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Nonlinear partial differential equations and

logarithmic singularities

By

Hidetoshi TAHARA * and Hideshi YAMANE**

Abstract

We study logarithmic singularities of solutions to some nonlinear partial differential equa‐

tions near noncharacteristic hypersurfaces. It is a logarithmic analogue of the Painlevé PDE

test for integrable equations.

§1. Painlevé PDE test and WTC expansions

Weiss, Tabor and Carnevale ([7]) constructed a family of meromorphic solutions

to some integrable equations. Let us review their calculation in the case of the \mathrm{K}\mathrm{d}\mathrm{V}

equation:

(1.1) u_{ttt}-6uu_{t}+u_{x}=0 (t, x\in \mathbb{R}) .

For any real‐analytic function  $\psi$(x) ,
set T=t- $\psi$(x) . Then it has been proved in [7]

that the equation (1.1) has a family of meromorphic solutions of the form

(1.2) u=\displaystyle \frac{2}{T^{2}}-\frac{1}{6}$\psi$_{x}+gT^{2}-\frac{1}{36}$\psi$_{xx}T^{3}+hT^{4}-\frac{1}{24}g_{x}T^{5}+\ldots,
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where g=g(x) and h=h(x) are arbitrary real‐analytic functions. Since the function

 $\psi$ is arbitrary, the noncharacteristic surface  T=t- $\psi$(x)=0 is a multi‐dimensional

analogue of moving singularities of the Painlevé equations.
Similar solutions exist for other integrable equations and their expansions are called

WTC expansions. If an equation has a family of solutions which are expressed by WTC

expansions, then it is said to pass the Painlevé PDE test. (See [1] and [7] for details).
When non‐integrable equations are considered, different kinds of expansions have

to be introduced. The solutions are generally multi‐valued as is proved in [2] and [3].
We mainly follow the latter in the present paper.

§2. Kobayashi�s theory ([3])

We introduce some notation following Kobayashi and explain his result. Let (t, x)=
(t , xl, . . .

, x_{n} ) \in \mathbb{C}\times \mathbb{C}^{n} ,
fix m\in \mathbb{N}^{*} and set I_{m}=\{(j,  $\alpha$)\in \mathbb{N}\times \mathbb{N}^{n};j+| $\alpha$|\leq m and j<

m\}, N= the cardinal of I_{m} ,
and U=(U_{j, $\alpha$})_{(j, $\alpha$)\in I_{m}}\in \mathbb{C}^{N} . Moreover, we set @t = @= @t,

@_{x}^{ $\alpha$}=(\partial/\partial x_{1})^{$\alpha$_{1}}: . : (\partial/\partial x_{n})^{$\alpha$_{n}} for  $\alpha$=($\alpha$_{1}, . ::, $\alpha$_{n}) .

We study nonlinear PDEs of the form

(2.1) \partial_{t}^{m}u=f(t, x, (\partial_{t}^{j}\partial_{x}^{ $\alpha$}u)_{(j, $\alpha$)\in I_{m}}) .

Here f(t, x, U) is holomorphic in \{(t, x)\in \mathbb{C}_{t}\times \mathbb{C}_{x}^{n};|t|<r_{0}, |x|<R_{0}\}\times \mathbb{C}_{U}^{N} ,
where r_{0}

and R_{0} are positive constants. (Although f is assumed to be a polynomial in [3], this

condition can be relaxed).
The function f can be expanded in the variable U :

(2.2) f(t, x, U)=\displaystyle \sum_{ $\mu$\in \mathcal{M}}f_{ $\mu$}(t, x)U^{ $\mu$},  $\mu$=($\mu$_{j, $\alpha$})_{(j, $\alpha$)\in I_{m};} U^{ $\mu$}=\prod_{(j, $\alpha$)\in I_{m}}U_{j, $\alpha$}^{$\mu$_{j, $\alpha$}}
for some subset \mathcal{M} of \mathbb{N}^{N} ,

the set of \mathbb{N}‐valued functions on I_{m} . We assume that f_{ $\mu$}(t, x)
does not vanish identically.

Next we expand f_{ $\mu$}(t, x) in t :

(2.3) f_{ $\mu$}(t, x)=t^{k_{ $\mu$}}\displaystyle \sum_{k=0}^{\infty}f_{ $\mu$,k}(x)t^{k}
We assume that f(x) does not vanish identically.

We set

| $\mu$|=\displaystyle \sum_{(j, $\alpha$)\in I_{m}}$\mu$_{j, $\alpha$},  $\gamma$( $\mu$)=\displaystyle \sum_{(j, $\alpha$)\in I_{7m}}j$\mu$_{j, $\alpha$}, r( $\mu$)=\displaystyle \frac{ $\gamma$( $\mu$)-m-k_{ $\mu$}}{| $\mu$|-1}( $\mu$\in \mathcal{M}, | $\mu$|\geq 2) .

Kobayashi ([3]) dened his exponent $\sigma$_{c} by

$\sigma$_{c}= \displaystyle \sup r( $\mu$) .

 $\mu$\in \mathcal{M},| $\mu$|\geq 2



Nonlinear partial differential equations and logarithmic singularities 205

He assumed that $\sigma$_{c} was a rational number and imposed a kind of nonresonance condition

on it. In particular, it must avoid the values 0 , 1, 2, . . .

;
m-2 . Under some additional

assumptions, he constructed solutions of the form

(2.4) u=t^{$\sigma$_{c}}\displaystyle \sum_{j=0}^{\infty}u_{j}(x)t^{j/p},
where u_{n} �s are holomorphic in a common neighborhood of the origin, u_{0}\not\equiv 0 and p is the

smallest positive integer such that p$\sigma$_{c}\in \mathbb{Z} . A general noncharacteristic surface t= $\psi$(x)
can be transformed to t=0 by a change of coordinates and the WTC expansion (1.2)
for the \mathrm{K}\mathrm{d}\mathrm{V} equation is just an example of (2.4).

Kichenassamy‐Srinivasan ([2]) chose a different formulation and introduced expan‐

sions involving logarithms in the higher order terms.

§3. Logarithmic singularities

We consider the resonant case where $\sigma$_{c}\in\{0, 1, 2, . ::, m-2\} . The expansion is

radically different from the one in (2.4) in that the leading term involves a logarithm.
We assume the following:

(A0) $\sigma$_{c}=l\in\{0, 1, 2, . . . , m-2\}.

(A1) \mathcal{M}_{0}=\mathrm{d}\mathrm{e}\mathrm{f}\{ $\mu$\in \mathcal{M};| $\mu$|\geq 2, r( $\mu$)=l(=$\sigma$_{c})\} is non‐empty.

(A2) If  $\mu$\in \mathcal{M}_{0} and $\mu$_{j $\alpha$}\neq 0 ,
then j\geq l+1 and  $\alpha$=0.

(A3) For a sufficiently small positive constant C>0 ,
we have

m-l+k_{ $\mu$}- $\gamma$( $\mu$)+l| $\mu$|\displaystyle \geq C\sum_{(j, $\alpha$)\in I_{m},j\leq l}$\mu$_{j, $\alpha$}
for any  $\mu$\in \mathcal{M}\backslash \mathcal{M}_{0} . (This is the case if f is a polynomial).

We use the following notation:

\bullet \mathcal{R}(\mathbb{C}\backslash \{0\}) ,
the universal covering space of \mathbb{C}\backslash \{0\},

\bullet  S_{ $\theta$}=\{t\in \mathcal{R}(\mathbb{C}\backslash \{0\});|\arg t|< $\theta$\},

\bullet  S( $\epsilon$(y))=\{t\in \mathcal{R}(\mathbb{C}\backslash \{0\});0<|t|< $\epsilon$(\arg t where  $\epsilon$(y) is a positive continuous

function on \mathbb{R}_{y},

\bullet  D_{r}= { x=(x_{1}, \ldots, x_{n})\in \mathbb{C}^{n} ; |x_{i}|<r for i=1, \cdots

;
 n}.
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Denition 3.1. \overline{o}_{+} denotes the set of all v(t, x) satisfying the following two

conditions:

i) v(t, x) is a holomorphic function on S( $\epsilon$(y))\times D_{r} for some positive continuous

function  $\epsilon$(y) on \mathbb{R}_{y} and some constant r>0.

ii) There exists a constant a>0 such that for any \tilde{r}\in ]  0, r[ and  $\theta$>0 we have

\displaystyle \max_{x\in D_{\overline{r}}}|v(t, x)|=O(|t|^{a}) (as t\rightarrow 0 in S_{ $\theta$} ).

Our main result is the following:

Theorem 3.2. Assume (\mathrm{A}\mathrm{O})-(\mathrm{A}3) and set $\beta$_{j,l}=(-1)^{j-l-1}l!(j-l-1)! for

j\geq l+1 . Let A=a(x) be a holomorphic solution to

(3.1) \displaystyle \sum_{ $\mu$\in \mathcal{M}_{0}}f_{ $\mu$,0}(x)(\prod_{j=l+1}^{m-1}$\beta$_{j,l}^{$\mu$_{j,0}})A^{| $\mu$|-1}=$\beta$_{m,l}
in a neighborhood of x=0 . Then, for any holomorphic function b(x) in a neighborhood

of x=0 ,
there exists a function v(t, x)\in\overline{o}_{+} such that

u(t, x)=a(x)t^{l}\log t+t^{l}b(x)+t^{l}v(t, x)
=t^{l}\{a(x)\log t+b(x)+v(t, x)\}

is a solution to (2.1).

Remark. The left hand side of (3.1) is entire in A . Picard�s theorem in value

distribution theory assures that there exists a solution to (3.1) in a generic case.

§4. Proof of Theorem 3.2

Set u(t, x)=a(x)t^{l}\log t+t^{l}b(x)+t^{l}v(t, x) . We shall derive an equation with a

new unknown function v(t, x) . It is a nonlinear Fuchsian equation. Its coefficients are

singular because they involve logarithms. We refer the reader to [6] for details.

§5. Moving singularities: nonlinear wave equation

In our main theorem, we claimed the existence of solutions with logarithmic singu‐
larities along t=0 . By a change of coordinates, we can construct solutions which are

singular along other noncharacteristic hypersurfaces.
We consider

(5.1) \square  u(s, y)=g(s, y;u, @u;u)
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in an open set of \mathbb{C}^{n+1}=\mathbb{C}_{s}\times \mathbb{C}_{y}^{n} . Here \square = @2 = @s2 -\displaystyle \sum_{i=1}^{n}\partial^{2}/\partial y_{i}^{2}, \nabla_{y}u=
(@u=@y;. ::, @u=@y). We assume that g(s, y;z,  $\sigma$,  $\eta$) is a holomorphic function in all

its arguments and is entire in (z,  $\sigma$,  $\eta$) . Moreover we assume that it is a polynomial of

degree 2 in (;  $\eta$) . Its homogeneous part of degree 2 is denoted by g_{2}.

Let  $\psi$(y) be a holomorphic function with

(5.2) 1-\{\nabla_{y} $\psi$(y)\}^{2}\neq 0,

where \nabla_{y} $\psi$(y)=($\psi$_{1}(y), \ldots, $\psi$_{n}(y)) , $\psi$_{i}(y)=@ $\psi$(y)/\partial y_{i}(i=1,2, . . :; n) , \{\nabla_{y} $\psi$(y)\}^{2}=
\displaystyle \sum_{i=1}^{n}$\psi$_{i}(y)^{2} . Moreover we assume that

(5.3) g_{2}( $\psi$(y), y;0,1, -\nabla_{y} $\psi$(y))\neq 0.

Theorem 5.1. Assume (5.2) and (5.3). Then, in a neighborhood of the hyper‐

surfa ce  $\Sigma$=\{s= $\psi$(y)\} ,
there exists a fa mily of solutions u(s, y) to (5.1) with the

asymptotic behavior

u(s, y)\displaystyle \sim-\frac{1-\{\nabla_{y} $\psi$(y)\}^{2}}{g_{2}( $\psi$(y),y;0,1,-\nabla_{y} $\psi$(y))}\log(s- $\psi$(y)) as s\rightarrow $\psi$(y) .

Proof. Set t=s- $\psi$(y) , x=y,  $\Psi$=1-\{\nabla_{y} $\psi$(y)\}^{2}(\neq 0) . Then, we have

\partial_{s}=\partial_{t}, \partial_{y_{i}}=-$\psi$_{i}\partial_{t}+\partial_{x_{i}} . We can apply Theorem 3.2 near t=0 . The assumption

(5.3) corresponds to k_{ $\mu$}=0 . Details are explained in [6]. \square 

§6. Moving singularities: third order case

Next we consider a third order equation. Let P(s, y;\partial_{s}, \partial_{y}) be a linear partial dif‐

ferential operator of third order. Its principal symbol is denoted by  $\sigma$(P) . Its coefficients

are assumed to be holomorphic near s= $\psi$(y) . We consider

(6.1) Pu=g(s, y;(\partial_{s}^{j}\partial_{y}^{ $\alpha$}u)_{j+| $\alpha$|\leq 2})

We assume that g(s, y;(Y_{j, $\alpha$})_{j+| $\alpha$|\leq 2}) is entire in (Y_{j, $\alpha$})_{j+| $\alpha$|\leq 2} . Moreover, we assume

that g is a polynomial of degree 2 in (Y_{j, $\alpha$})_{j+| $\alpha$|=1,2} and we denote its homogeneous part

of degree 2 by g_{2}.

Set Y_{j, $\alpha$}^{(0)}=(-\nabla_{y} $\psi$(y))^{ $\alpha$} if j+| $\alpha$|=2 and Y_{j, $\alpha$}^{(0)}=0 otherwise. We assume

(6.2) g_{2}( $\psi$(y), y;(Y_{j, $\alpha$}^{(0)})_{j+| $\alpha$|\leq 2})\neq 0
(6.3)  $\sigma$(P)(s, y;1, -\nabla_{y} $\psi$(y))\neq 0
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Theorem 6.1. Assume (6.2) and (6.3). Then, in a neighborhood of the hyper‐

surfa ce  $\Sigma$=\{s= $\psi$(y)\} ,
there exists a fa mily of solutions u(s, y) to (6.1) with the

asymptotic behavior

u(s, y)\sim a(y)t\log t, t=s- $\psi$(y) ,

as s\rightarrow $\psi$(y) .

a(y)=\displaystyle \frac{- $\sigma$(P)(s,y;1,-\nabla_{y} $\psi$(y))}{g_{2}( $\psi$(y),y;(Y_{j, $\alpha$}^{(0)}))}
Proof. We set t=s- $\psi$(y) , x=y again. By using (6.3), we can rewrite (6.1) as

\partial_{t}^{3}u= [linear \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t} ] + $\sigma$(P)^{-1}g(t+ $\psi$(x), x;(\partial_{t}^{j}(-(\nabla_{x} $\psi$)\partial_{t}+\nabla_{x})^{ $\alpha$}u)_{j+| $\alpha$|\leq 2}) .

Here  $\sigma$(P)= $\sigma$(P)(t+ $\psi$(x), x;1, -\nabla_{x} $\psi$(x)) and -(\nabla_{x} $\psi$)\partial_{t}+\nabla_{x} is the n‐tuple of vector

fields whose i‐th component is -(@ $\psi$/\partial x_{i})\partial_{t}+\partial_{x_{i}} . Expanding the right hand side as in

(2.2) and (2.3), we find the term

 $\sigma$(P)^{-1}g_{2}( $\psi$(x), x;(Y_{j, $\alpha$}^{(0)})_{j+| $\alpha$|\leq 2})U_{2,0}^{2}, U_{2,0}=\partial_{t}^{2}u.
This term is f_{\overline{ $\mu$},0}(x)U^{\overline{ $\mu$}}( $\mu$=\overline{ $\mu$}, k=0) in the notation of (2.2) and (2.3), where we dene

\overline{ $\mu$} by

\overline{ $\mu$}_{2,0}=2, \overline{ $\mu$}_{j, $\alpha$}=0 (otherwise):

The assumption (6.2) implies k_{\overline{ $\mu$}}=0 ,
and we have  $\gamma$(\overline{ $\mu$})=4, |\overline{ $\mu$}|=2, r(\overline{ $\mu$})=1.

We claim that \mathcal{M}_{0}=\{\overline{ $\mu$}\} . First, the assumption on g means \displaystyle \sum_{j+| $\alpha$|=1,2}$\mu$_{j, $\alpha$}\leq 2
for each  $\mu$\in \mathcal{M} . If $\mu$_{2,0}=2 ,

then $\mu$_{j, $\alpha$}=0(j+| $\alpha$|=1,2) . It follows that  $\gamma$( $\mu$)= $\gamma$(\overline{ $\mu$}) .

Since | $\mu$|\geq|\overline{ $\mu$}| and k_{ $\mu$}\geq k_{\overline{ $\mu$}}=0 ,
we obtain the estimate r( $\mu$)\leq r(\overline{ $\mu$})=1 ,

the equality

being true if and only if  $\mu$=\overline{ $\mu$} . On the other hand, if $\mu$_{2,0}\leq 1 ,
then we have  $\gamma$( $\mu$)\leq| $\mu$|

and r( $\mu$)<1.
We have f_{\overline{ $\mu$},0}(x)= $\sigma$(P)^{-1}g_{2}( $\psi$(x), x, (Y_{j, $\alpha$}^{(0)})) . So (3.1) becomes

 $\sigma$(P)^{-1}g_{2}( $\psi$, x, (Y_{j, $\alpha$}^{(0)}))A=-1.
Hence we have A=a(x)=- $\sigma$(P)/g_{2}( $\psi$(x), x, (Y_{j, $\alpha$}^{(0)})) , u\sim a(x)t\log t. \square 
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