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Wave Front Evolution and Pedal Evolution

Dedicated to Profe ssors Satoshi Koike and Laurentiu Paunescu
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By

Takashi Nishimura *

Abstract

The calculus correspondence has been known to exist between generic pedal evolutions

and generic wave front evolutions. In this paper, we first extend the known results on the

calculus correspondence to evolutions with multi‐parameters, and then give applications of

calculus correspondence. Moreover, we discuss the possibility of generalization of the calculus

correspondence to degenerate pedal evolutions and degenerate wave front evolutions.

§1. Introduction

Throughout this paper, all maps, map‐germs and vector fields are of class C^{\infty} unless

otherwise stated.

A map‐germ  $\Phi$ : (\mathbb{R}^{m}, 0)\rightarrow(\mathbb{R}^{m+1},0) is called a Legendrian map‐germ if there

exists a germ of unit vector field v_{ $\Phi$} along  $\Phi$ such that the following 2 conditions hold,
where the dot in the center stands for the scalar product of two vectors.

1. \displaystyle \frac{\partial $\Phi$}{\partial x_{1}} (xl, . . .

, x_{m} ) \displaystyle \cdot v_{ $\Phi$}(x_{1}, \ldots, x_{m})=\cdots=\frac{\partial $\Phi$}{\partial x_{m}}(x_{1}, \ldots, x_{m})\cdot v_{ $\Phi$}(x_{1}, \ldots, x_{m})=0.

2. The map‐germ L_{ $\Phi$} : (\mathbb{R}^{m}, 0)\rightarrow T_{1}\mathbb{R}^{m+1} defined by

L_{ $\Phi$}(x_{1}, \ldots, x_{m})=( $\Phi$(x_{1}, \ldots, x_{m}), v_{ $\Phi$}(x_{1}, \ldots, x))

is non‐singular, where T_{1}\mathbb{R}^{m+1} is the unit tangent bundle of \mathbb{R}^{m+1}.
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The vector field v_{ $\Phi$} ,
the map‐germ L_{ $\Phi$} and the image of a Legendrian map‐germ are

called a unit normal vector field of  $\Phi$
,

a Legendrian lift of  $\Phi$ and a wave front re‐

spectively. Singularities of Legendrian map‐germs have been relatively well‐studied (for
instance, see [3, 10, 22, 23]).

Let \mathrm{r} : (a, b)\rightarrow \mathbb{R}^{2}(0\in(a, b)) be a non‐singular plane curve without inflection point

(namely, a non‐degenerate curve), and let P be a point of \mathbb{R}^{2} . Then, the pedal curve of
\mathrm{r} relative to the pedal point P is defined as the trajectory of the foot of perpendicular
to the tangent line \{\mathrm{r}(s)+u\mathrm{r}'(s)|u\in \mathbb{R}\} at \mathrm{r}(s) from P

,
and it is denoted by ped_{\mathrm{r},P} :

(a, b)\rightarrow \mathbb{R}^{2} . The given point P is called the pedal point. Let WF_{\mathrm{r},P} : (a, b)\rightarrow \mathbb{R}^{2} be

the solution curve of

\displaystyle \frac{d}{ds}WF_{\mathrm{r},P}(s)=ped_{\mathrm{r},P}(s)-P, WF_{\mathrm{r},P}(0)=(0,0) ,

where s is the arc‐length parameter of \mathrm{r} . Then, by definition of pedal curve, \mathrm{r}'(s) (which
is the unit tangent vector to \mathrm{r} at \mathrm{r}(s) ) is a unit normal vector to WF_{\mathrm{r},P} at WF_{\mathrm{r},P}(s) .

Thus, the Legendrian lift L_{WF_{\mathrm{r},P}} : (a, b)\rightarrow T_{1}\mathbb{R}^{2} given by

L_{WF_{\mathrm{r},P}}(s)=(WF_{\mathrm{r},P}(s), \mathrm{r}'(s))

is well‐defined. Since the original curve \mathrm{r} is without inflection point, by the Serret‐Frenet

formula (for the Serret‐Frenet formula, see for instance [4]), L_{WF_{\mathrm{r},P}} is non‐singular.

Thus, the image of WF_{\mathrm{r},P} must be a wave front curve.

Next, we move the pedal point P . Let P:U\rightarrow \mathbb{R}^{2} be a map, where U is an open

neighborhood of the origin of \mathbb{R}^{n}
, Then, we obtain two corank one maps Un‐ped,P :

(a, b)\times U\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, 0) and Un‐WF,P : (a, b)\times U\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, 0) defined by

Un‐ped,p(s, u)=(ped_{\mathrm{r},P(u)}(s), u) and Un‐WF,p(s, u)=(WF_{\mathrm{r},P(u)}(s), u)

respectively. The map Un‐ped,P (resp., Un‐WF,p ) is called the pedal unfolding of

ped_{\mathrm{r},P(0)} (resp., the wave front unfolding of WF_{\mathrm{r},P(0)} ).

In [1], the evolution of generic wave fronts by time has been studied. We want to

construct a different method from [1] to study generic wave front evolutions. In order

to do so, we pay attention to the relation between Un‐ped,P and Un‐WF,P since we

have the following Proposition 1.1 for Un‐ped,p.

Proposition 1.1. Let \mathrm{r}:(a, b)\rightarrow \mathbb{R}^{2}(0\in(a, b)) be a non‐singular plane curve

without inflection point such that \mathrm{r}(0)=0 and let U be an open neighborhood of the

origin of \mathbb{R}^{n} . Moreover, we let P:U\rightarrow \mathbb{R}^{2} be a map such that \mathrm{r}(0)=P(0)=0 . Then,
the map‐germ Un‐ped,P : ((a, b)\times U, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) is \mathcal{A} ‐equivalent to the

normal form of ( Whitney umbrella) \times \mathbb{R}^{n-1} if and only if the origin (0,0) of (a, b)U is a

regular point of the map (\mathrm{r}, P) : (a, b)\times U\rightarrow \mathbb{R}^{n+2} defined by (\mathrm{r}, P)(s, u)=(\mathrm{r}(s), P(u)) .
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Here, two map‐germs f, g : (\mathbb{R}^{m}, 0)\rightarrow(\mathbb{R}^{m+1},0) are said to be \mathcal{A}‐equivalent if there

exist germs of diffeomorphism h_{s} : (\mathbb{R}^{m}, 0)\rightarrow(\mathbb{R}^{m}, 0) and h_{t} : (\mathbb{R}^{m+1},0)\rightarrow(\mathbb{R}^{m+1},0)
such that f=h_{t}\circ g\circ h_{s} ,

and the normal form of ( Whitney umbrella) \times \mathbb{R}^{n-1} is the

map‐germ defined by (s, u)\mapsto(su_{1}, s^{2}, u) where u=(u_{1}, \ldots, u_{n}) . Proposition 1.1 in

the case n=1 is a special case of Theorem 1 in [17], Proof of Proposition 1.1 is given
in §2.

Figure 1. Pedal Evolution.

Figure 2. Wave Front Evolution.

By Figures 1 and 2, it is easily conjectured that the pedal evolution Un‐ped,P is

\mathcal{A}‐equivalent to the normal form of (Whitney umbrella) \times \mathbb{R}^{n-1} if and only if the wave

front evolution Un‐WF,P is \mathrm{a}(\mathrm{s}\mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{t}\mathrm{a}\mathrm{i}1)\times \mathbb{R}^{n-1} ,
where \mathrm{a} ( swallowtail) \times \mathbb{R}^{n-1} is a

map‐germ \mathcal{A}‐equivalent to (s, u)\mapsto(3s^{4}+s^{2}u_{1}, -4s^{3}-2su_{1}, u)(u=(u_{1}, \ldots, u_{n} and

in the case n=1 this conjecture has been actually proved in [18] (such a correspon‐

dence is called the calculus correspondence. For more details on the known calculus

correspondence, see §2).
In this paper, we first extend the known results on the calculus correspondence to

evolutions with multi‐parameters, and then give applications of calculus correspondence.

Moreover, we discuss the possibility of generalization of calculus correspondence to

degenerate pedal evolutions and degenerate wave front evolutions.

In Section 2, known calculus correspondences are extended to evolutions with multi‐
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parameters. The proof of Proposition 1.1 is also given in Section 2. In Section 3, appli‐
cations of calculus correspondence are given. Finally, the possibility of generalization
of calculus correspondence is discussed in Section 4.

§2. Extension of known calculus correspondences to evolutions with

multi‐parameters

Denition 2.1. A map‐germ  $\varphi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) having the

following form is said to be of pedal unfolding type.

 $\varphi$(x, y)=(n(x, y)p(x, y),p(x, y), y)

where n : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow (, 0) is a function‐germ satisfying \displaystyle \frac{\partial n}{\partial x}(0,0)\neq 0 and

y=(y_{1}, \ldots, y_{n}) .

In the case n=1
,

Definition 2.1 has been given in [18].

Proposition 2.2. Let \mathrm{r}:(a, b)\rightarrow \mathbb{R}^{2}(0\in(a, b)) be a non‐singular plane curve

without inflection point such that \mathrm{r}(0)=0 and let P : U\rightarrow \mathbb{R}^{2} be a map such that

P(0)=\mathrm{r}(0)=0 ,
where U is an open neighborhood of the origin of \mathbb{R}^{n} . Then, Un‐ped,P

is \mathcal{A} ‐equivalent to a map‐germ of pedal unfolding type.

Proof of Proposition 2.2. Since \mathrm{r} : (a, b)\rightarrow \mathbb{R}^{2}(0\in(a, b)) is non‐singular, we

may assume that \mathrm{r}(x)=(-x, r_{2}(x)) , r_{2}(0)=\displaystyle \frac{dr_{2}}{dx}(0)=0 near 0 . Put n(x)=\displaystyle \frac{dr_{2}}{dx}(x) .

Then, (n(x), 1) is a normal vector to \mathrm{r} at \mathrm{r}(x) . Since \mathrm{r} is without inflection point, we

have that \displaystyle \frac{dn}{dx}(x)\neq 0 . Then, since \mathrm{r}(0)=P(0)=0, ped_{\mathrm{r},P(0)}(x)\in T_{P(0)}\mathbb{R}^{2} has the form:

pedr,P(0)(x)=p(x)(n(x), 1)=(n(x)p(x),p(x)) .

Therefore, we have:

Un‐ped,p(x, y)=(ped_{\mathrm{r},P(y)}(x), y)
=(p(x, y)(n(x), 1)+P(y), y)

=((n(x)p(x, y),p(x, y))+P(y), y)

\sim \mathcal{A}((n(x)p(x, y),p(x, y), y) .

\square 

Proposition 2.3. Let \mathrm{r}:(a, b)\rightarrow \mathbb{R}^{2}(0\in(a, b)) be a non‐singular plane curve

without inflection point such that \mathrm{r}(0)=0 and let P : U\rightarrow \mathbb{R}^{2} be a map such that

P(0)=\mathrm{r}(0)=0 ,
where U is an open neighborhood of the origin of \mathbb{R}^{n} . Then, Un‐ped,P

is \mathcal{A} ‐equivalent to a map‐germ of the form: (x, y)\mapsto(x(x^{2}+q(y)), x^{2}+q(y), y) .
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Proof of Proposition 2.3. As same as the proof of Proposition 2.2, we may

assume that \mathrm{r}(x)=(-x, r_{2}(x)) , r_{2}(0)=\displaystyle \frac{dr_{2}}{dx}(0)=0 near 0 . By definition of pedal

curve, the following holds:

n(x)(n(x)p(x)+x)+(p(x)-r_{2}(x))=0.

Here, n(x) and p(x) are functions defined in the proof of Proposition 2.2. Thus, we have

the following locally:

p(x)=\displaystyle \frac{r_{2}(x)-xn(x)}{1+n^{2}(x)}.
Since \mathrm{r} is without inflection point and n(x)=\displaystyle \frac{dr_{2}}{dx}(x) ,

there exists a function  $\xi$(x) such

that r_{2}(x)-xn(x)=x^{2} $\xi$(x) and  $\xi$(0)\neq 0 by Hadamard�s lemma (for Hadamard�s

lemma, see [4]). Thus, p : (, 0)\rightarrow(\mathbb{R}, 0) is a Morse function‐germ. By the Morse

lemma with parameters (see [4]), we have that

Un‐ped, p(x, y)=(ped_{\mathrm{r},P(y)}(x), y)

is \mathcal{A}‐equivalent to a map‐germ of the form:

(2.1) (x, y)\mapsto(n(x, y)(x^{2}+q(y)), x^{2}+q(y), y) .

Since \displaystyle \frac{\partial n}{\partial x}(0)\neq 0 , by using the Malgrange preparation theorem (for the Malgrange

preparation theorem, for instance see [3]), (x, y)\mapsto(n(x, y)(x^{2}+q(y)), x^{2}+q(y), y) is

\mathcal{A}‐equivalent to

(2.2) (x, y)\mapsto(x(x^{2}+q(y)), x^{2}+q(y), y)

\square 

Note that Proposition 2.3 may be proved without using the Malgrange preparation

theorem. Alternatively, we may adopt a simple method used to prove the criterion

of cuspidal crosscap given in [7]. Namely, by dividing n(x, y) into the sum of an odd

function and an even function with respect to the variable x
,
it is possible to show that

the map‐germ (2.1) is \mathcal{A}‐equivalent to the map‐germ (2.2).

Denition 2.4 ([15]). Let k be a non‐negative integer. Then, a map‐germ f :

(\mathbb{R}^{2},0)\rightarrow(\mathbb{R}^{3},0) is said to be of S_{k} type if f is \mathcal{A}‐equivalent to the map‐germ (x, y)\mapsto
(x(x^{2}\pm y^{k+1}), x^{2}\pm y^{k+1}, y) .

By Proposition 2.3, singularities of one‐parameter pedal unfoldings Un‐ped,P must

be of S_{k} type ( k is a certain non‐zero integer) provided that \mathrm{r} is non‐degenerate,

\mathrm{r}(0)=P(0) and q(y) is not flat. This fact has been already proved in [17] by us‐

ing a characterization of spherical pedal given in [16]. Thus, the proof given here is an
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alternative proof. Even if we moved the given non‐degenerate curve \mathrm{r} depending on the

parameter y ,
the proof of Proposition 2.3 shows that new singularities never occur for

the map‐germ of the form (x, y)\mapsto(ped_{\mathrm{r}_{y},P(y)}(x), y) provided that \mathrm{r}_{0} is non‐degenerate,

\mathrm{r}_{0}(0)=P(0) and q(y) is not flat.

Proof of Proposition 1.1.1 By Proposition 2.3, Un‐ped,P is \mathcal{A}‐equivalent to

a map‐germ  $\psi$(x, y)=(x(x^{2}+q(y)), x^{2}+q(y), y) under the assumption of Proposition
1.1. It is easily seen that the origin (0,0) of (a, b)U is a regular point of the map (\mathrm{r}, P) :

(a, b)\times U\rightarrow \mathbb{R}^{n+2} if and only if there exists an integer i(1\leq i\leq n) such that \displaystyle \frac{\partial q}{\partial y_{i}}(0)\neq 0
for q(y) . Thus, it is sufficient to show that  $\psi$(x, y)=(x(x^{2}+q(y)), x^{2}+q(y), y) is a

(Whitney umbrella) \times \mathbb{R}^{n-1} if and only if there exists an integer i(1\leq i\leq n) such that

\displaystyle \frac{\partial q}{\partial y_{i}}(0)\neq 0 for q(y) .

Suppose that  $\psi$ is \mathrm{a} (Whitney umbrella) \times \mathbb{R}^{n-1} . Let S_{1}\subset J^{2}(\mathbb{R}^{n+1}, \mathbb{R}^{n+2}) be the

set of corank one 2‐jets. Note that j^{2}f is transverse to S_{1} where f denotes the normal

form of (Whitney umbrella) \times \mathbb{R}^{n-1} . Since  $\psi$ is \mathcal{A}‐equivalent to f,  j^{2} $\psi$ , too, is transverse

to  S_{1} . Since S_{1}( $\psi$)=(j^{2} $\psi$)^{-1}(S_{1})=\{3x^{2}+q(y)=0, x=0\},  j^{2} $\psi$ is transverse to  S_{1} if

and only if

rank (d(3x^{2}+q(y)), dx)= rank \left(\begin{array}{ll}
6x & 1\\
dq(y)0 & 
\end{array}\right)=2.
Therefore, there exists an integer i(1\leq i\leq n) such that \displaystyle \frac{\partial q}{\partial y_{i}}(0)\neq 0.

Conversely, suppose that there exists an integer i(1\leq i\leq n) such that \displaystyle \frac{\partial q}{\partial y_{i}}(0)\neq 0.
Set

h_{s}(x, y_{1}, \ldots, y_{n})=(x, y_{1}, \ldots, y_{i-1}, x^{2}+q(y), y_{i+1}, \ldots, y_{n}) ,

H_{t}(X_{1}, X_{2}, Y_{1}, \ldots, Y_{n})=(X_{1}, Y_{i}, Y_{1}, \ldots, Y_{i-1}, -X_{2}+Y_{i}, Y_{i+1}, \ldots, Yn)) .

Then, h_{s} (resp., H_{t} ) is a germ of diffeomorphism of (\mathbb{R}\times \mathbb{R}^{n}, (0,0)) (resp., (\mathbb{R}^{2}\times
\mathbb{R}^{n}, (0,0 . Set also f_{i}(x, y_{1}, . . . , y_{n})= (xy, x^{2}, y_{1}, . . . , y_{n}) . Then, we have:

H_{t}\circ f_{i}\circ h_{s}(x, y_{1}, \ldots, y_{n})=(x(x^{2}+q(y)), x^{2}+q(y), y_{1}, \ldots, y_{i-1}, q(y), y_{i+1}, \ldots, y_{n})

Since \displaystyle \frac{\partial q}{\partial y_{i}}(0)\neq 0 ,
the map‐germ (yl, . . .

, y_{n} ) \mapsto (yl, . . .

,  y_{i-1}, q(y), y_{i+1}, \ldots, y_{n} ) is a

germ of diffeomorphism. Thus, H_{t}\circ f_{i}\circ h_{s} is \mathcal{A}‐equivalent to  $\psi$ . Since the map‐germ  f_{i}
is clearly \mathrm{a} (Whitney umbrella) \times \mathbb{R}^{n-1},  $\psi$ must be \mathrm{a} (Whitney umbrella) \times \mathbb{R}^{n-1}. \square 

Denition 2.5. For a map‐germ of pedal unfolding type

 $\varphi$(x, y)=(n(x, y)p(x, y),p(x, y), y) ,

lThe author�s original proof of Proposition 1.1 used Mather�s innitesimal characterization of stable

map‐germs ([13])) and Mather�s classication theorem ([14]). The proof given here, which is self‐

contained, was suggested by the referee.
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set

\displaystyle \mathcal{I}( $\varphi$)(x, y)=(\int_{0}^{x}n(x, y)p(x, y)dx, \int_{0}^{x}p(x, y)dx, y)
The map‐germ \mathcal{I}( $\varphi$) : (\mathbb{R}\times \mathbb{R}^{n}, 0)\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, 0) is called the integration of  $\varphi$.

In the case n=1
,

Definition 2.5 has been given in [18].

Denition 2.6. A Legendrian map‐germ  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0))
is said to be normalized if  $\Phi$ satisfies the following three conditions:

1. The map‐germ  $\Phi$ has the following form where  y=(y_{1}, \ldots, y_{n}) .

 $\Phi$(x, y)=($\Phi$_{1}(x, y), $\Phi$_{2}(x, y), y) .

2. The condition \displaystyle \frac{\partial$\Phi$_{2}}{\partial x}(0,0)=0 holds.

3. The vector v_{ $\Phi$}(0,0) is \displaystyle \frac{\partial}{\partial X_{1}} or‐ \displaystyle \frac{\partial}{\partial X_{1}} ,
where ( X_{1}, X_{2} , Yl, . . .

, Y_{n} ) denotes the standard

coordinate system of (\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) .

In the case n=1
,

Definition 2.6 has been given in [18].

Denition 2.7. For a normalized Legendrian map‐germ

 $\Phi$(x, y)=($\Phi$_{1}(x, y), $\Phi$_{2}(x, y), y) ,

set

\displaystyle \mathcal{D}( $\Phi$)(x, y)=(\frac{\partial$\Phi$_{1}}{\partial x}(x, y), \frac{\partial$\Phi$_{2}}{\partial x}(x, y), y)
The map‐germ \mathcal{D}( $\Phi$) : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) is called the differential of

 $\Phi$.

In the case n=1
,

Definition 2.7 has been given in [18].

Proposition 2.8.

1. For a map‐germ of pedal unfolding type  $\varphi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0
\mathcal{I}( $\varphi$) is a normalized Legendrian map‐germ.

2. For a normalized Legendrian map‐germ  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0
\mathcal{D}( $\Phi$) is a map‐germ of pedal unfolding type.

In the case n=1
, Proposition 2.8 with its proof can be found in [18]. The proof given

in [18] works well even to the case n\geq 2.
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The following set is denoted by \mathcal{W}.

\{ $\varphi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) (Whitney umbrella), pedal unfolding type \}.

And set also

S= {  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) normalized (\mathrm{s}\mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{t}\mathrm{a}\mathrm{i}1)\times \mathbb{R}^{n-1} },
\mathcal{N}= {  $\varphi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) non‐singular, pedal unfolding type},
C= {  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) normalized (cusp) \times \mathbb{R}^{n} },

where a map‐germ  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) is called \mathrm{a}(cusp)\times \mathbb{R}^{n} if it is

\mathcal{A}‐equivalent to (x, y)\mapsto(2x^{3}, -3x^{2}, y)(y=(y_{1}, \ldots, y_{n})) . The following Theorems 2.9

and 2.10 are extensions of known calculus correspondences to multi‐parameters.

Theorem 2.9.

1. The map \mathcal{I} : \mathcal{W}\rightarrow S defined by \mathcal{W}\ni $\varphi$\mapsto \mathcal{I}( $\varphi$)\in S is well‐defined and bijective.

2. The map \mathcal{D} : S\rightarrow \mathcal{W} defined by S\ni $\Phi$\mapsto \mathcal{D}( $\Phi$)\in \mathcal{W} is well‐defined and bijective.

Theorem 2.10.

1. The map \mathcal{I} : \mathcal{N}\rightarrow C defined by \mathcal{N}\ni $\varphi$\mapsto \mathcal{I}( $\varphi$)\in C is well‐defined and bijective.

2. The map \mathcal{D} : C\rightarrow \mathcal{N} defined by C\ni $\Phi$\mapsto \mathcal{D}( $\Phi$)\in \mathcal{N} is well‐defined and bijective.

In the case n=1
,

the proofs of Theorems 2.9 and 2.10 can be found in [18]. For the

proof of Theorem 2.9 in the case n=1
,
two criteria (Theorems 2.13 and 2.15) have been

used in [18]. Theorem 2.15 works well even in the case n\geq 2 . Although it is uncertain

that Theorem 2.13 works well even in the case n\geq 2 ,
since \mathrm{a} (Whitney umbrella) \times \mathbb{R}^{n-1}

is stable, by Mather�s infinitesimal characterization of stable map‐germs, Theorem 2.9

in general case can be proved. On the other hand, for the proof of Theorem 2.10 in

the case n=1
,

Theorem 2.13 has not been used in [18] though Theorem 2.15 has been

used. Hence the proof of Theorem 2.10 works well even in the case n\geq 2.

Besides Theorems 2.9 and 2.10, there is one more example of calculus correspon‐

dence (Proposition 2.11). Since Proposition 2.11 is almost trivial, its proof is omitted.

Put

\mathcal{N}_{\mathrm{n}\mathrm{o}\mathrm{n}}‐zero

= {
 $\varphi$\overline{\mathcal{N}}

: (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow \mathbb{R}^{2}\times \mathbb{R}^{n}-\{(0,0)\} non‐singular, of pedal unfolding type},

= {  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) normalized non‐singular Legendrian}.
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Proposition 2.11.

1. The map \mathcal{I} : \mathcal{N}_{non-\mathrm{z}ero}\rightarrow\overline{\mathcal{N}} defined by \mathcal{N}_{non-\mathrm{z}ero}\ni $\varphi$\mapsto \mathcal{I}( $\varphi$)\in\overline{\mathcal{N}} is well‐defined
and bijective.

2. The map \mathcal{D} : \overline{\mathcal{N}}\rightarrow \mathcal{N}_{non}‐zero defined by \overline{\mathcal{N}}\ni $\Phi$\mapsto \mathcal{D}( $\Phi$)\in \mathcal{N}_{non}‐zero is well‐

defined and bijective.

Denition 2.12 ([15]). Let T : \mathbb{R}^{2}\rightarrow \mathbb{R}^{2} be the linear transformation of the

form T(s,  $\lambda$)=(-s,  $\lambda$) . Two function germs p_{1}, p_{2} : (\mathbb{R}^{2},0)\rightarrow(\mathbb{R}, 0) are said to be

\mathcal{K}^{T} ‐equivalent if there exists a germ of diffeomorphism h : (\mathbb{R}^{2},0)\rightarrow(\mathbb{R}^{2},0) having the

form h\mathrm{o}T=T\circ h and a function‐germ M : (\mathbb{R}^{2}, (0,0))\rightarrow \mathbb{R} having the form M\mathrm{o}T=M,

M(0,0)\neq 0 such that p_{1}\circ h(s,  $\lambda$)=M(s,  $\lambda$)p_{2}(s,  $\lambda$) .

Theorem 2.13 ([15]). Two map‐germs f_{i} : (\mathbb{R}^{2},0)\rightarrow(\mathbb{R}^{3},0)(i=1,2) of the

following form

f_{i}(x, y)=(n_{i}(x, y)p_{i}(x^{2}, y), x^{2}, y) ,

where \displaystyle \frac{\partial n_{i}}{\partial x}(0,0)\neq 0 and p_{i}(x, y) is not flat for each i\in\{1 ,
2 \} ,

are \mathcal{A} ‐equivalent if and

only if the function‐germs p_{i}(x^{2}, y) are \mathcal{K}^{T} ‐equivalent.

Denition 2.14. Let  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) be a Legendrian

map‐germ and let v_{ $\Phi$} be a unit normal vector field of  $\Phi$ given in the definition of

Legendrian map‐germs. The function‐germ  LJ_{ $\Phi$} : (\mathbb{R}\times \mathbb{R}^{n}, 0)\rightarrow \mathbb{R} defined by the

following is called the Legendrian‐Jacobian of  $\Phi$ where (x, y)=(x, y_{1}, \ldots, y_{n}) .

LJ_{ $\Phi$}(x, y)=\displaystyle \det(\frac{\partial $\Phi$}{\partial x}(x, y), \frac{\partial $\Phi$}{\partial y_{1}}(x, y), \ldots, \frac{\partial $\Phi$}{\partial y_{n}}(x, y), v_{ $\Phi$}(x, y))
In the case n=1

,
Definition 2.14 can be found in [18]. Note that if v_{ $\Phi$} satisfies

the conditions of unit normal vector field of  $\Phi$
,

then -v_{ $\Phi$} also satisfies them. Thus, the

sign of LJ_{ $\Phi$}(x, y) depends on the particular choice of unit normal vector field v_{ $\Phi$} . The

Legendrian Jacobian of  $\Phi$ is called also the signed area density function (for instance,
see [20]). Although it seems reasonable to call  LJ_{ $\Phi$} the area density function from the

viewpoint of investigating the singular surface  $\Phi$(U)(U is a sufficiently small neighbor‐
hood of the origin of \mathbb{R}^{2} ), it seems reasonable to call it the Legendrian Jacobian from

the viewpoint of investigating the singular map‐germ  $\Phi$.

Theorem 2.15 ([19]). Let  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) be a normal‐

ized Legendrian map‐germ,

1. The given  $\Phi$ is  a( swallowtail) \times \mathbb{R}^{n-1} if and only if the following two hold where

y=(y_{1}, \ldots y_{n}) :

Q(LJ_{ $\Phi$}, \displaystyle \frac{\partial LJ_{ $\Phi$}}{\partial x})\cong Q(x, y_{1}) , \frac{\partial^{2}LJ_{ $\Phi$}}{\partial x^{2}}(0,0)\neq 0.
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2. The given  $\Phi$ is  a(cusp)\times \mathbb{R}^{n} if and only if the following two hold:

Q(LJ_{ $\Phi$})\displaystyle \cong Q(x) , \frac{\partial LJ_{ $\Phi$}}{\partial x}(0,0)\neq 0.
Here, Q(f_{1}, \ldots, f_{\ell}) stands for Mather�s local algebra for function‐germs f_{1} ,

. . .

, f_{\ell}.
For Mather�s local algebra, see [14, 21]. Theorems 2.13 (resp., Theorem 2.15) is used as

a criterion of Whitney umbrella (resp., (\mathrm{s}\mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{t}\mathrm{a}\mathrm{i}1)\times \mathbb{R}^{n-1} ). Theorems 2.13 and 2.15

are connected by the following simple lemma.

Lemma 2.16. For a normalized Legendrian map‐germ  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow
(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0

LJ_{ $\Phi$}(x, y)=(-1)^{n+1^{\frac{\partial$\Phi$_{2}}{\partial x}(x,y)}}\overline{v_{1}(x,y)}
.

Here v_{ $\Phi$}(x, y)=v_{1}(x, y)\displaystyle \frac{\partial}{\partial X_{1}}+v_{2}(x, y)\frac{\partial}{\partial X_{2}}+\cdots+v_{n+2}(x, y)\frac{\partial}{\partial X_{n+2}}.
In the case n=1

,
Lemma 2.16 with its proof can be found in [18]. The proof given

in [18] works well in general case.

§3. Applications of calculus correspondence

In order to show that the calculus correspondence is significant and useful, we give
two applications of Theorem 2.9.

Proposition 3.1. Let  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) be given by

 $\Phi$(x, y)=(ax^{4}+x^{2}\displaystyle \sum_{i=1}^{n}b_{i}y_{i}+$\Phi$_{1}(x, y), cx^{3}+x\sum_{i=1}^{n}d_{i}y_{i}+$\Phi$_{2}(x, y), y)
where y= (yl, . . .

, y_{n} ) \in \mathbb{R}^{n}, \{a, b_{i}, c, d_{i}\}\subset \mathbb{R} and $\Phi$_{i} : (\mathbb{R}^{2},0)\rightarrow(\mathbb{R}, 0) is a C^{\infty}

function‐germ such that j^{5-i}$\Phi$_{i}(0,0)=0 (i=1,2) . Then, the following two are

equivalent.

1. The given  $\Phi$ is  a( swallowtail) \times \mathbb{R}^{n-1}
,

that is, it is \mathcal{A} ‐equivalent to the normal form

of ( swallowtail) \times \mathbb{R}^{n-1} which is the following

(x, y)\mapsto(3x^{4}+x^{2}y_{1}, -4x^{3}-2xy_{1}, y)

2. The following three hold:

(a) There exists an i(1\leq i\leq n) such that b_{i}c\neq 0 is satisfied.

(b) The equality 2ad_{i}=3b_{i}c holds for any i(1\leq i\leq n)
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(c) The function‐germ \displaystyle \frac{4ax^{3}+2x$\Sigma$_{i=1}^{n}b_{i}y_{i}+\frac{\partial$\Phi$_{1}}{\partial x}(x,y)}{3cx^{2}+$\Sigma$_{i=1}^{n}d_{i}y_{i}+\frac{\partial$\Phi$_{2}}{\partial x}(x,y)} is well defined and of class C^{\infty}.

Proof of Proposition 3.1. Suppose that  $\Phi$ is \mathrm{a}(\mathrm{s}\mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{t}\mathrm{a}\mathrm{i}1)\times \mathbb{R}^{n-1} . Then, since

 $\Phi$ is Legendrian, there exists a unit normal vector field

 v_{ $\Phi$}(x, y)=(v_{1}(x, y), v_{2}(x, y), \ldots, v_{n+2}(x, y))

such that the following two hold:

(3.1)

v_{1}(x, y)(4ax^{3}+2x\displaystyle \sum_{i=1}^{n}b_{i}y_{i}+\frac{\partial$\Phi$_{1}}{\partial x}(x, y))+v_{2}(x, y)(3cx^{2}+\sum_{i=1}^{n}d_{i}y_{i}+\frac{\partial$\Phi$_{2}}{\partial x}(x, y))=0,
(3.2)

v_{1}(x, y)(b_{i}x^{2}+\displaystyle \frac{\partial$\Phi$_{1}}{\partial y}(x, y))+v_{2}(x, y)(d_{i}x+\frac{\partial$\Phi$_{2}}{\partial y}(x, y))+v_{2+i}(x, y)=0 (1\leq i\leq n) .

Since  $\Phi$ is \mathrm{a}(\mathrm{s}\mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{t}\mathrm{a}\mathrm{i}1)\times \mathbb{R}^{n-1}, v_{2}(0,0) (resp., v_{2+i}(0,0) ) must be zero by the equality

(3.1) (resp., (3.2)). Since v_{ $\Phi$}(0,0) is a unit vector, v_{1}(0,0) must be \pm 1 . It is clear that

the given  $\Phi$ satisfies the first and the second conditions of Definition 2.6. Thus,  $\Phi$ is a

normalized (\mathrm{s}\mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{t}\mathrm{a}\mathrm{i}1)\times \mathbb{R}^{n-1} . By Theorem 2.9,

\displaystyle \mathcal{D}( $\Phi$)(x, y)=(4ax^{3}+2x\sum_{i=1}^{n}b_{i}y_{i}+\frac{\partial$\Phi$_{1}}{\partial x}(x, y), 3cx^{2}+\displaystyle \sum_{i=1}^{n}d_{i}y_{i}+\frac{\partial$\Phi$_{2}}{\partial x}(x, y), y)
is \mathrm{a} (Whitney umbrella) \times \mathbb{R}^{n-1} of pedal unfolding type. Since \mathcal{D}( $\Phi$) is \mathrm{a} (Whitney
umbrella) \times \mathbb{R}^{n-1}

,
there must exist an i(1\leq i\leq n) such that b_{i}c\neq 0 . Since \mathcal{D}( $\Phi$)

is of pedal unfolding type, we have that 2ad_{i}=3b_{i}c for any i(1\leq i\leq n) and the

function‐germ \displaystyle \frac{4ax^{3}+2x$\Sigma$_{i=1}^{n}b_{i}y_{i}+\frac{\partial$\Phi$_{1}}{\partial x}(x,y)}{3cx^{2}+$\Sigma$_{i=1}^{n}d_{i}y_{i}+\frac{\partial$\Phi$_{2}}{\partial x}(x,y)} is well‐defined and of class C^{\infty}.

Conversely, suppose that there exists an i(1\leq i\leq n) such that b_{i}c\neq 0 is sat‐

isfied, the equality 2ad_{i}=3b_{i}c holds for any i(1\leq i\leq n) and the function‐germ

\displaystyle \frac{4ax^{3}+2x$\Sigma$_{i=1}^{n}b_{i}y_{i}+\frac{\partial$\Phi$_{1}}{\partial x}(x,y)}{3cx^{2}+$\Sigma$_{i=1}^{n}d_{i}y_{i}+\frac{\partial$\Phi$_{2}}{\partial x}(x,y)} is well‐defined and of class C^{\infty} . Then, \mathcal{D}( $\Phi$) is \mathrm{a} (Whitney

umbrella) \times \mathbb{R}^{n-1} of pedal unfolding. Therefore, by Theorem 2.9,  $\Phi$=\mathcal{I}(\mathcal{D}( $\Phi$)) is a

normalized (\mathrm{s}\mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{t}\mathrm{a}\mathrm{i}1)\times \mathbb{R}^{n-1}. \square 

As a special case of Proposition 3.1, we have the following:

Corollary 3.2. Let  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) be given by

 $\Phi$(x, y)=(ax^{4}+x^{2}\displaystyle \sum_{i=1}^{n}b_{i}y_{i}, cx^{3}+x\sum_{i=1}^{n}d_{i}y_{i}, y)
where y=(y_{1}, \ldots, y_{n})\in \mathbb{R}^{n} and \{a, b_{i}, c, d_{i}\}\subset \mathbb{R} . Then, the following two are equiva‐
lent.
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1. The given  $\Phi$ is  a( swallowtail) \times \mathbb{R}^{n-1}.

2. The following two hold:

(a) There exists an i(1\leq i\leq n) such that b_{i}c\neq 0 is satisfied.

(b) The equality 2ad_{i}=3b_{i}c holds for any i(1\leq i\leq n) .

It is interesting to compare Proposition 3.1 or Corollary 3.2 with the following fact

which has been used in the proof of Proposition 3.1.

Fact 3.3. Let  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) be given by

 $\Phi$(x, y)=(ax^{4}+x^{2}\displaystyle \sum_{i=1}^{n}b_{i}y_{i}+$\Phi$_{1}(x, y), cx^{3}+x\sum_{i=1}^{n}d_{i}y_{i}+$\Phi$_{2}(x, y), y)
where y= (yl, . . .

, y_{n} ) \in \mathbb{R}^{n}, \{a, b_{i}, c, d_{i}\}\subset \mathbb{R} and $\Phi$_{i} : (\mathbb{R}^{2},0)\rightarrow(\mathbb{R}, 0) is a C^{\infty}

function‐germ such that j^{5-i}$\Phi$_{i}(0,0)=0 (i=1,2) . Then, the following two are

equivalent.

1. The map‐germ \mathcal{D}( $\Phi$) is a ( Whitney umbrella) \times \mathbb{R}^{n-1}
,

that is, it is \mathcal{A} ‐equivalent to

the normal form of ( Whitney umbrella) \times \mathbb{R}^{n-1} which is the following

(x, y)\mapsto(xy_{1}, x^{2}, y)

2. There exists an i(1\leq i\leq n) such that b_{i}c\neq 0 is satisfied.

As another application of Theorem 2.9, we give an alternative proof of Arnol�d�s

observation given in [2] (for Arnol�d�s observation, see also [8]), Namely, we show the

following:

Observation 3.4. Let  $\gamma$ : (, 0)\rightarrow(\mathbb{R}^{3},0) be the space curve given by  $\gamma$(x)=
(x^{4}, x^{3}, x^{2}) . Then, the tangent developable of  $\gamma$ , which is the following, is a swallowtail.

 $\Phi$(x, y)=(x^{4}, x^{3}, x^{2})+y(4x^{2},3x, 2)

Proof of Observation 3.4. Put \overline{y}=x^{2}+2y . Then,  $\Phi$ is \mathcal{R}‐equivalent to \overline{ $\Phi$}(x, y $\gamma$=

(-x^{4}+2x^{2}\displaystyle \overline{y}, -\frac{1}{2}x^{3}+\frac{3}{2}x\overline{y},\overline{y}) . It is easily seen that \mathcal{D}(\overline{ $\Phi$}) is a Whitney umbrella of pedal

unfolding type. Thus, by Theorem 2.9, \overline{ $\Phi$}=\mathcal{I}(\mathcal{D}(\overline{ $\Phi$})) is a normalized swallowtail. \square 

§4. Questions around calculus correspondences

The following question is a multi‐parameter version of the question posed in [18].
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Question 4.1.

1. Let $\varphi$_{1}, $\varphi$_{2} : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) be two map‐germs of pedal unfolding

type. Suppose that $\varphi$_{1} is \mathcal{A} ‐equivalent to $\varphi$_{2}. Is \mathcal{I}($\varphi$_{1}) necessarily \mathcal{A} ‐equivalent to

\mathcal{I}($\varphi$_{2})/?

2. Let $\Phi$_{1}, $\Phi$_{2} : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) be two normalized Legendrian map‐

germs. Suppose that $\Phi$_{1} is \mathcal{A} ‐equivalent to $\Phi$_{2} . Is \mathcal{D}($\Phi$_{1}) necessarily \mathcal{A} ‐equivalent
to \mathcal{D}($\Phi$_{2})/?

Question 4.1 seems to be difficult to solve completely in general. In the following
two subsections, we discuss special cases of Question 4.1.

§4.1. S_{k} type singularities and Legendrian S_{k} type singularities

Recall that a map‐germ f : (\mathbb{R}^{2},0)\rightarrow(\mathbb{R}^{3},0) is of S_{k} type if f is \mathcal{A}‐equivalent
to the map‐germ f_{k,\pm}(x, y)=(x(x^{2}\pm y^{k+1}), x^{2}\pm y^{k+1}, y) (Definition 2.4). Since the

map‐germ f_{k,\pm} is of pedal unfolding type, the following map‐germ (which is \mathcal{I}(f_{k,\pm}) ) is

normalized Legendrian map‐germ by Proposition 2.8.

F_{k,\pm}(x, y)=(\displaystyle \frac{1}{4}x^{4}\pm\frac{1}{2}x^{2}y^{k+1}, \frac{1}{3}x^{3}\pm xy^{k+1}, y)
The Legendrian map‐germ \mathcal{I}(f) is called the normal form of Legendrian S_{k} type and

any Legendrian map‐germ \mathcal{A}‐equivalent to \mathcal{I}(f) is said to be of Legendrian S_{k} type.

Question 4.2.

1. Let  $\varphi$ : (\mathbb{R}\times \mathbb{R}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}, (0,0)) be a map‐germ of pedal unfolding type.

Suppose that  $\varphi$ is of  S_{k} type. Is \mathcal{I}( $\varphi$) necessarily of Legendrian S_{k} type ?

2. Let  $\Phi$ : (\mathbb{R}\times \mathbb{R}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}, (0,0)) be a normalized Legendrian map‐germ.

Suppose that  $\Phi$ is of Legendrian  S_{k} type. Is \mathcal{D}( $\Phi$) necessarily of S_{k} type ?

In the case k=0 ,
both f_{0,+}, f_{0,-} are \mathcal{A}‐equivalent to the normal form of Whit‐

ney umbrella, and both F_{0,+}, F_{0,-} are \mathcal{A}‐equivalent to the normal form of swallowtail

(namely, the map‐germ (x, y)\mapsto(3x^{4}+x^{2}y, -4x^{3}-2xy, y) ). In this case, we have the

calculus correspondence by Theorem 2.9.

In the case k=1, f_{1},+ (resp., F_{1,+} ) is not \mathcal{A}‐equivalent to f_{1,-} (resp., Fl,‐).
It is known that only the map‐germs of S_{1} type are \mathcal{A}_{e} ‐codimension one singularities
of mono‐germs from the plane to the 3‐space (for \mathcal{A}_{e} ‐codimension, see [21] and for

the classification of \mathcal{A}_{e} ‐codimension one singularities (\mathbb{R}^{2},0)\rightarrow(\mathbb{R}^{3},0) ,
see [5, 6, 15

Theorem 2.13 can be applied as a criterion of S_{1} singularities. On the other hand, criteria

of Legendrian S_{1} singularities have been obtained by Izumiya‐Saji‐Takahashi ([11]).
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Thus, by replacing Saji‐Umehara‐Yamada criterion (Theorem 2.15) with Izumiya‐Saji‐
Takahashi criteria given in [11], the proof of Theorem 2.9 is expected to work well

to show calculus correspondence between S_{1} singularities of pedal unfolding type and

normalized Legendrian S_{1} singularities.

Next, we discuss the case k\geq 2 . Even in this case, Theorem 2.13 can be applied
as a criterion of S_{k} singularities. However, there seems to be no criteria for Legendrian
S_{k} singularities in the case k\geq 2 . Hence, it seems that we cannot expect an analogy of

the proof of Theorem 2.9.

§4.2. Legendrian A_{k} type singularities

Denition 4.3 ([19]). Let k, n be non‐negative integers such that k\leq n+1.

1. The map‐germ G_{k} : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) given by

G_{k}(x, y)=((k+1)x^{k+2}+\displaystyle \sum_{j=1}^{k-1}jx^{j+1}y_{j}, -(k+2)x^{k+1}-\sum_{j=1}^{k-1}(j+1)x^{j}y_{j}, y)
is called the normal form of Legendrian A_{k+1} type, where (x, y)= (x , yl, . . .

, y_{n} ).

2. A map‐germ  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) is said to be of Legendrian

A_{k+1} type if  $\Phi$ is \mathcal{A}‐equivalent to G_{k}.

Note that the image of G_{k} is the envelope of the following one parameter family of

hyperplanes. By this reason, G_{k} is called the normal form of A_{k+1} type.

\{(X_{1}, X_{2}, Y\mathrm{l}, . . . , Y_{n})|x^{k+2}+Y_{k-1}x^{k}+\cdots+Y_{1}x^{2}+X_{2}x+X_{1}=0.\}
For the normal form of Legendrian A_{k+1} type, we have

\mathcal{D}(G_{k})(x, y)=(n(x, y)p(x, y),p(x, y), y) ,

where n(x, y)=-x and p(x, y)=-(k+2)(k+1)x^{k}-\displaystyle \sum_{j=1}^{k-1}j(j+1)x^{j-1}y_{j} . Since,

p(0,0)=0 and \displaystyle \frac{\partial n}{\partial x}(0,0)\neq 0, \mathcal{D}(G) is of pedal unfolding type. Therefore, G_{k}=

\mathcal{I}((G)) is normalized Legendrian by Proposition 2.8.

Question 4.4.

1. Let  $\varphi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) be a map‐germ of pedal unfolding type.

Suppose that  $\varphi$ is \mathcal{A} ‐equivalent to \mathcal{D}(G_{k}) . Is \mathcal{I}( $\varphi$) necessarily of Legendrian A_{k+1}
type

??

2. Let  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0)) be a normalized Legendrian map‐germ.

Suppose that  $\Phi$ is of Legendrian  A_{k+1} type. Is \mathcal{D}( $\Phi$) necessarily \mathcal{A} ‐equivalent to

\mathcal{D}(G_{k})/?



Wave Front Evolution and Pedal Evolution 29

Question 4.4 was asked by G. Ishikawa ([9]), and independently by T. Gaffney during
AMS Spring Western Section Meeting at the University of Hawaii (2012). It is easily
seen that G_{1} is non‐singular, G_{2} is the normal form of (cusp) \times \mathbb{R}^{n} and G_{3} is the normal

form of (\mathrm{s}\mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{t}\mathrm{a}\mathrm{i}1)\times \mathbb{R}^{n-1} . Thus, in the case k=0 , 1, 2, Proposition 2.11, Theorem

2.10 and Theorem 2.9 are the affirmative answers to Question 4.4 respectively.

Therefore, Question 4.4 asks essentially the case k\geq 3 . Even in this case, there

is a criterion of Legendrian A_{k+1} singularities (Theorem 4.5). However, there seems to

be no criteria for the \mathcal{A}‐equivalence class of \mathcal{D}(G_{k})(k\geq 3) . Hence, it seems that we

cannot expect an analogy of the proof of Theorem 2.9.

Theorem 4.5 ([19]). For a normalized Legendrian map‐germ  $\Phi$ : (\mathbb{R}\times \mathbb{R}^{n}, (0,0))
\rightarrow(\mathbb{R}^{2}\times \mathbb{R}^{n}, (0,0  $\Phi$ is of Legendrian  A_{k+1} type if and only if the following two hold:

Q (LJ_{ $\Phi$}, \displaystyle \frac{\partial LJ_{ $\Phi$}}{\partial x} ,
. . .

, \displaystyle \frac{\partial^{k-1}LJ_{ $\Phi$}}{\partial x^{k-1}})\cong Q(x, y_{1}, \ldots, y_{k-1}) , \displaystyle \frac{\partial^{k}LJ_{ $\Phi$}}{\partial x^{k}}(0,0)\neq 0.
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