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Coupling of two singular partial differential equations
and its application

By

Hidetoshi Tahara *

Abstract

In this note, we will consider a reduction of a singular Briot‐Bouquet type partial dif‐

ferential equation (A) t@u= @t =F(t, x, u, @u=@x) to a simple form (B) t@w = @t = $\lambda$(x)w with

 $\lambda$(x)= (@F=@u) (0; x, 0,0) in the complex domain under the assumption that (A) satises cer‐

tain Poincaré condition. The reduction is done by considering the coupling of two equations

(A) and (B), and by solving their coupling equation. The result is applied to the problem of

finding all the singular solutions of (A). This is an announcement of [5], and the details will

be published in [5]. In the case of non‐singular partial differential equations, its reduction to a

normal form is done in [4].

§1. Introduction

Let (t, x) be the variables in \mathbb{C}_{t}\times \mathbb{C}_{x} ,
and let F(t, x, u, v) be a holomorphic function

dened in a polydisk \triangle centered at the origin of \mathbb{C}_{t}\times \mathbb{C}_{x}\times \mathbb{C}_{u}\times \mathbb{C}_{v} . In the paper [4],
we have established the equivalence of the following two partial differential equations

\displaystyle \frac{\partial u}{\partial t}=F(t, x, u, \frac{\partial u}{\partial x}) and \displaystyle \frac{\partial w}{\partial t}=0
by considering the coupling of these two equations and by solving their coupling equa‐

tions.
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In this note, we will consider the following nonlinear singular partial differential

equation

(1.1) t\displaystyle \frac{\partial u}{\partial t}=F(t, x, u, \frac{@u}{\partial x})
under the assumptions

\mathrm{A}_{1}) F(t, x, u, v) is a holomorphic function on \triangle,

\mathrm{A}_{2}) F(0, x, 0, 0)\equiv 0 on \triangle_{0}=\triangle\cap\{t=0, u=0, v=0\} ,
and

\mathrm{A}_{3}) \displaystyle \frac{\partial F}{\partial v}(0, x, 0, 0)\equiv 0 on \triangle_{0}.

In the book of Gérard‐Tahara [3], the equation (1.1) is called a Briot‐Bouquet type

partial differential equation with respect to t if it satises the conditions \mathrm{A}_{1} ), \mathrm{A}_{2} ) and

\mathrm{A}_{3}) ; the function

(1.2)  $\lambda$(x)=\displaystyle \frac{\partial F}{\partial u}(0, x, 0,0)
is called the characteristic exponent (or the characteristic exponent function) of (1.1).
About the structure of holomorphic and singular solutions of (1.1) in a neighborhood of

(0,0)\in \mathbb{C}_{t}\times \mathbb{C}_{x} ,
one can refer to Gérard‐Tahara [2] and [3]. Among them, the following

theorem is the most fundamental result:

Theorem 1.1 ([2]). If  $\lambda$(0)\not\in\{1 , 2, . . . \} holds, the equation (1.1) has a unique

holomorphic solution u_{0}(t, x) in a neighborhood of (0,0)\in \mathbb{C}_{t}\times \mathbb{C}_{x} satisfy ing u_{0}(0, x)\equiv 0
near x=0.

The main theme of this note is to consider the following problem:

Problem 1.2. Find a canonical form of the equastion (1.1) by considering the

coupling of two partial differential equations.

This is an announcement of [5], and the details will be published in [5].

§2. Analysis of the coupling equations

As is seen in the case of Briot‐Bouquet�s ordinary differential equations (in chapter
4 of [3]), it will be reasonable to treat the following equation

(2.1) t\displaystyle \frac{\partial w}{\partial t}= $\lambda$(x)w
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as a candidate of the canonical form of (1.1) in a generic case. In order to justify this

assertion, we need to discuss the following coupling equation

()  t\displaystyle \frac{\partial $\phi$}{\partial t}+\sum_{m\geq 0}(D^{m}F)(t, x, u_{0}, \ldots, u_{m+1})\frac{\partial $\phi$}{\partial u_{m}}= $\lambda$(x) $\phi$ ,
or

() t\displaystyle \frac{\partial $\psi$}{\partial t}+\sum_{m\geq 0}(\sum_{0\leq i\leq m}$\lambda$_{m,i}(x)w_{i})\frac{\partial $\psi$}{\partial w_{m}}=F(t, x,  $\psi$, D $\psi$) ,

where

$\lambda$_{m,i}(x)=\displaystyle \frac{m!}{i!(m-i)!}(\frac{\partial}{\partial x})^{m-i} $\lambda$(x) , 0\leq i\leq m,
and D is the totally derivative operator dened by

D=\displaystyle \frac{\partial}{\partial x}+\sum_{i\geq 0}u_{i+1}\frac{\partial}{\partial u_{i}} ,
or D=\displaystyle \frac{\partial}{\partial x}+\sum_{i\geq 0}w_{i+1}\frac{\partial}{\partial w_{i}}.

In the equation () ,  $\phi$= $\phi$(t, x, u_{0}, u_{1}, \ldots) is the unknown function with innitely many

variables (t, x, u_{0}, u_{1}, \ldots) ; in the equation  $\psi$= $\psi$(t, x, w_{0}, \mathrm{w}_{1}, \ldots) is the unknown

function with innitely many variables (t, x, w_{0}, w_{1}, . :.) .

The formal meaning of the coupling equations is as follows:

Proposition 2.1. (1) If  $\phi$(t, x, u_{0}, u_{1}, \ldots) is a solution of () and if u(t, x) is a

solution of (1.1), then the function w(t, x)= $\phi$(t, x, u, @u=@x;. :.) is a solution of (2.1).
(2) If  $\psi$(t, x, w_{0}, \mathrm{w}_{1}, \ldots) is a solution of () and if w(t, x) is a solution of (2.1),

then the function u(t, x)= $\psi$(t, x, w, @w=@x;. :.) is a solution of (1.1).

Proof. We will show only (1). Let  $\phi$ (  t, x, u_{0} , ul, . . .) be a solution () and let

u(t, x) be a solution of (1.1). Set u_{i}(t, x)= (@=@x)iu(t; x) (i=0,1,2, \ldots) : we have

w(t, x)= $\phi$(t, x, u, @u=@x;::.) = $\phi$ (  t, x, u_{0} , ul, . . .) and @w = @x =D[ $\phi$](t, x, u_{0}, u_{1}, . .

Therefore we have

t\displaystyle \frac{\partial w}{\partial t}=t\frac{\partial $\phi$}{\partial t}+\sum_{i\geq 0}\frac{\partial $\phi$}{\partial u_{i}}\times t\frac{\partial u_{i}}{\partial t}=t\frac{\partial $\phi$}{\partial t}+\sum_{i\geq 0}\frac{\partial $\phi$}{\partial u_{i}}(\frac{\partial}{\partial x})^{i}[t\frac{\partial u}{\partial t}]
=t\displaystyle \frac{\partial $\phi$}{\partial t}+\sum_{i\geq 0}\frac{\partial $\phi$}{\partial u_{i}}(\frac{\partial}{\partial x})^{i}[F(t, x, u, \frac{\partial u}{\partial x})]
=t\displaystyle \frac{\partial $\phi$}{\partial t}+\sum_{i\geq 0}\frac{\partial $\phi$}{\partial u_{i}}D^{i}[F](t, x, u_{0}, \ldots, u_{i+1})
=G(t, x,  $\phi$, D[ $\phi$])=G(t, x, w, \displaystyle \frac{\partial w}{\partial x}) .

This shows that w(t, x) is a solution of (2.1). \square 
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Denote by S_{1} the set of all solutions of (1.1), and by S_{2} the set of all solutions of

(2.1): if we have a solution  $\phi$(t, x, u_{0}, u_{1}, . :.) of () (resp. a solution  $\psi$(t, x, w_{0}, \mathrm{w}_{1}, \ldots)
of we can dene a mapping  $\Phi$ :  S_{1}\ni u\mapsto w= $\phi$(t, x, u, @u@x;. . .) \in S_{2} (resp.
 $\Psi$ :  S_{2}\ni w\mapsto u= $\psi$(t, x, w, @w@x;. . .) \in S_{1}) . Thus, to dene the mappings  $\Phi$ and  $\Psi$

we must solve the equations () and () .

For k\in \mathbb{N}^{*} and R>0 we denote by \mathcal{H}_{k,R}[t, u_{0}, . . . ; u_{k-1}] the set of all homo‐

geneous polynomials of degree k in (t, u_{0}, . ::, u_{k-1}) with holomorphic coefficients in a

neighborhood of D_{R}=\{x\in \mathbb{C};|x|\leq R\}.
For r>0, c>0, s>0 and  $\epsilon$>0 we write

U_{k}(r, c, s,  $\epsilon$)=\{(t, x, u0, . . . , u_{k-1})\in \mathbb{C}\times \mathbb{C}\times \mathbb{C}^{k};|t|\leq r $\epsilon$, |x|\leq s,
|u_{0}|\leq 0! $\epsilon$, |u_{1}|\leq 1! $\epsilon$/c ,

. . .

, |u_{k-1}|\leq(k-1)! $\epsilon$/c^{k-1}\},
W_{k}(c, s,  $\epsilon$)=\{(t, x, w_{0}, \ldots, w_{k-1})\in \mathbb{C}\times \mathbb{C}\times \mathbb{C}^{k};|t|\leq $\epsilon$, |x|\leq s,

|w_{0}|\leq 0! $\epsilon$, |w_{1}|\leq 1! $\epsilon$/c ,
. . .

, |w_{k-1}|\leq(k-1)! $\epsilon$/c^{k-1}\}

(k=1,2, \ldots) . For a holomorphic function f(t, x, u0, . . :; u_{k-1}) on U_{k}=U_{k}(r, c, s,  $\epsilon$) we

dene the norm \Vert f\Vert_{U_{k}} by

\displaystyle \Vert f\Vert_{U_{k}}=\max|f(t, x, u_{0}, \ldots, u_{k-1})|U_{k}^{\cdot}
The norm \Vert g\Vert_{W_{k}} is dened in the same way. We have the following result.

Theorem 2.2. Let R>0 be sufficiently small. Suppose the conditions \mathrm{A}_{1} ),
\mathrm{A}_{2}) , \mathrm{A}_{3}) and

(2.2) |i+ $\lambda$(x)(j-1)|\geq $\sigma$(i+j) on D_{R}

for any (i, j)\in \mathbb{N}\times \mathbb{N}\backslash \{(0,0), (0,1)\}

for some  $\sigma$>0 . Then, we can find constants r_{0}>0 and 0<c_{0}<R so that the

following results hold.

(1) The coupling equation () has a unique formal solution of the form

(2.3)  $\phi$=\displaystyle \frac{-a(x)}{1- $\lambda$(x)}t+u_{0}+\sum_{k\geq 2}$\phi$_{k}(t, x, u_{0}, . ::, u_{k-1})
with $\phi$_{k}(t, x, u_{0}, . :. ; u_{k-1})\in \mathcal{H}_{k,R}[t, u_{0}, . ::, u_{k-1}](k=2,3, . .

moreover, for any 0<r\leq r_{0}, 0<c\leq c_{0} and s=R-c there is an  $\epsilon$>0 such that

\displaystyle \sum_{k\geq 1}\Vert$\phi$_{k}\Vert_{U_{k}} with U_{k}=U_{k}(r, c, s,  $\epsilon$)

is convergent, where $\phi$_{1}=-a(x)/(1- $\lambda$(x))t+u_{0}.
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(2) The coupling equation () has a unique formal solution of the form

(2.4)  $\psi$=\displaystyle \frac{a(x)}{1- $\lambda$(x)}t+w_{0}+\sum_{k\geq 2}$\psi$_{k}(t, x, w_{0}, \ldots, w_{k-1})
with $\psi$_{k} (t, x

, w0, . .

:, w_{k-1} ) \in \mathcal{H}_{k,R}[t, w_{0}, . . . ; w_{k-1}](k=2,3, \ldots) ;

moreover, for any r>0, 0<c\leq c_{0} and 0<s<R there is an  $\epsilon$>0 such that

\displaystyle \sum_{k\geq 1}\Vert$\psi$_{k}\Vert_{W_{k}} with W_{k}=W_{k}(c, s,  $\epsilon$)

is convergent, where $\psi$_{1}=a(x)/(1- $\lambda$(x))t+w_{0}.
(3) Moreover, we have the following equalities: u_{0}= $\psi$(t, x,  $\phi$, D $\phi$, D^{2} $\phi$, \ldots) as a

function with respect to the variables (t, x, u_{0}, u_{1}, u_{2}, . . and also w_{0}= $\phi$(t, x,  $\psi$, D $\psi$,

 D^{2} $\psi$ ,
. :. ) as a function with respect to the variables (t, x, w_{0}, w_{1}, w_{2}, . . .) .

The proof will be published in [5]. We will give here only a construction of the

formal solution. The proof of the convergence is done by the majorant method; but the

details are very much complicated.

Construction of the formal solution of () . By the conditions \mathrm{A}_{1} ), \mathrm{A}_{2} ) and \mathrm{A}_{3} ) we

have the expession

(2.5) F(t, x, u_{0}, u_{1})=a(x)t+ $\lambda$(x)u_{0}+\displaystyle \sum_{i+j+ $\alpha$\geq 2}c_{i,j, $\alpha$}(x)t^{i}u_{0^{j}}u_{1^{ $\alpha$}}
where a(x) ,  $\lambda$(x) and c_{i,j, $\alpha$}(x)(i+j+ $\alpha$\geq 2) are all holomorphic functions in a neigh‐
borhood of D_{R} . We set

R_{p}(t, x, u_{0}, u_{1})=\displaystyle \sum_{i+j+ $\alpha$=p}c_{i,j, $\alpha$}(x)t^{i}u_{0^{j}}u_{1^{ $\alpha$}}\in \mathcal{H}_{p,R}[t, u_{0}, u_{1}], p\geq 2.
Then, we have F(t, x, u_{0}, u_{1})=a(x)t+ $\lambda$(x)u_{0}+\displaystyle \sum_{p\geq 2}R_{p}(t, x, u_{0}, u_{1}) and so

(2.6) D^{m}[F](t, x, u0, . . . ; u_{m+1})

=a^{(m)}(x)t+\displaystyle \sum_{0\leq i\leq m}$\lambda$_{m,i}(x)u_{i}+\sum_{p\geq 2}D^{m}[R_{p}](t, x, u_{0}, \ldots, u_{m+1})
for any m\in \mathbb{N} ,

where a^{(m)}(x)= (@=@x)ma(x). Thus, by substituting the unknown

function  $\phi$(t, x, u_{0}, u_{1}, \ldots) into the coupling equation () we see that our coupling equa‐

tion () is written in the form

(2.7) ( $\tau$- $\lambda$(x)) $\phi$=-\displaystyle \sum_{m\geq 0}\sum_{p\geq 2}D^{m}[R_{p}](t, x, u_{0}, \ldots, u_{m+1})\frac{\partial $\phi$}{\partial u_{m}}
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where

 $\tau$=t\displaystyle \frac{\partial}{\partial t}+\sum_{m\geq 0}(a^{(m)}(x)t+\sum_{0\leq i\leq m}$\lambda$_{m,i}(x)u_{i})\frac{\partial}{\partial u_{m}}
a vector field with innitely many variables (t, u_{0} , ul, . . .).

Now, let us solve the equation (2.7). Let

(2.8)  $\phi$=\displaystyle \sum_{k\geq 1}$\phi$_{k}(t, x, u_{0}, \ldots, u_{k-1})\in\sum_{k\geq 1}\mathcal{H}_{k,R}[t, u_{0}, . . . , u_{k-1}]
be the unknown function. Since D^{m}[R_{p}](t, x, u_{0}, \ldots, u_{m+1}) belongs in the class \mathcal{H}_{p,R}
[t, u_{0}, . . . , u_{m+1}] , by substituting (2.8) into (2.7) and by comparing the homogeneous

part of degree k with respect to (t, u_{0}, . ::, u_{k-1}) we see that (2.7) is decomposed into

the following recurrent formulas:

(2.9) ($\tau$_{1}- $\lambda$(x))$\phi$_{1}=0 in \mathcal{H}_{1,R}[t, u_{0}]

and for k\geq 2

(2.10) ($\tau$_{k}- $\lambda$(x))$\phi$_{k}

=-\displaystyle \sum_{1\leq q\leq k-1}\sum_{0\leq m\leq q-1}D^{m}[R_{k-q+1}](t, x, u_{0}, \ldots, u_{m+1})\frac{\partial$\phi$_{q}}{\partial u_{m}}
in \mathcal{H}_{k,R}[t, u_{0}, . . . , u_{k-1}],

where

$\tau$_{k}=t\displaystyle \frac{\partial}{\partial t}+\sum_{0\leq m\leq k-1}(a^{(m)}(x)t+\sum_{0\leq i\leq m}$\lambda$_{m,i}(x)u_{i})\frac{\partial}{\partial u_{m}}, k=1
, 2, . . . .

Thus, if we note the following lemma, we can get a formal solution (2.3) of () .

Lemma 2.3. (1) If  $\lambda$(x)\neq 1 on D_{R} ,
the equation ($\tau$_{1}- $\lambda$(x))$\phi$_{1}=0 has a

solution $\phi$_{1}\in \mathcal{H}_{1}, R[t, u_{0}] of the form

$\phi$_{1}=\displaystyle \frac{-a(x) $\beta$(x)}{1- $\lambda$(x)}t+ $\beta$(x)u_{0}
and  $\beta$(x) can be chosen arbitrarily.

(2) Let k\geq 2. If|i+ $\lambda$(x)(j-1)|\neq 0 on D_{R} for any (i, j)\in \mathbb{N}\times \mathbb{N} with i+j=k,
then for any f_{k}\in \mathcal{H}_{k,R}[t, u_{0}, . ::; u_{k-1}] the equation ($\tau$_{k}- $\lambda$(x))$\phi$_{k}=f_{k} has a unique
solution $\phi$_{k}\in \mathcal{H}_{k,R}[t, u_{0}, . :. ; u_{k-1}].

Construction of the formal solution of As in (2.5), we have the expression

F(t, x, w_{0}, w_{1})=a(x)t+ $\lambda$(x)w_{0}+\displaystyle \sum_{i+j+ $\alpha$\geq 2}c_{i,j, $\alpha$}(x)t^{i}w_{0^{j}}w_{1^{ $\alpha$}}
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where a(x) ,  $\lambda$(x) and c_{i,j, $\alpha$}(x)(i+j+ $\alpha$\geq 2) are all holomorphic functions in a neigh‐
borhood of D_{R} . Therefore, the coupling equation () is expressed in the form

(2.11) ($\tau$^{*}- $\lambda$(x)) $\psi$=a(x)t+\displaystyle \sum_{i+j+ $\alpha$\geq 2}c_{i,j, $\alpha$}(x)t^{i}$\psi$^{j}(D[ $\psi$])^{ $\alpha$}
where

$\tau$^{*}=t\displaystyle \frac{\partial}{\partial t}+\sum_{m\geq 0}(\sum_{0\leq i\leq m}$\lambda$_{m,i}(x)w_{i})\frac{\partial}{\partial w_{m}}
a vector field of innitely many variables (t, w_{0} , wl, . . .), and $\lambda$_{m,i}(x)=m!/(i!(m-
i)!)(@/\partial x)^{m-i} $\lambda$(x)(0\leq i\leq m) . We note that $\lambda$_{m,m}(x)= $\lambda$(x) holds for all m=

0 , 1, 2, . . ..

Let

(2.12)  $\psi$=\displaystyle \sum_{k\geq 1}$\psi$_{k}(t, x, w_{0}, \ldots, w_{k-1})\in\sum_{k\geq 1}\mathcal{H}_{k,R}[t, w_{0}, . :. , w_{k-1}]
be the unknown function. Then, by substituting (2.12) into (2.11) and by comparing
the homogeneous parts of degree k with respect to (t, \mathrm{w}_{0}, \ldots; w_{k-1}) we see that (2.11)
is decomposed into the following recurrent formulas:

(2.13) ($\tau$_{1}^{*}- $\lambda$(x))$\psi$_{1}=a(x)t in \mathcal{H}_{1,R}[t, w_{0}]

and for k\geq 2

(2.14) ($\tau$_{k}^{*}- $\lambda$(x))$\psi$_{k}=\displaystyle \sum_{2\leq i+j+ $\alpha$\leq k}c_{i,j, $\alpha$}(x)t^{i}[\sum_{|p(j)|+|q( $\alpha$)|=k-i}$\psi$_{p_{1}}\times
\times\cdots\times$\psi$_{p_{j}}\times D[$\psi$_{q_{1}}]\times\cdots\times D[$\psi$_{q_{ $\alpha$}}]]

in \mathcal{H}_{k,R}[t, w_{0}, \cdots, w_{k-1}],

where

$\tau$_{k}^{*}=t\displaystyle \frac{\partial}{\partial t}+\sum_{0\leq m\leq k-1}(\sum_{0\leq i\leq m}$\lambda$_{m,i}(x)w_{i})\frac{@}{\partial w_{m}}, k=1
, 2, . . .

,

|p(j)|=p_{1}+\cdots+p_{j} and |q( $\alpha$)|=q_{1}+\cdots+q_{ $\alpha$} . Thus, if we note the following lemma,
we can get a formal solution (2.4) of () .

Lemma 2.4. (1) If  $\lambda$(x)\neq 1 on D_{R} ,
the equation ($\tau$_{1}^{*}- $\lambda$(x))$\psi$_{1}=a(x)t has a

solution $\psi$_{1}\in \mathcal{H}_{1,R}[t, w_{0}] of the form

$\psi$_{1}=\displaystyle \frac{a(x)}{1- $\lambda$(x)}t+ $\beta$(x)w_{0}
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and  $\beta$(x) can be chosen arbitrarily.

(2) Let k\geq 2. If|i+ $\lambda$(x)(j-1)|\neq 0 on D_{R} for any (i, j)\in \mathbb{N}\times \mathbb{N} with i+j=k,
then for any f_{k}\in \mathcal{H}_{k,R}[t, w_{0}, . ::, w_{k-1}] the equation ($\tau$_{k}^{*}- $\lambda$(x))$\psi$_{k}=f_{k} has a unique
solution $\psi$_{k}\in \mathcal{H}_{k,R}[t, w_{0}, . . :, w_{k-1}].

§3. Equivalence of two PDEs

Let \mathcal{F} and \mathcal{G} be function spaces in which we can consider the following two partial
differential equations:

(A) t\displaystyle \frac{\partial u}{\partial t}=F(t, x, u, \frac{@u}{\partial x}) in \mathcal{F},

(B) t\displaystyle \frac{\partial w}{\partial t}= $\lambda$(x)w in \mathcal{G}.

Set

S_{A}= the set of all solutions of (A) in \mathcal{F},

S_{B}= the set of all solutions of (B) in \mathcal{G}.

Then, if we can find function‐spaces \mathcal{F} and \mathcal{G} so that the two mappings

 $\Phi$ : \mathcal{F}\ni u(t, x)\mapsto w(t, x)= $\phi$(t, x, u, @u@x;. . .) \in \mathcal{G},

 $\Psi$ : \mathcal{G}\ni w(t, x)\mapsto u(t, x)= $\psi$(t, x, w, @w@x;. . .) \in \mathcal{F}

are well dened, by Proposition 2.1 and Theorem 2.2 we see that the two mappings

 $\Phi$ :  S_{A}\ni u(t, x)\mapsto w(t, x)= $\phi$(t, x, u;@u@x;. . .) \in S_{B},

 $\Psi$ :  S_{B}\ni w(t, x)\mapsto u(t, x)= $\psi$(t, x, w;@w@x;. . .) \in S_{A}

are well dened and that one is the inverse of the other. In this case, we say that two

equations (A) and (B) are equivalent.
Let us intrduce such function‐spaces. We denote by \mathcal{R}(\mathbb{C}\backslash \{0\}) the universal cov‐

ering space of \mathbb{C}\backslash \{0\} ,
and we write: S_{ $\theta$}(r)=\{t\in \mathcal{R}(\mathbb{C}\backslash \{0\}) ; |\arg t|< $\theta$, 0<|t|<r\}

and D_{R}=\{x\in \mathbb{C} ; |x|\leq R\}.

Denition 3.1. (1) We denote by \mathscr{S}_{0} the set of all u(t, x) satisfying the following

i) and ii): i) u(t, x) is a holomorphic function on S_{ $\theta$}(r)\times D_{R} for some  $\theta$>0, r>0

and R>0 ; and ii) we have

\displaystyle \max_{x\in D_{R}}|u(t, x)|=o(1) (as t\rightarrow 0 in S_{ $\theta$}(r) ).
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(2) We denote by \mathscr{S}+ the set of all u(t, x) satisfying the following i) and ii): i)
u(t, x) is a holomorphic function on S_{ $\theta$}(r)\times D_{R} for some  $\theta$>0, r>0 and R>0 ; and

ii) there is an a>0 such that

\displaystyle \max_{x\in D_{R}}|u(t, x)|=O(|t|^{a})
Then we have

(as t\rightarrow 0 in S_{ $\theta$}(r) ).

Proposition 3.2. Let  $\phi$ (  t, x, u_{0} , ul, . . .) and  $\psi$ (  t, x, w_{0} , wl, . . .) be the solutions

in Theorem 2.2. Then the following two mappings are well dened:

 $\Phi$ : \mathscr{S}_{0} (resp: \mathscr{S}_{+} ) \ni u(t, x)\mapsto w(t, x)= $\phi$(t, x, u, @u@x;. . .) \in \mathscr{S}_{0} (resp: \mathscr{S}_{+} ),
 $\Psi$ : \mathscr{S}_{0} (resp: \mathscr{S}_{+} ) \ni w(t, x)\mapsto u(t, x)= $\psi$(t, x, w, @w@x;. . .) \in \mathscr{S}_{0} (resp: \mathscr{S}_{+} ).

Thus, we have the following result.

Theorem 3.3 (Equivalence). Suppose the conditions \mathrm{A}_{1} ), \mathrm{A}_{2} ), \mathrm{A}_{3} ) and

(3.1) |i+ $\lambda$(x)(j-1)|\geq $\sigma$(i+j) on D_{R}

for any (i, j)\in \mathbb{N}\times \mathbb{N}\backslash \{(0,0), (0,1)\}

for some  $\sigma$>0andR>0 . Then, the following two equations are equivalent:

(3.2) t\displaystyle \frac{\partial u}{\partial t}=F(t, x, u, \frac{\partial u}{\partial x}) in \mathscr{S}_{0} (resp. \mathscr{S}_{+} ),

(3.3) t\displaystyle \frac{\partial w}{\partial t}= $\lambda$(x)w in \mathscr{S}_{0} (resp. \mathscr{S}_{+} ).

In other words, if we denote by S_{A} the set of all solutions of (3.2) and by S_{B} the set of
all solutions of (3.3), the following two mappings are bijective and one is the inverse of
the other:

 $\Phi$

 S_{A}\leftarrow^{\vec{} $\Psi$} S_{B}

§4. Application

Let us consider the following Briot‐Bouquet type partial differential equation

(4.1) t\displaystyle \frac{\partial u}{\partial t}=F(t, x, u, \frac{\partial u}{\partial x}) .

We denote by \mathscr{S}_{0}((4.1)) (resp. \mathscr{S}_{+}((4.1)) the set of all solutions of (4.1) belonging in

the class \mathscr{S}_{0} (resp. \mathscr{S}_{+} ). Then we have
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Theorem 4.1 (Structure of solutions). Suppose the conditions \mathrm{A}_{1} ), \mathrm{A}_{2} ), \mathrm{A}_{3} )
and (3.1). Then we have

\mathscr{S}_{0}((4.1))=\mathscr{S}_{+}((4.1))

=\left\{\begin{array}{l}
\{ $\Psi$[h(x)t^{ $\lambda$(x)}] ; h(x)\in \mathbb{C}\{x\}\}, when Re $\lambda$(0)>0,\\
\{ $\Psi$[0]\}, when Re $\lambda$(0)\leq 0.
\end{array}\right.
Proof. This follows from Theorem 3.3 and the following fact:

S_{B}=\left\{\begin{array}{l}
\{h(x)t^{ $\lambda$(x)} ; h(x)\in \mathbb{C}\{x\}\}, \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n} {\rm Re} $\lambda$(0)>0,\\
\{0\}, \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n} {\rm Re} $\lambda$(0)\leq 0.
\end{array}\right.
\square 

Note that  $\Psi$[0]= $\psi$(t, x, 0,0, \ldots) is nothing but the unique holomorphic solution

u_{0}(t, x) obtained in Theorem 1.1, and so we have

Corollary 4.2 (Analytic continuation). Suppose the conditions \mathrm{A}_{1} ), \mathrm{A}_{2} ), \mathrm{A}_{3} ),
{\rm Re} $\lambda$(0)\leq 0 and  $\lambda$(0)\not\in(-\infty, 0]. If u(t, x) is a solution of (4.1) on S_{ $\theta$}(r)\times D_{R} satisfy ing

u(t, x)\rightarrow 0 uniformly on D_{R} (as t\rightarrow 0 in S_{ $\theta$}(r)) ,
then u(t, x) has an analytic

continuation up to some neighborhood of (0,0)\in \mathbb{C}^{2}.

The details will be published in [5].
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