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On embedding lifts over a Morse function on a circle

Dedicated to Profe ssor Shyuich Izumiya on the occasion of his 60th birthday

By

Minoru Yamamoto *

Abstract

Let f : S^{1}\rightarrow \mathbb{R} be a Morse function and  $\Pi$ : \mathbb{R}^{2}\rightarrow \mathbb{R} an orthogonal projection. In [4],
Saeki and Takase posed the following problem: �Determine those Morse functions f : S^{1}\rightarrow \mathbb{R}
which have an embedding \tilde{f}:S^{1}\rightarrow \mathbb{R}^{2} such that  $\Pi$ 0\tilde{f}=f �

. In this paper, we give a complete
answer to this problem and give an application to the existence problem of embedding lifts for

fold maps.

§1. Introduction

Throughout the paper, all manifolds and maps are differentiable of class C^{\infty} . Let

f : S^{1}\rightarrow \mathbb{R} be a function on an oriented circle. A point q\in S^{1} is a singular point
of f if the differential df_{q} at q vanishes. We denote by S(f) the set of singular points
of f . For q\in S(f) ,

we call f(q) a singular value of f . A function f : S^{1}\rightarrow \mathbb{R} is a

Morse function if for each q\in S(f) ,
there exist local coordinates x around q\in S^{1} and

y around f(q)\in \mathbb{R} such that f has the form yo f=\pm x^{2} . If the singular values of a

Morse function f are all distinct, then we call f a stable Morse function.
Let f : S^{1}\rightarrow \mathbb{R} be a Morse function and  $\Pi$ : \mathbb{R}^{2}\rightarrow \mathbb{R} the orthogonal projection

defined by  $\Pi$(y_{1}, y_{2})=y_{1} . Saeki and Takase [4] pose the following problem: Determine

those Morse functions f : S^{1}\rightarrow \mathbb{R} which have an embedding \tilde{f} : S^{1}\rightarrow \mathbb{R}^{2} such that

 $\Pi$\circ\tilde{f}=f . We call such a map \tilde{f}:S^{1}\rightarrow \mathbb{R}^{2} an embedding lift over f . In this paper, we

give a complete answer to this problem.
This paper is organized as follows. In Section 2, we give a necessary and sufficient

condition for the existence of an embedding lift \tilde{f}:S^{1}\rightarrow \mathbb{R}^{2} over a given Morse function
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f : S^{1}\rightarrow \mathbb{R} . In Section 3, as an application, for each interger n>1 ,
we give an example

of a stable fold map f : S^{n}\rightarrow \mathbb{R}^{n} of the n‐dimensional sphere which has an immersion

lift f' : S^{n}\rightarrow \mathbb{R}^{n+1} ,
but which does not have an embedding lift into \mathbb{R}^{n+1}.

The author would like to express his sincere gratitude to Prof. Osamu Saeki and

Prof. Masamichi Takase for invaluable comments and encouragement. Especially, Sec‐

tion 3 is due to their advice. The author expresses his gratitude to the referee for

pointing out many mistakes in earlier versions of the paper. The author also thanks

Prof. Kentaro Saji who is the editor of this volume.

§2. Embedding lift over a Morse function

In this section, we study the existence of an embedding lift \tilde{f} : S^{1}\rightarrow \mathbb{R}^{2} over a

given Morse function f : S^{1}\rightarrow \mathbb{R}.

Denition 2.1. Let f : S^{1}\rightarrow \mathbb{R} be a Morse function on an oriented circle.

Let \{p_{1}, p_{2}, . . :; p_{k}\}, k\geq 1 (resp. \{q_{1} , q2, . . .

; q_{l}\}, l\geq 1 ) be the set of those points in

S^{1} where f takes its minimum (resp. maximum). If, by using the orientation of S^{1},
p_{1}, p_{2} ,

. :.

; p_{k}, q_{1}, q_{2} ,
. .

:; q_{l} are arranged as p_{1}<p_{2}<\cdots<p_{k}<q_{1}<q_{2}<\cdots<q_{l} in a

cyclic sense on S^{1} (this means that if we start p_{1} and go along S^{1} in the direction given

by the orientation, we encounter p_{2}, p_{3} ,
. .

:, p_{k}, q_{1}, q_{2} ,
. :.

; q_{l} in this order and then p_{1} ),
we say that \{p_{1}, p_{2}, . . . ; p_{k}\} and \{q_{1}, q_{2}, . . :; q_{l}\} are separated.

Then, we have the following theorem which answers the problem posed in [4].

Theorem 2.2. Let f:S^{1}\rightarrow \mathbb{R} be a Morse function on an oriented circle. Let

\{p_{1}, p_{2}, . . :, p_{k}\}, k\geq 1 ( resp. \{q_{1}, q_{2}, . .

:; q_{l}\}, l\geq 1) be the set of those points in S^{1} where

f takes its minimum (resp. maximum). Then there exists an embedding liftt \tilde{f}:S^{1}\rightarrow \mathbb{R}^{2}
over f if and only if \{p_{1}, p_{2}, . . . ; p_{k}\} and \{q_{1}, q_{2}, . . :; q_{l}\} are separated.

Proof. Suppose that \{p_{1}, p_{2}, . . . , p_{k}\} and \{q_{1}, q_{2}, . . . , q_{l}\} are separated. We may

assume that by using the orientation of S^{1}, p_{1}, p_{2} ,
.

::, p_{k}, q_{1}, q_{2} ,
. . .

; q_{l} are arranged as

p_{1}<p_{2}<\cdots<p_{k}<q_{1}<q_{2}<\cdots<q_{l} in a cyclic sense on S^{1} . We cut S^{1} at p_{1}

and q_{1} . Let A_{1} (resp. A_{2} ) be the oriented arc in S^{1} whose initial point is p_{1} (resp. q)
and whose terminal point is q_{1} (resp. p_{1} ). First, we can construct an embedding lift

\tilde{f}_{1} : A_{1}\rightarrow \mathbb{R}^{2} over f|A_{1} which satisfies the following properties (see Figure 1(1) ).

1. \tilde{f}_{1}(A_{1})\subset \mathbb{R}\times[0, \infty) .

2. \tilde{f}_{1}(p_{1})=(f(p_{1}), 0)\in \mathbb{R}^{2}, \tilde{f}_{1}(q_{1})=(f(q_{1}), 0)\in \mathbb{R}^{2}.

3. If we put the critical points of f|A_{1} as p_{1}=$\alpha$_{0}<$\alpha$_{1}<\cdots<$\alpha$_{a-1}<$\alpha$_{a}=q_{1} ,
then

\tilde{f}_{1}($\alpha$_{i})=(f(); i) \in \mathbb{R}^{2} holds (i=0,1, . . :, a-1) .
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Similarly, we can construct an embedding lift \tilde{f}_{2} : A_{2}\rightarrow \mathbb{R}^{2} over f|A_{2} which satisfies

the following properties (see Figure 1(2) ).

1. \tilde{f}_{2}(A_{2})\subset \mathbb{R}\times(-\infty, 0].

2. \tilde{f}_{2}(p_{1})=(f(p_{1}), 0)\in \mathbb{R}^{2}, \tilde{f}_{2}(q_{1})=(f(q_{1}), 0)\in \mathbb{R}^{2}.

3. If we put the critical points of f|A_{2} as q_{1}=$\beta$_{0}<$\beta$_{1}<. . . <$\beta$_{b-1}<$\beta$_{b}=p_{1} ,
then

\tilde{f}_{2}($\beta$_{j})=(f($\beta$_{j}), -j)\in \mathbb{R}^{2} holds (j=0,1, . ::, b-1) .

Then, by attaching the two maps \tilde{f}_{1} and \tilde{f}_{2} ,
we have an embedding \tilde{f}=\tilde{f}_{1}\cup\tilde{f}_{2}:S^{1}=

A_{1}\cup A_{2}\rightarrow \mathbb{R}^{2} . This \tilde{f} is the desired embedding lift over f.

Figure 1. Embedding lifts (1) \tilde{f}_{1} : A_{1}\rightarrow \mathbb{R}^{2} over f|A_{1} and (2) \tilde{f}_{2} : A_{2}\rightarrow \mathbb{R}^{2} over f|A_{2}.

Conversely, suppose that there exists an embedding lift \tilde{f} : S^{1}\rightarrow \mathbb{R}^{2} over the

given Morse function f . By the Jordan curve theorem, \mathbb{R}^{2}\backslash \tilde{f}(S^{1}) is the union of two

disjoint connected open sets U_{1} and U_{2} . Let U_{1} be the bounded set. We assume that

the orientation of S^{1} satisfies the following: when we walk along \tilde{f}(S^{1}) ,
we have U_{1} to

our right. Let \{q_{1}, q_{2}, . . :; q_{l}\}, l\geq 1 ,
be the set of those points in S^{1} where f takes

its maximum and K_{i} a sufficiently small oriented arc around \tilde{f}(q) in \tilde{f}(S^{1}) such that

the initial point of K_{i} is s_{i} and the terminal point of K_{i} is t_{i} (i=1,2, . . :, l) . Since

U_{1}\subset$\Pi$^{-1}((-\infty, f(q)]) must be satisfied, by renumbering the indices we may assume

the following properties (see Figure 2).

1. f(s_{1})=f(t_{1})=f(s_{2})=f(t_{2})=\cdots=f(s_{l})=f(t_{l}) .

2. ( y_{2} ‐coordinate of s_{1} ) > ( y_{2} ‐coordinate of \tilde{f}(q_{1}) ) > ( y_{2} ‐coordinate of t) >\cdots>

( y_{2} ‐coordinate of s_{l} ) > ( y_{2} ‐coordinate of \tilde{f}(q_{l}) ) > ( y_{2} ‐coordinate of t_{l} ).

Then, we have the following lemma.
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Figure 2. Arrangement of \tilde{f}(q) and K_{i}(i=1,2, . . :; l) in \mathbb{R}^{2}.

Lemma 2.3. The maximum points of f necessarily satisfyy q_{1}<q_{2}<\cdots<q_{l} in

a cyclic sense on S^{1}.

Proof. Let i be an integer such that 1\leq i<l . Suppose that q_{j} is the first maxi‐

mum point that we encounter after leaving q_{i} in the direction given by the orientation

of S^{1} and suppose that j>i+1.
Let A be the oriented arc in S^{1} whose initial point is q_{i} and whose terminal point

is q_{j} and L a line segment in \mathbb{R}^{2} which connects \tilde{f}(q_{i}) and \tilde{f}(q_{j}) . Note that \tilde{f}(A)\cup L is

a simple closed curve, and let V be the open region bounded by \tilde{f}(A)\cup L . Then U_{1} and

V must satisfy  U_{1}\cap V=\emptyset : however,  V contains the small oriented arc K_{m}(i<m<j)
(see Figure 3). This is a contradiction. Therefore, j\leq i+1 holds.

Let us consider the case i=1 . Since j\leq 2 and q_{1}\neq q_{j} ,
we have j=2 . Then, for

i=2
,

since j\leq 3 and q_{2}\neq q_{j} ,
we have j=1 or j=3 . If j=1 ,

then we have exactly
two maximum points on S^{1} : therefore, l=2

,
but in the first paragraph of the proof,

we assumed that i=2<l . Then we have j=3 . We can repeat this argument until

i=l-1 . This completes the proof of the lemma. \square 

Now we go back to the proof of Theorem 2.2. Suppose that between two maximum

points q_{i} and q_{i+1} ,
there exists a point p in S^{1} where f takes its minimum and that

q_{i}, q_{i+1}, p satisfy q_{i}<p<q_{i+1} in a cyclic sense on S^{1} for some i=1
, 2, . . .

,
l-1.

Suppose that p is the first minimum point that we encounter after leaving q_{i} in the
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Figure 3. Arrangements of \tilde{f}(A) and L.

direction given by the orientation. Let K be a sufficiently small oriented arc around

\tilde{f}(p) in \tilde{f}(S^{1}) such that the initial point of K is s and the terminal point of K is t.

Since $\Pi$^{-1}([f(p), \infty))\supset U_{1} must be satisfied, we may assume the following properties

(see Figure 4).

1. f(s)=f(t) .

2. ( y_{2} ‐coordinate of s ) < ( y_{2} ‐coordinate of \tilde{f}(p) ) < ( y_{2} ‐coordinate of t).

Figure 4. Arrangement of \tilde{f}(p) and K in \mathbb{R}^{2}.
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Let L_{1}=\{(f(p), y_{2})\in \mathbb{R}^{2}|y_{2}\geq(y_{2}-coordinate \mathrm{o}\mathrm{f} \tilde{f}(p))\} and  L_{2}=\{(f(q_{i}), y_{2})\in
\mathbb{R}^{2}  y_{2}\geq (  y_{2} ‐coordinate of \tilde{f}(q_{i}) )} be half lines and A the oriented arc in S^{1} whose

initial point is q_{i} and whose terminal point is p . The proper arc L_{1}\cup\tilde{f}(A)\cup L_{2} separates

\mathbb{R}^{2} into two open regions. Since the point t is in one open region and the point s_{i+1}

is in the other open region, the arc connecting t and s_{i+1} must cross the proper arc

L_{1}\cup\tilde{f}(A)\cup L_{2} (see Figure 5). This is a contradiction.

Figure 5. Arrangements of L_{1}, L_{2} and \tilde{f}(A) .

Therefore, in the oriented arc in S^{1} whose initial point is q_{1} and whose terminal

point is q_{l} ,
there does not exist a point where f takes its minimum. This means that

the set of points in S^{1} where f takes its minimum and the set of points in S^{1} where f
takes its maximum are separated. This completes the proof of Theorem 2.2. \square 

Remark 2.4. If a Morse function f : S^{1}\rightarrow \mathbb{R} has exactly one minimum or exactly
one maximum, then f has an embedding lift \tilde{f}:S^{1}\rightarrow \mathbb{R}^{2} . In particular, every stable

Morse function has an embedding lift.

§3. Application

In this section, as an application of Theorem 2.2, we study the existence of an

embedding lift over a stable fold map of a closed n‐dimensional manifold into \mathbb{R}^{n}(n>1) .

Let M be a closed n‐dimensional manifold and f : M\rightarrow \mathbb{R}^{n} a smooth map. A point

q\in M is a singular point of f if the rank of the differential df_{q} at q is strictly smaller

than n . We denote by S(f) the set of singular points of f . A smooth map f : M\rightarrow \mathbb{R}^{n}

is a fold map if for each q\in S(f) ,
there exist local coordinates (x_{1}, x2, . . :, x_{n}) around
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q\in M and (y_{1}, y_{2}, . ::; y_{n}) around f(q)\in \mathbb{R}^{n} such that f has the form

\left\{\begin{array}{ll}
y_{i}\circ f=x_{i} & (i=1,2, \ldots; n-1) ,\\
y_{n}\circ f=x_{n}^{2}. & 
\end{array}\right.
We remark that for a fold map f : M\rightarrow \mathbb{R}^{n}, S(f) is an (n-1) ‐dimensional closed

submanifold of M and f|S(f) is an immersion. We mention that the fold maps that

appear here are exactly the same as the special generic maps as defined, for example,
in [4]. If a fold map f : M\rightarrow \mathbb{R}^{n} satisfies that f|S(f) is an immersion with normal

crossings, then we call f a stable fold map (see [1]).
Let  $\Pi$ : \mathbb{R}^{n+1}\rightarrow \mathbb{R}^{n} be an orthogonal projection and f : M\rightarrow \mathbb{R}^{n} a stable fold

map. If there exists an embedding \tilde{f}:M\rightarrow \mathbb{R}^{n+1} such that  $\Pi$\circ\tilde{f}=f ,
then we say that

f has an embedding liftt \tilde{f} . Note that if M is orientable, any fold map f : M\rightarrow \mathbb{R}^{n}
,

has

an immersion f' : M\rightarrow \mathbb{R}^{n+1} such that  $\Pi$\circ f'=f (see [5]).
Let f : M\rightarrow \mathbb{R}^{n} be a stable fold map and l\subset \mathbb{R}^{n} an embedded arc such that

f|S(f) is transverse to l,  l\cap f(M)\neq\emptyset and  f^{-1} (@l) =\emptyset . We call such an arc  l\mathrm{a}

t‐arc for f . Let \tilde{ $\Pi$} : \mathbb{R}^{n}\rightarrow \mathbb{R}^{n-1} be a submersion such that \tilde{ $\Pi$}(l) is a point in \mathbb{R}^{n-1}.

Since f|S(f) is transverse to l
,
if we restrict \tilde{ $\Pi$}\circ f to the interior of a sufficiently small

tubular neighborhood N(f^{-1}(l)) of f^{-1}(l) , \tilde{ $\Pi$}(l) is a regular value of the restricted map

\tilde{ $\Pi$}\circ f|\mathrm{I}\mathrm{n}\mathrm{t}(N(f^{-1}(l))) : Int (N(f^{-1}(l)))\rightarrow \mathbb{R}^{n-1} . Thus, f^{-1}(l)\subset(\tilde{ $\Pi$}\circ f)^{-1}(\tilde{ $\Pi$}(l)) is a

finite disjoint union of circles and f|f^{-1}(l) : f^{-1}(l)\rightarrow l is a Morse function.

Then we have the following observation.

Observation 3.1. Let M be a closed n ‐dimensional manifold and f:M\rightarrow \mathbb{R}^{n}
a stable fold map (n>1) . If f has an embedding liftt \tilde{f} : M\rightarrow \mathbb{R}^{n+1}

,
then for any

t‐arc l for f, \tilde{f}|f^{-1}(l) : f^{-1}(l)\rightarrow$\Pi$^{-1}(l) is an embedding lift over the Morse function

f|f^{-1}(l):f^{-1}(l)\rightarrow l.

Using Observation 3.1, we construct stable fold maps f : M\rightarrow \mathbb{R}^{n} which do not

have an embedding lift.

Example 3.2. Let f_{1} and f_{2} : S^{1}\times D^{1}\rightarrow \mathbb{R}^{2} be orientation preserving im‐

mersions such that f_{1}|S^{1} \times@D1=f_{2}|S^{1} \times @Dl and that their images are as shown in

Figure 6.

By attaching  f_{1} and f_{2} along S^{1} \times @D 1 and changing the orientation of the source

 S^{1}\times D^{1} of f_{2} ,
we have a stable fold map of a torus T^{2} into \mathbb{R}^{2} . We denote by f : T^{2}\rightarrow \mathbb{R}^{2}

this stable fold map. Let l be a \mathrm{t} ‐arc, as shown in Figure 7, which passes through the

two normal crossings of f(S(f)) . Then, f^{-1}(l) is a circle and the Morse function

f|f^{-1}(l) : f^{-1}(l)\rightarrow l has two minimum p_{1}, p_{2} and two maximum q_{1}, q_{2} which are not

separated in the sense of Definition 2.1. Therefore, f does not have an embedding lift

by Theorem 2.2 and Observation 3.1. See Figure 7.
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\mathrm{O}

f_{1}(S^{1}\times D^{1})

\mathrm{O}

f_{2}(S^{1}\times D^{1})

Figure 6. Orientation preserving immersions of S^{1}\times D^{1} into \mathbb{R}^{2} . The black curves

represent the images f_{i} ( S^{1} \times @Dl) and the gray strips represent parts of  f_{i}(S^{1}\times D^{1})
(i=1,2) .

f(T^{2})

l
q_{1} q_{2}

\rightarrow

Figure 7. The \mathrm{t}‐arc l for f : T^{2}\rightarrow \mathbb{R}^{2} such that f|f^{-1}(l) does not have an embedding
lift.
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Example 3.3. Let g_{1} and g_{2}:D^{2}\rightarrow \mathbb{R}^{2} be orientation preserving immersions

such that g_{1}|\partial D^{2}=g_{2}|\partial D^{2} and that their images are as shown in Figure 8. These

immersions are known as Milnor�s example (see [3]).

\mathrm{O}

g_{1}(D^{2})

\mathrm{O}

g_{2}(D^{2})

Figure 8. Orientation preserving immersions of D^{2} into \mathbb{R}^{2} which are known as Milnor�s

example. The black curves represent the images g(@D2) and the gray strips represent

parts of g_{i}(D^{2})(i=1,2) .

By attaching g_{1} and g_{2} along \partial D^{2} and changing the orientation of the source D^{2}

of g_{2} ,
we have a stable fold map g:S^{2}\rightarrow \mathbb{R}^{2} . Let l be a \mathrm{t}‐arc, as shown in Figure 9,

which passes through the two outermost normal crossings of g(S(g)) . Then, g^{-1}(l) is

a circle and the Morse function g|g^{-1}(l) : g^{-1}(l)\rightarrow l has two minimum p_{1}, p_{2} and two

maximum q_{1}, q_{2} which are not separated in the sense of Definition 2.1. Therefore, g

does not have an embedding lift by Theorem 2.2 and Observation 3.1. See Figure 9.

Example 3.4. Using the stable fold map g : S^{2}\rightarrow \mathbb{R}^{2} which is constructed in

Example 3.3, we can construct a family of stable fold maps h_{n} : S^{n}\rightarrow \mathbb{R}^{n}, n\geq 2 ,
which

have an immersion lift but which do not have an embedding lift into \mathbb{R}^{n+1} as follows.

Let $\Pi$' : \mathbb{R}^{n}\rightarrow \mathbb{R} be the orthogonal projection defined by $\Pi$'(y_{1}, y2, . . . , y_{n})=y_{1}.
Suppose that a stable fold map h_{n}:S^{n}\rightarrow \mathbb{R}^{n} satisfies the following conditions.

(1) h_{n}(S^{n})\subset[1 , 3 ] \times \mathbb{R}^{n-1}.

(2_{n})\{(2, y_{2},0, . ::, 0)|y_{2}\in \mathbb{R}\}\subset \mathbb{R}^{n} contains a \mathrm{t} ‐arc l_{n} for h_{n} such that

h_{n}|h_{n}^{-1}(l_{n}):h_{n}^{-1}(l_{n})\rightarrow l_{n}

does not have an embedding lift.
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l

g^{-1}(l)

g(S^{2})

Figure 9. The \mathrm{t} ‐arc l for g : S^{2}\rightarrow \mathbb{R}^{2} such that g|g^{-1}(l) does not have an embedding
lift.

(3) The set ($\Pi$'\mathrm{o}h_{n})^{-1}(1) (resp. ($\Pi$'\mathrm{o}h_{n})^{-1}(3) ) consists exactly of one point in S^{n}

and we denote this point by p^{n} (resp. q^{n} ). Furthermore, $\Pi$'\circ h_{n} takes its minimum

(resp. maximum) at p^{n} (resp. q^{n} ). Both p^{n} and q^{n} are non‐degenerate critical points
of $\Pi$'\circ h_{n}.

(4) For a sufficiently small real number  $\epsilon$ with  0< $\epsilon$<1, hS(h) is transverse to

$\Pi$^{\prime-1}(\{1+ $\epsilon$\}) and B_{n}=($\Pi$'\circ h_{n})^{-1}([1,1+ $\epsilon$]) is an n‐ball around p^{n} such that

\partial B_{n}=($\Pi$'\circ h_{n})^{-1}(\{1+ $\epsilon$\}) and \partial B_{n}\cap S(h) consists of an (n-2) ‐dimensional

sphere.

(5_{n})h_{n}|\partial B_{n} : @Bn \rightarrow $\Pi$ � -1(\{1+ $\epsilon$\}) is a stable fold map such that \partial B_{n}\cap S(h_{n})=
S(h_{n}|\partial B_{n}) .

(6_{n})B_{n}\cap S(h) is an (n-1) ‐ball around p^{n} and h_{n}|(B_{n}\cap S(h)) :  B_{n}\cap S(h_{n})\rightarrow
 h(S(h)) is an embedding.

By composing g:S^{2}\rightarrow \mathbb{R}^{2} in Example 3.3 with a suitable diffeomorphism of \mathbb{R}^{2},
we get a stable fold map h_{2} : S^{2}\rightarrow \mathbb{R}^{2} which satisfies the conditions (1) -(6_{2}) . See

Figure 10.

Let us now construct h_{n+1}, n\geq 2 , inductively as follows. Consider the stable fold

map h_{n+1}^{1} : S^{n}\times S^{1}\rightarrow \mathbb{R}^{n+1} defined by

h_{n+1}^{1}(x, (\cos $\theta$, \sin $\theta$))=((y_{1}\circ h_{n}(x))\cos $\theta$, y_{2}\circ h_{n}(x), . :. , y_{n}\circ h_{n}(x), (y_{1}\circ h_{n}(x))\sin $\theta$) .

Here, S^{1} is identified with the boundary of the unit disk D^{2}=\{ (  r\cos $\theta$
,
rsin  $\theta$ ) \in

\mathbb{R}^{2} 0\leq r\leq 1, 0\leq $\theta$<2 $\pi$\}, (\cos $\theta$, \sin $\theta$)\in S^{1}=\partial D^{2} and x\in S^{n} . Let h_{n+1}^{2} :
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Figure 10. Positions of the \mathrm{t} ‐arc l_{2}, h_{2}(p^{2}) , h_{2}(q^{2}) and h(B) for h_{2} : S^{2}\rightarrow \mathbb{R}^{2}.

\partial B_{n}\times D^{2}\rightarrow \mathbb{R}^{n+1} be the smooth map defined by

h_{n+1}^{2}(x, (r\cos $\theta$, r\sin $\theta$))
=((y_{1}\circ h_{n}(x))r\cos $\theta$, y_{2}\circ h_{n}(x), \ldots, y_{n}\circ h_{n}(x), (y_{1}\circ h_{n}(x))r\sin $\theta$) .

From these constructions, we get the (n+1) ‐dimensional manifold

(3.1) ((S^{n}\times S^{1})\backslash (\mathrm{I}\mathrm{n}\mathrm{t}(B_{n})\times S^{1}))\cup(\partial B_{n}\times D^{2})

which is diffeomorphic to S^{n+1} ,
and the map (h_{n+1}^{1}|((S^{n}\times S^{1})\backslash (\mathrm{I}\mathrm{n}\mathrm{t}(B_{n})\times S^{1})))\cup

 h_{n+1}^{2} . By slightly deforming h_{n+1}^{1}|((S^{n}\times S^{1})\backslash (\mathrm{I}\mathrm{n}\mathrm{t}(B_{n})\times S^{1})) and h_{n+1}^{2} around the

boundary @Bn \times S1, we get a stable fold map  h_{n+1}' of S^{n+1} into \mathbb{R}^{n+1} . In the following,
we will identify the manifold (3.1) with S^{n+1} . By construction, the stable fold map

h_{n+1}' : S^{n+1}\rightarrow \mathbb{R}^{n+1} satisfies the following conditions.

(1_{n+1}')h_{n+1}(S^{n+1})\subset[-3, 3] \times \mathbb{R}^{n}.

(2_{n+1}')\{(2, y_{2},0, . ::, 0)|y_{2}\in \mathbb{R}\}\subset \mathbb{R}^{n+1} contains a \mathrm{t} ‐arc l_{n+1}' for h_{n+1}' such that

h_{n+1}'|(h_{n+1}')^{-1}(l_{n+1}'):(h_{n+1}')^{-1}(l_{n+1}')\rightarrow l_{n+1}'

does not have an embedding lift.

(3_{n+1}') For (-1,0)\in S^{1} and ( 1, 0)\in S^{1} ,
we define (p^{n+1})'\in((S^{n}\times S^{1})\backslash (\mathrm{I}\mathrm{n}\mathrm{t}(B_{n})\times S^{1}))\subset

 S^{n+1} by (p^{n+1})'=q^{n}\times\{(-1,0)\} and define (q^{n+1})'\in((S^{n}\times S^{1})\backslash (\mathrm{I}\mathrm{n}\mathrm{t}(B_{n})\times S^{1}))\subset
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 S^{n+1} by (q^{n+1})'=q^{n}\times\{(1,0 By the definition, we have ($\Pi$'\circ h_{n+1}')^{-1}(\{-3\})=
\{(p^{n+1})'\} and ($\Pi$'\circ h_{n+1}')^{-1}(\{3\})=\{
(resp. maximum) at (p^{n+1})' (resp. (q'\ovalbox{\tt\small REJECT}
degenerate critical points of $\Pi$'\circ h_{n+1}'.

-1)'\} ,
and $\Pi$'\circ h_{n+1}' takes its minimum

�

) . Both (p^{n+1})' and (q^{n+1})' are non‐

By composing h_{n+1}' : S^{n+1}\rightarrow \mathbb{R}^{n+1} with a suitable diffeomorphism of \mathbb{R}^{n+1}
,

we

get a stable fold map h_{n+1} : S^{n+1}\rightarrow \mathbb{R}^{n+1} which satisfies the conditions (1_{n+1})-(6_{n+1}) .

By [5], h_{n+1} has an immersion lift into \mathbb{R}^{n+2} . However, by Observation 3.1, h_{n+1} does

not have an embedding lift into \mathbb{R}^{n+2}.

We end this paper by stating a future problem.

Problem 3.5. If M is a closed orientable n‐dimensional manifold, then does the

converse of Observation 3.1 hold? That is, let M be a closed orientable n‐dimensional

manifold and f : M\rightarrow \mathbb{R}^{n} a stable fold map (n>1) . Suppose that for any \mathrm{t} ‐arc l for f,
the Morse function f|f^{-1}(l) : f^{-1}(l)\rightarrow l has an embedding lift. Then, does the stable

fold map f has an embedding lift?

When M is nonorientable, we have a counterexample as follows. Let f : M\rightarrow \mathbb{R}^{2}

be a stable fold map of the Klein bottle such that f(S(f)) consists of two concentric

circles and f(M) is an embedded annulus whose boundary is f(S(f)) . See Figure 11.

Since f(S(f)) does not have normal crossings, for any \mathrm{t}‐arc l, f|f^{-1}(l) : f^{-1}(l)\rightarrow l
is a stable Morse function and it has an embedding lift (see Remark 2.4). But it is

known that the Klein bottle cannot be embedded in \mathbb{R}^{3} . Therefore, f does not have an

embedding lift. By Haefliger�s theorem [2], f does not have an immersion lift either.

\rightarrow

 M f(M)

Figure 11. The stable fold map f : M\rightarrow \mathbb{R}^{2} of the Klein bottle M.
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