0}+\triangle . Then we have:

(i) For all  L\geq 2 and M\geq 0 ,
the mapping P_{0} : \mathrm{C}[t]_{L}[x]_{M}\rightarrow \mathrm{C}[t]_{L}[x]_{M} is

invertible.

(ii) For v_{LM}(t, x)\in \mathrm{C}[t]_{L}[x]_{M} ,
we suppose that a majorant relation

v_{LM}(t, x)\ll W_{LM}T^{L}X^{M} (W_{LM}\geq 0)

does hold, then there exists a positive constant C_{1}>0 independet of L and M such that

(3.16) P_{0}^{-1}v_{LM}(t, x)\displaystyle \ll\frac{C_{1}}{L}W_{LM}T^{L}X^{M}(=C_{1}W_{LM}\times(T\partial_{T})^{-1}T^{L}X^{M})
\ll C_{1}W_{LM}T^{L}X^{M}

Remark. By the above lemma, majorant operators of P_{0}^{-1} on \mathrm{C}[[t, x]] are ob‐

tained by

(3.17) P_{0}^{-1}\ll C_{1}(T\partial_{T})^{-1}\ll C_{1}.

Moreover, in this lemma, we obtain the majorant relations on the constant coefficients,
not functional coefficients. In this situation, it is easier to prove Lemma 3.3 than proving
Lemma 3.1.

The proof of Lemma 3.3 is found in [10, Lemma 1], so we omit the proof.

By Lemma 3.3 and the recurrence formula (3.15), v_{LM}(t, x) are uniquely determined

by the induction. Therefore, the formal solution exists uniquely.

3.3.2. Convergence of Formal Solution. We put U(t, x)=P_{0}v(t, x) as a new

unknown function. Then U(t, x) satises the following equation:

(3.18) U(t, x)=\displaystyle \sum_{i,j=1}^{d}$\alpha$_{ij}(x)t_{i}\partial_{t_{j}}P_{0}^{-1}U+ $\eta$(x)P_{0}^{-1}U
+\displaystyle \sum_{| $\alpha$|=2}$\zeta$_{ $\alpha$}(x)t^{ $\alpha$}+g_{3}(t, x, P_{0}^{-1}U, \partial_{t}P_{0}^{-1}U, \partial_{x}P_{0}^{-1}U)

with U(t, x)=O(|t|^{2}) .

In order to construct a majorant equation for (3.18), we prepare some notations.

For a formal power series f(x)=\displaystyle \sum f_{ $\beta$}x^{ $\beta$} ,
we dene |f(x) by |f|(x)=\displaystyle \sum|f_{ $\beta$}|x^{ $\beta$} ,

and

for g_{3}(t, x, u,  $\tau$,  $\xi$)=\displaystyle \sum g_{ $\alpha$ pqr}(x)t^{ $\alpha$}u^{p}$\tau$^{q}$\xi$^{r} ,
we dene |g_{3}|(t, x, u,  $\tau$,  $\xi$) by

|g_{3}|(t, x, u,  $\tau$,  $\xi$)=\displaystyle \sum|g_{ $\alpha$ pqr}|(x)t^{ $\alpha$}u^{p}$\tau$^{q}$\xi$^{r}
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We put \mathrm{T}=(T, \ldots, T)\in \mathrm{C}^{d} and \mathrm{X}=(X, \ldots, X)\in \mathrm{C}^{n} . Then the majorant relations

$\alpha$_{ij}(x)\ll|$\alpha$_{ij}|(x)\ll|$\alpha$_{ij}|(\mathrm{X}) and

g_{3}(t, x, u,  $\tau$,  $\xi$)\ll|g_{3}|(t, x, u,  $\tau$,  $\xi$)\ll|g_{3}|(\mathrm{T}, \mathrm{X}, u,  $\tau$,  $\xi$)

hold clearly.

By Lemma 3.3 (ii), if a majorant relation U(t, x)\ll W(T, X) holds, then we have

the following majorant relations:

\displaystyle \bullet\sum_{i,j=1}^{d}$\alpha$_{ij}(x)t_{i}\partial_{t_{j}}P_{0}^{-1}U\ll C_{1}(\sum_{i,j=1}^{d}|$\alpha$_{ij}|(\mathrm{X}))W,
\bullet  $\eta$(x)P_{0}^{-1}U\ll C_{1}| $\eta$|(\mathrm{X})W,

\displaystyle \bullet\sum_{| $\alpha$|=2}$\zeta$_{ $\alpha$}(x)t^{ $\alpha$}\ll(\sum_{| $\alpha$|=2}|$\zeta$_{ $\alpha$}|(\mathrm{X}))T^{2},
\bullet  g_{3}(t, x, P_{0}^{-1}U, \partial_{t}P_{0}^{-1}U, \partial_{x}P_{0}^{-1}U)

\ll|g_{3}|(\mathrm{T}, \mathrm{X}, C_{1}W, \{C_{1}W/T\}, \{C_{1}\partial_{X}(T\partial_{T})^{-1}W\}) .

Let us consider the following equation which is a majorant equation of (3.18):

(3.19) P(X)W(T, X)=(\displaystyle \sum_{| $\alpha$|=2}|$\zeta$_{ $\alpha$}|(\mathrm{X}))T^{2}
+|g_{3}|(\mathrm{T}, \mathrm{X}, C_{1}W, \{C_{1}W/T\}, \{C_{1}\partial_{X}(T\partial_{T})^{-1}W\})

with W=O(T^{2}) where P(X) is a holomorphic function at X=0 given by

P(X)=1-C_{1}\displaystyle \sum_{i,j=1}|$\alpha$_{ij}|(\mathrm{X})-C_{1}| $\eta$|(\mathrm{X}) .

If (3.19) has a formal solution W(T, X) ,
then we can obtain the majorant relation

U(t, x)\ll W(T, X) ,
because the functions are replaced by the majorant functions and

the operators are also replaced by the majorant operators.

Here 1/P(X) is holomorphic in a neighborhood of X=0 ,
because P(0)\neq 0 by

|$\alpha$_{ij}|(\mathrm{X})=O(X) and | $\eta$|(\mathrm{X})=O(X) . Therefore, by dividing (3.19) by P(X) ,
the

equation (3.19) is reduced to the following:

(3.20) W(T, X)=Z(X)T^{2}+G_{3}(T, X, C_{1}W, \{C_{1}W/T\}, \{C_{1}\partial_{X}(T\partial_{T})^{-1}W\})

with W=O(T^{2}) where Z(X) and G_{3}(T, X, u,  $\tau$,  $\xi$) are holomorphic functions given by

Z(X)=\displaystyle \sum_{| $\alpha$|=2}\frac{|$\zeta$_{ $\alpha$}|(\mathrm{X})}{P(X)}, G_{3}(T, X, u,  $\tau$,  $\xi$)=\frac{|g_{3}|(\mathrm{T},\mathrm{X},u, $\tau,\ \xi$)}{P(X)}.
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We put W(T, X)=\displaystyle \sum_{K\geq 2}W_{K}(X)T^{K} . By substituting this into (3.20), we have the

following recurrence formula: W_{2}(X)=Z(X) and for K\geq 3

W_{K}(X)=\displaystyle \sum_{| $\alpha$|+2p+|q|+2|r|\geq 3}\{\frac{|g_{ $\alpha$ pqr}|(\mathrm{X})}{P(X)}
\displaystyle \times\sum^{**}\prod_{\ell=1}^{p}C_{1}W_{K_{l}}(X)\prod_{j=1}^{d}\prod_{\ell=1}^{q_{j}}C_{1}W_{L_{jl}}\prod_{j=1}^{n}\prod_{\ell=1}^{r_{j}}\partial_{X}\frac{C_{1}W_{M_{jl}}}{M_{j\ell}}\},

where \displaystyle \sum^{**} is a summation which is taken over

| $\alpha$|+\displaystyle \sum_{\ell=1}^{p}K_{\ell}+\sum_{j=1}^{d}\sum_{\ell=1}^{q_{j}}(L_{j\ell}-1)+\sum_{j=1}^{d}\sum_{\ell=1}^{r_{j}}M_{j\ell}=K.
By this recurrence formula, we can see that the formal solution W(T, X) exists uniquely.

We take majorant functions of Z(X) and G_{3}(T, X, u,  $\tau$,  $\xi$) by

(3.21) Z(X)\displaystyle \ll\frac{A}{(R-X)^{2}}=:Q(X) ,

(3.22) G_{3}(T, X, u,  $\tau$,  $\xi$)\displaystyle \ll\sum_{| $\alpha$|+2p+|q|+2|r|\geq 3}\frac{G_{ $\alpha$ pqr}}{(R-X)^{| $\alpha$|+p+|q|+|r|}}T^{| $\alpha$|}u^{p}$\tau$^{q}$\xi$^{r}
=:R_{3}(T, X, u,  $\tau$,  $\xi$)

where A and G_{ $\alpha$ pqr} are non‐negative constants and R is a positive constant sufficiently
small.

We consider the following equation:

(3.23) V(T, X)=Q(X)T^{2}+R_{3}(T, X, C_{1}V, \{C_{1}V/T\}, \{C_{1}\partial_{X}(T\partial_{T})^{-1}V\})

with V=O(T^{2}) .

We put V(T, X)=\displaystyle \sum_{K\geq 2}V_{K}(X)T^{K} . By substituting V(T, X) into (3.23), the

coefficients V_{K}(X)(K=2,3, \ldots) satisfy the following recurrence formula: V_{2}(X)=
A/(R-X)^{2} ,

and for K\geq 3

V_{K}(X)=\displaystyle \sum_{| $\alpha$|+2p+|q|+2|r|\geq 3}\{\frac{G_{ $\alpha$ pqr}}{(R-X)^{| $\alpha$|+p+|q|+|r|}}
\displaystyle \times\sum^{**}\prod_{\ell=1}^{p}C_{1}V_{K_{l}}(X)\prod_{j=1}^{d}\prod_{\ell=1}^{q_{j}}C_{1}V_{L_{jl}}\prod_{j=1}^{n}\prod_{\ell=1}^{r_{j}}\partial_{X}\frac{C_{1}V_{M_{jl}}}{M_{j\ell}}\},

where \displaystyle \sum^{**} is the same summation as the one in the recurrence formula for \{W_{K}(X)\}.
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By the construction of majorant equation (3.23) and the recurrence formula, the

formal solution V(T, X) exists uniquely, and it satises the majorant relations

U(t, x)\ll W(T, X)\ll V(T, X) .

Moreover, by calculating the upper bound estimate of the power of 1/(R-X) in the

recurrence formula, we have the following lemma:

Lemma 3.4. The coefficients \{V_{K}(X)\}_{K\geq 2} are given by

(3.24) V_{K}(X)=\displaystyle \sum_{\ell=2}^{7K-12}\frac{V_{K\ell}}{(R-X)^{\ell}} , by some V_{K\ell}\geq 0.

We can easily prove Lemma 3.4 by the same calculation as the one in the proof of

Lemma 3.2. (See [10, Lemma 2]).

By (3.24), we have the following majorant relation:

(3.25) \displaystyle \partial_{X}(T\partial_{T})^{-1}V(T, X)\ll\sum_{K\geq 2}\sum_{\ell=2}^{7K-12}\frac{\ell}{K}\frac{V_{K\ell}}{(R-X)^{\ell+1}}T^{K}\ll\frac{7}{R-X}V(T, X) .

We consider the following functional equation:

(3.26) Y(T, X)=Q(X)T^{2}+R_{3}(T, X, C_{1}Y, \{C_{1}Y/T\}, \{7C_{1}Y/(R-X))

with Y=O(T^{2}) . The equation (3.26) has a unique formal solution Y(T, X) . Moreover,

by the construction of (3.26), Y(T, X) is a majorant function of V(T, X) ,
that is, the

following majorant relations hold:

U(t, x)\ll W(T, X)\ll V(T, X)\ll Y(T, X) .

We put Y(T, X)=T^{2}\hat{Y}(T, X) . Then \hat{Y} satises

(3.27) \displaystyle \hat{Y}(T, X)=Q(X)+\frac{1}{T^{2}}R_{3}(T, X, C_{1}T^{2}\hat{Y}, \{C_{1}T\hat{Y}\}, \{7C_{1}T^{2}\hat{Y}/(R-X))
with \hat{Y}(0, X)=Q(X) . Since R_{3} has a vanishing order in T at least 3, therefore R_{3}/T^{2}
is holomorphic in a neighborhood of T=0 and vanish at T=0.

For the equation (3.27), we can prove that the formal solution \hat{Y} is convergent in

a neighborhood of the origin by the classical implicit function theorem. Therefore, we

obtain that

U(t, x)\ll W(T, X)\ll V(T, X)\ll Y(T, X)=T^{2}\hat{Y}(T, X)\in \mathrm{C}\{t, x\}.
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Therefore, we have

v(t, x)=P_{0}^{-1}U(t, x)\ll C_{1}(T\partial_{T})^{-1}Y(T, X)\ll C_{1}Y(T, X)\in \mathrm{C}\{t, x\},

which proves the convergence of v(t, x)=u(t, x)-\displaystyle \sum_{j=1}^{d}$\varphi$_{j}(x)t_{j}.

References

[1] Chen H. and Luo Z., On the Holomorphic Solution of Non‐linear Totally Characteris‐

tic Equations with Several Space Variables, Preprint 99/23 November 1999, Institut fur
Mathematik, Universitat Potsdam.

[2] Chen H., Luo Z. and Tahara H., Formal Solutions of Nonlinear First Order Totally Char‐

acteristic Type PDE with Irregular Singularity, Ann. Inst. Fourier., 51 (2001),pp. 1599‐

1620.

[3] Chen H. and Tahara H., On Totally Characteristic Type Non‐linear Partial Differantial

Equations in Complex Domain,Publ. RIMS Kyoto Univ., 35 (1996), 621‐636.

[4] Gérard R. and Tahara H.,Singular Nonlinear Partial Differential Equations, Vieweg Veer‐

lag,(1996).
[5] Hibino M., Divergence Property of Formal Solutions for Singular First Order Linear Partial

Differential Equations, Publ. RIMS Kyoto Univ.,35 (1999),pp. 893‐919.

[6] Miyake, M. and Shirai, A., Convergence of Formal Solutions of First Order Singular Non‐

linear Partial Differential Equations in Complex Domain, Annales. Polonici. Mathematici.,
74 (2000),pp. 215‐228.

[7] Miyake, M. and Shirai, A., Structure of Formal Solutions of Nonlinear First Order Singular
Partial Differential Equations in Complex Domain, Funkcial. Ekvac., 48 (2005),pp. 113‐

136.

[8] Shirai, A., Convergence of Formal Solutions of Singular First Order Nonlinear Partial

Differential Equations of Totally Characteristic Type, Funkcial. Ekvac., 45 (2002), pp.

187‐208.

[9] Shirai, A., Maillet Type Theorem for First Order Singular Nonlinear Partial Differential

Equations, Publ. RIMS Kyoto Univ. ,
39 (2003), pp. 275‐296.

[10] Shirai, A., Alternative Proof for the Convergence of Formal Solutions of Singular First Or‐

der Nonlinear Partial Differential Equations, Univ. Journal of Dep. Education., 1 (2008),
pp. 91‐102.


