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Abstract

For a map between manifolds, the space of the connected components of its fibers is called

the Stein factorization. In this paper, we show that for a large class of C^{\infty} maps between

manifolds, their Stein factorizations are triangulable. As applications, we obtain several new

Euler characteristic formulas concerning singularities of C^{\infty} stable maps in certain dimensions.

§1. Introduction

Let g:M\rightarrow N be a generic C^{\infty} map between smooth manifolds. The space of the

connected components of fibers of g is denoted by W_{g} . Then, we have the canonical

quotient map q_{g}:M\rightarrow W_{g} and the natural map \overline{g}:W_{g}\rightarrow N such that g=\overline{g}\circ q_{g} . Such

a decomposition of g into the composition of q_{g} and \overline{g} is called the Stein factorization
of g . Sometimes the quotient space W_{g} is also called the Stein factorization of g.

It is known that when \dim M>\dim N ,
the Stein factorization of g:M\rightarrow N ,

or

the quotient space W_{g} ,
is a very important tool in studying the topological properties of

the map g . Refer to [3, 4, 10, 11, 12, 14, 17, 20, 21], for example. In all the known cases,

the quotient spaces of generic C^{\infty} maps are polyhedrons and their local structures have

been determined.
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In this paper, we first show that if g is a so‐called Thom map, then its Stein factor‐

ization is triangulable. In particular, topologically stable C^{\infty} maps have triangulable
Stein factorizations, and their quotient spaces are polyhedrons. This is a fundamental

result in the topological study of generic C^{\infty} maps in the sense that it enables us to

study given C^{\infty} maps by using the polyhedral structures of their quotient spaces.

As examples, we give several Euler characteristic formulas for generic C^{\infty} maps, by
means of triangulations of Stein factorizations. We pay special attention to C^{\infty} stable

maps of 3‐dimensional manifolds into \mathbb{R}^{2} and those of 4‐dimensional manifolds into \mathbb{R}^{3},
and obtain several new formulas.

The paper is organized as follows. In §2 we give a precise definition of the Stein

factorization of a continuous map between topological spaces and its triangulation.

Then, we state the triangulation theorem of Stein factorizations of proper triangulable

maps. As a corollary, we see that the Stein factorization of a proper Thom map is

always triangulable, since by Shiota [22] proper Thom maps are triangulable. In §3
we prove that the Stein factorization of a proper simplicial map between locally finite

simplicial complexes is triangulable. The idea is to subdivide the given simplicial map

and to define an abstract simplicial complex whose underlying space is homeomorphic
to the quotient space. In §4, we recall Euler characteristic formulas obtained in [16] for

simplicial maps and show that local indices defined in [16] also decompose according to

the Stein factorization. In §5 we consider C^{\infty} stable maps of 3‐dimensional manifolds

into the plane and get a formula relating the Euler characteristics of the quotient space

and the image together with the number of singular fibers of specific types. In §6, we

consider C^{\infty} stable maps of 4‐dimensional manifolds into \mathbb{R}^{3} and get a similar formula.

Throughout the paper, we will often abuse the terminology �simplicial complex� (or
�simplicial map�) to indicate the corresponding polyhedron (resp. PL map), although
we will try to use correct notations until §3 in order to avoid confusion. For a space X,

\mathrm{i}\mathrm{d}_{X} denotes the identity map of X.

§2. Preliminaries

In this section, we define the notion of a triangulation of the Stein factorization of

a map and state our triangulation theorem of Stein factorizations.

Definition 2.1. Let g:M\rightarrow N be a continuous map between topological spaces

M and N . Two points x, x'\in M are g ‐equivalent if g(x)=g(x') and the points x and x'

are in the same connected component of g^{-1}(g(x))=g^{-1}(g(x')) . We denote by W_{g} the

quotient space with respect to the g‐equivalence, endowed with the quotient topology.
The quotient map is denoted by q_{g}:M\rightarrow W_{g} . Then there exists a unique continuous

map \overline{g}:W_{g}\rightarrow N such that g=\overline{g}\circ q_{g} . The quotient space W_{g} or the commutative
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diagram

M\rightarrow^{g}N

\nearrow^{g\overline{}}
W_{g}

is called the Stein factorization of g.

There is a one‐to‐one correspondence between the quotient space and the space of

the connected components of the fibers of g . Note that each fiber of the quotient map

q_{g} is connected.

Remark 2.2. Even if g:M\rightarrow N is a C^{\infty} map between smooth manifolds, the

Stein factorization W_{g} may not necessarily be a manifold. For example, consider the

Morse function g:T^{2}\rightarrow \mathbb{R} on the 2‐dimensional torus as in Fig. 1. The Stein factoriza‐

tion W_{g} is clearly not a manifold.

\mathbb{R}

\rightarrow^{g}

(:)1(
\backslash (. W_{g}

Figure 1. Stein factorization may not be a manifold

In the following, for a simplicial complex K
,

its associated polyhedron is denoted

by |K| ,
and for a simplicial map f:K\rightarrow L between simplicial complexes, |f|:|K|\rightarrow|L|

denotes the associated PL map.

Definition 2.3. Let g:M\rightarrow N be a continuous map, where M and N are

topological spaces. We say that g is triangulable if there exist simplicial complexes K

and L
,

a simplicial map f:K\rightarrow L and homeomorphisms  $\lambda$:|K|\rightarrow M and  $\mu$:|L|\rightarrow N
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such that the following diagram is commutative:

M \rightarrow^{g}N

| $\lambda$ | $\mu$
|K|\rightarrow^{|f|}|L|.

We call f, K and Ltriangulation\mathcal{S} of g, M and N
, respectively.

Definition 2.4. Let g:M\rightarrow N be a continuous map, where M and N are

topological spaces. We say that the Stein factorization of g is triangulable if there

exist simplicial complexes K, L and V , simplicial maps f:K\rightarrow L,  $\varphi$:K\rightarrow V and

 $\psi$:V\rightarrow L , homeomorphisms  $\lambda$:|K|\rightarrow M,  $\mu$:|L|\rightarrow N and  $\Theta$:|V|\rightarrow W_{g} such that the

following diagram is commutative:

M

 $\lambda$\ovalbox{\tt\small REJECT}
|K|\rightarrow^{|f|} |L|.

We call  $\varphi$,  $\psi$ and  Vtriangulation\mathcal{S} of q_{g}, \overline{g} and W_{g} , respectively.

Our first result of this paper is the following.

Theorem 2.5. Let g:M\rightarrow N be a proper continuou\mathcal{S} map between locally com‐

pact topological \mathcal{S}pace\mathcal{S}M and N. If gi_{\mathcal{S}} triangulable, then \mathcal{S}Oi_{\mathcal{S}} the Stein factorization

of g.

Theorem 2.5 will be proved in Section 3.

Shiota shows in [22] that proper Thom maps, which constitute quite a large class

of C^{\infty} maps between smooth manifolds, are triangulable. In particular, topologically
stable proper C^{\infty} maps are triangulable. Therefore, we have the following.

Corollary 2.6. Let g:M\rightarrow N be a proper C^{\infty} map between \mathcal{S}moothmanifold_{\mathcal{S}}.

If gi_{\mathcal{S}} a Thom map, then the Stein factorization of gi_{\mathcal{S}} triangulable.
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Corollary 2.7. For \mathcal{S}moothmanifold_{\mathcal{S}}M and N
,

in the \mathcal{S}pace of proper C^{\infty}

map_{\mathcal{S}}C_{\mathrm{p}\mathrm{r}}^{\infty}(M, N) ,
the \mathcal{S}et of tho\mathcal{S}emap_{\mathcal{S}}who\mathcal{S}e Stein factorization\mathcal{S} are triangulable con‐

tain\mathcal{S} an open and den\mathcal{S}e\mathcal{S}ub_{\mathcal{S}}et.

§3. Triangulating Stein factorizations

In order to construct a triangulation of the Stein factorization of a given triangulable

map, we begin by studying the fibers |f|^{-1}(y) for a simplicial map f:K\rightarrow L between

simplicial complexes for y\in|L|.
The following lemma is well‐known (for example, see [13, Lemma 20.5]).

Lemma 3.1. Let f:K\rightarrow L be a \mathcal{S} implicial map between \mathcal{S} implicial complexe\mathcal{S},

 $\tau$\in f(K)a\mathcal{S} implex of L
,

and b_{ $\tau$} the barycenter of  $\tau$ . Then, there  exi_{\mathcal{S}}t_{\mathcal{S}} a homeomor‐

phi_{\mathcal{S}}m$\Omega$_{ $\tau$}:|f|^{-1}(\mathring{ $\tau$})\rightarrow|f|^{-1}(b_{ $\tau$})\times\mathring{ $\tau$} making the following diagram commutative:

|f|^{-1}(\mathring{ $\tau$})

where \mathring{ $\tau$}i_{\mathcal{S}} the interior of the \mathcal{S} implex  $\tau$ and  p_{2}i_{\mathcal{S}} the projjection to the \mathcal{S}econd factor.

Let \overline{f}:\overline{K}\rightarrow\overline{L} be a simplicial map between locally finite simplicial complexes.

Definition 3.2. Suppose that L is a barycentric subdivision of \overline{L} . Then by [8,
Lemma 1.8], there exist a subdivision K of \overline{K} and a simplicial map f:K\rightarrow L such

that |f|=|\overline{f}| . We call f\mathrm{a}\mathcal{S}ubdivi_{\mathcal{S}}ion of \overline{f}.

We will define an abstract simplicial complex \mathcal{V} and show that its associated poly‐
hedron is homeomorphic to W_{|\overline{f}|}=W_{|f|} . Note that K and L are locally finite, since so

are \overline{K} and \overline{L} . Let us assume that |f|=|\overline{f}|:|K|\rightarrow|L| is proper.

Let K^{(0)} denote the set of vertices of K . For v, w\in K^{(0)} ,
we say that v is f‐

equivalent to w
,

written as v\sim w
,

if f(v)=f(w) and there exist a finite sequence of

vertices v_{0}, v_{1} ,
. . .

, v_{s} of f^{-1}(f(v))=f^{-1}(f(w))\subset K such that v=v_{0}, w=v_{s} ,
and

there are 1‐simplices \langle v_{i}v_{i+1}\rangle in  f^{-1}(f(v)) connecting v_{i} and v_{i+1}, i=0 , 1, . . .

,
s-1.

This clearly defines an equivalence relation. Note that if v\sim w
,

then they belong to

the same connected component of |f|^{-1}(|f|(v))=|f|^{-1}(|f|(w)) .

We define the abstract simplicial complex \mathcal{V} as follows. The set of vertices \mathcal{V}^{(0)}
is the f‐equivalence classes  K^{(0)}/\sim of vertices of  K . Distinct f‐equivalence classes

[v0], [v1], . . .

, [v_{k}] of \mathcal{V}^{(0)} define a k‐simplex of \mathcal{V} if for each i=0 , 1, . . .

,
k

,
there exists a
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v_{i}'\in[v_{i}] such that \langle vÓví. . .  v_{k}'\rangle defines a  k‐simplex of K . In this case, we denote the k‐

simplex by { [v_{0}] , [v1], . . .

, [vk]}. It is easy to verify that \mathcal{V} defines an abstract simplicial

complex.
We define the map  $\varphi$:K\rightarrow \mathcal{V} by  $\varphi$(\langle v_{0}v_{1}\cdots v_{k}\rangle)= { [v_{0}] , [v1], . . .

, [vk]}. Note that

 $\varphi$ is a simplicial map, although  $\varphi$(\langle v_{0}v_{1}\cdots v_{k}\rangle) may have dimension strictly smaller

than k.

Define  $\psi$:\mathcal{V}\rightarrow L by  $\psi$(\{[v_{0}] , [v1], . . .

, [vk]} ) =\langle f(v_{0})f(v_{1})\cdots f(v_{k})\rangle . Note that  $\psi$
is well defined: in fact  f(v) does not depend on the choice of a representative v of [v]
and \langle f(v_{0})f(v_{1})\cdots f(v_{k})\rangle defines a simplex of  L.

A simplicial map is said to be non‐degenerate if it preserves the dimension of each

simplex.

Lemma 3.3. The map  $\psi$ i_{\mathcal{S}}\mathcal{S} implicial and non‐degenerate. Furthermore, the

following diagram i_{\mathcal{S}} commutative:

K\rightarrow^{f}L

(3.1) \nearrow^{ $\psi$}
\mathcal{V}.

Proof. It is straightforward to show that  $\psi$ is simplicial. In order to show that

 $\psi$ is non‐degenerate, let  $\sigma$=\{[v_{0}], [\mathrm{v}1]\} be a 1‐simplex of \mathcal{V} . There exist  v_{i}'\in [vi],
 i=0 , 1, such that \langle vÓví \rangle \in K . Since  $\psi$ does not depend on the representatives, we

have  $\psi$(\{[v_{0}] , [vl]} ) = \langle f(vÓ)f(ví) \rangle . Suppose, by contradiction, that f(vÓ) = f(ví),
i.e.,  $\psi$( $\sigma$) is a 0‐simplex of L . From \langle vÓví \rangle \in K and f(vÓ) = f(ví) it follows that

\langle vÓví \rangle \subset f^{-1} (f(vÓ)) =f^{-1} (f(ví)). Then, we have vÓ \sim ví, which is a contradiction,
since [vÓ] \neq [ví]. Therefore,  $\psi$ is non‐degenerate.

The commutativity of diagram (3.1) follows immediately from the definition of

 $\psi$. \square 

Lemma 3.4. For the PLmap_{\mathcal{S}}| $\varphi$|:|K|\rightarrow|\mathcal{V}| and | $\psi$|:|\mathcal{V}|\rightarrow|L|a\mathcal{S}\mathcal{S} ociated

with the \mathcal{S} implicial m ap_{\mathcal{S}} $\varphi$:K\rightarrow \mathcal{V} and  $\psi$:\mathcal{V}\rightarrow L, re\mathcal{S}pectively, | $\varphi$|^{-1}(x)i_{\mathcal{S}} contained

in a connected component of|f|^{-1}(| $\psi$|(x)) for all x\in|\mathcal{V}|.

Proof. There exists a unique simplex  $\sigma$= { [v_{0}] , [v1], . . .

, [vk]} \in \mathcal{V} such that x\in\mathring{ $\sigma$}.
The simplex  $\tau$= $\psi$( $\sigma$)\in L can be written as

\langle $\psi$([v_{0}]) $\psi$([v_{1}])\cdots $\psi$([v_{k}])\rangle=\langle f(v_{0})f(v_{1})\cdots f(v_{k})\rangle.

As  $\psi$ is non‐degenerate by Lemma 3.3, we have | $\psi$|(x)\in\mathring{ $\tau$} . Since L is a barycentric

subdivision of \overline{L}
,

there exists a unique \overline{ $\tau$}\in\overline{L} such that \mathring{\frac{}{ $\tau$}}\supset\mathring{ $\tau$} and \dim\overline{ $\tau$}\geq\dim $\tau$ (see
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Figure 2. The simplices  $\tau$ and \overline{ $\tau$}

Fig. 2). (Note that we have \dim\overline{ $\tau$}>\dim $\tau$ when  $\tau$ is the cone over a simplex contained in

\partial\overline{ $\tau$} with non‐maximal dimension, with vertex the barycenter b_{\overline{ $\tau$}} of \overline{ $\tau$}. ) We may assume,

without loss of generality, that | $\psi$|([v_{0}]) is the barycenter of \overline{ $\tau$}
, i.e., | $\psi$|([v_{0}])=b_{\overline{ $\tau$}}.

Consider the line segment  $\gamma$ in  $\tau$ joining | $\psi$|(x) and | $\psi$|([v_{0}]) . Note that  $\gamma$ is en‐

tirely contained in the interior of \overline{ $\tau$} . Since |f|=|\overline{f}| , applying Lemma 3.1, we have

a homeomorphism  H_{ $\gamma$}:|f|^{-1}( $\gamma$)\rightarrow|f|^{-1}(b_{\overline{ $\tau$}})\times $\gamma$ which makes the following diagram
commutative:

|f|^{-1}( $\gamma$)\rightarrow^{H_{ $\gamma$}}|f|^{-1}(b_{\overline{ $\tau$}})\times $\gamma$

(3.2)

where  p_{2} is the projection to the second factor.

Let y and \mathrm{z} be arbitrary two points of | $\varphi$|^{-1}(x) . We will show that they be‐

long to the same connected component of |f|^{-1}(| $\psi$|(x)) . There exist two simplices

$\sigma$_{y}=\langle u_{0}u_{1}\cdots u_{\ell}\rangle and $\sigma$_{z}=\langle w_{0}w_{1}\cdots w_{m}\rangle of  K such that y\in\mathring{ $\sigma$}_{y}, \mathrm{z}\in\mathring{ $\sigma$}_{z} ,
and  $\varphi$($\sigma$_{y})=

 $\sigma$= $\varphi$($\sigma$_{z}) . Let u_{0}, u_{1} ,
. . .

, u_{i_{0}} (or w_{0} , wl, . . .

, w_{j_{0}} ) be the vertices of $\sigma$_{y} (resp. $\sigma$_{z} ) which

are mapped to [v_{0}] by  $\varphi$ . Then  u_{0}\sim
. . .

\sim u_{i_{0}}\sim w_{0}\sim
. . .

\sim w_{j_{0}} , i.e., they be‐

long to the same connected component of |f|^{-1}(|f|(v_{0}))=|f|^{-1}(| $\psi$|([v_{0}]))=|f|^{-1}(b_{\overline{ $\tau$}}) .

Consequently they belong to the same connected component of |f|^{-1}( $\gamma$) .

Let $\gamma$_{y} be the line segment in $\sigma$_{y} joining u_{0} to y ,
and $\gamma$_{z} the line segment in $\sigma$_{z} joining

w_{0} to \mathrm{z} . We have |f|($\gamma$_{y})=|f|($\gamma$_{z})= $\gamma$ . Then,  u_{0} and y are in the same connected

component of |f|^{-1}( $\gamma$) ,
and w_{0} and \mathrm{z} are also in the same connected component of

|f|^{-1}( $\gamma$) .

As a consequence, y and \mathrm{z} are in the same connected component C of |f|^{-1}( $\gamma$) . By
the commutative diagram (3.2), we have that C is homeomorphic to  c\times $\gamma$ ,

where  c is the

connected component of |f|^{-1}(b_{\overline{ $\tau$}}) that contains u_{0} and w_{0} . In particular, |f|^{-1}(| $\psi$|(x))\cap
 C is homeomorphic to c

,
which is connected. Moreover, we have y, \mathrm{z}\in|f|^{-1}(| $\psi$|(x))\cap C ;
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therefore, y and \mathrm{z} belong to the same connected component of |f|^{-1}(| $\psi$|(x)) . \square 

We will show that the underlying space |\mathcal{V}| associated to the abstract simplicial

complex \mathcal{V} is homeomorphic to W_{|f|} . For this, we define the map  $\alpha$:|\mathcal{V}|\rightarrow W_{|f|} by

 $\alpha$(x)=q_{|f|}(| $\varphi$|^{-1}(x)) , x\in|\mathcal{V}| ,
where q_{|f|} : |K|\rightarrow W_{|f|} is the quotient map associated

with |f|:|K|\rightarrow|L| . By virtue of Lemma 3.4, the map  $\alpha$ is well defined.

We have the following diagram:

(3.3)

Part (I) in the above diagram is commutative. Part (II) is also commutative by the

definition of  $\alpha$ . For the commutativity of (III), by the definition of  $\alpha$ and commutativity
of (I) we have, for  x\in|\mathcal{V}|,

\overline{|f|}( $\alpha$(x))=\overline{|f|}(q_{|f|}(| $\varphi$|^{-1}(x)))=|f|(| $\varphi$|^{-1}(x))=| $\psi$|(x) ,

where the last equality follows from the commutative diagram (3.1). Therefore, part

(III) is also commutative.

In order to define the inverse map of  $\alpha$
,

we need the following.

Lemma 3.5. For all  x\in W_{|f|}, | $\varphi$|(q_{|f|}^{-1}(x))con\mathcal{S}i_{\mathcal{S}}t_{\mathcal{S}} of a \mathcal{S}ingle point.

Proof. Let y and \mathrm{z} be any two points in q_{|f|}^{-1}(x) . By commutativity of part (I) of

diagram (3.3), we have

|f|(y)=\overline{|f|}\circ q_{|f|}(y)=\overline{|f|}(x)=\overline{|f|}\circ q_{|f|}(\mathrm{z})=|f|(\mathrm{z}) .

There exists a unique  $\tau$=\langle v_{0}v_{1}\cdots v_{k}\rangle\in L such that |f|(y)=|f|(\mathrm{z})\in\mathring{ $\tau$} . Furthermore,
there exist $\sigma$_{y}=\langle u_{0}u_{1}\cdots u_{\ell}\rangle and $\sigma$_{z}=\langle w_{0}w_{1}\cdots w_{m}\rangle\in K with \ell, m\geq k such that

y\in\mathring{ $\sigma$}_{y}, \mathrm{z}\in\mathring{ $\sigma$}_{z} and f($\sigma$_{y})=f($\sigma$_{z})= $\tau$.
We may assume

f(u_{0}) =\cdots=f(u_{i_{0}})=v_{0}= f(w_{0}) =\cdots=f(w_{j_{0}}) ,

f(u_{i_{0}+1})=\cdots=f(u_{i_{1}})=v_{1}=f(w_{j\mathrm{o}+1})=\cdots=f(w_{j_{1}}) ,

f(u_{i_{k-1}+1})=\cdots=f(u_{\ell})=v_{k}=f(w_{j_{k-1}+1})=\cdots=f(w_{m}) .
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Since u_{0}, u_{1} ,
. . .

, u_{\ell} are vertices of $\sigma$_{y}\in K ,
we have

u_{0}\sim\cdots\sim u_{i_{0}}, u_{i_{0}+1}\sim\cdots\sim u_{i_{1}} ,
. . .

, u_{i_{k-1}+1}\sim\cdots\sim u_{\ell}.

Similarly, we have

w_{0}\sim\cdots\sim w_{j_{0}}, w_{j_{0}+1}\sim\cdots\sim w_{j_{1}} ,
. . .

, w_{j_{k-1}+1}\sim\cdots\sim w_{m}.

Suppose, for the moment, we have the equivalences

(3.4) u_{0}\sim w_{0}, u_{i_{0}+1}\sim w_{j\mathrm{o}+1} ,
. . .

, u_{i_{k-1}+1}\sim w_{j_{k-1}+1}.

We can write y and \mathrm{z} in barycentric coordinates:

y=\displaystyle \sum_{r=0}^{k}\sum_{i=i_{r-1}+1}^{i_{r}}$\alpha$_{i}u_{i} and \displaystyle \mathrm{z}=\sum_{r=0}^{k}\sum_{j=j_{r-1}+1}^{j_{r}}$\beta$_{j}w_{j},
where i_{-1}=-1=j_{-1}, i_{k}=\ell, j_{k}=m, $\alpha$_{i}>0, $\beta$_{j}>0,

\displaystyle \sum_{i=0}^{\ell}$\alpha$_{i}=1 and \displaystyle \sum_{j=0}^{m}$\beta$_{j}=1.
Then we have

| $\varphi$|(y)=\displaystyle \sum_{r=0}^{k}\sum_{i=i_{r-1}+1}^{i_{r}}$\alpha$_{i}| $\varphi$|(u_{i})
=\displaystyle \sum_{r=0}^{k}\sum_{i=i_{r-1}+1}^{i_{r}}$\alpha$_{i}[u_{i_{r-1}+1}]
=\displaystyle \sum_{r=0}^{k}(\sum_{i=i_{r-1}+1}^{i_{r}}$\alpha$_{i})[u_{i_{r-1}+1}].

Similarly, we have

| $\varphi$|(\displaystyle \mathrm{z})=\sum_{r=0}^{k}(\sum_{j=j_{r-1}+1}^{j_{r}}$\beta$_{j})[w_{j_{r-1}+1}].
Since

|f|(y)=\displaystyle \sum_{r=0}^{k}\sum_{i=i_{r-1}+1}^{i_{r}}$\alpha$_{i}f(u_{i})=\sum_{r=0}^{k}(\sum_{i=i_{r-1}+1}^{i_{r}}$\alpha$_{i})v_{r},
|f|(\displaystyle \mathrm{z})=\sum_{r=0}^{k}\sum_{j=j_{r-1}+1}^{j_{r}}$\beta$_{j}f(w_{j})=\sum_{r=0}^{k}(\sum_{j=j_{r-1}+1}^{j_{r}}$\beta$_{j})v_{r},
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and |f|(y)=|f|(\mathrm{z}) ,
from the uniqueness of barycentric coordinates it follows that

\displaystyle \sum_{i=i_{r-1}+1}^{i_{r}}$\alpha$_{i}=\sum_{j=j_{r-1}+1}^{j_{r}}$\beta$_{j}
for all r . Then, since [u_{i_{r-1}+1}]=[w_{j_{r-1}+1}] for all r by our assumption (3.4), we have

| $\varphi$|(y)=| $\varphi$|(\mathrm{z}) .

In order to show the equivalences (3.4), we need the following.

Lemma 3.6. For r=0 , 1, . . .

, k, |f|^{-1}(v_{r})i_{\mathcal{S}}a\mathcal{S}trong deformation retract of

|f|^{-1}(\{v_{r}\}\cup\mathring{ $\tau$}) .

Proof. Let  $\theta$ be a simplex contained in |f|^{-1}( $\tau$) such that  f( $\theta$)= $\tau$ . Let  $\theta$_{0} be

the maximal face of  $\theta$ such that |f|($\theta$_{0})=v_{r} ,
and let $\theta$_{1} be the complementary face of

 $\theta$ formed by the vertices not belonging to  $\theta$_{0} . Each point  a\in|f|^{-1}(\{v_{r}\}\cup\mathring{ $\tau$})\cap $\theta$ can be

uniquely expressed as

 a=$\lambda$_{0}t_{0}+$\lambda$_{1}t_{1}

for some t_{0}\in$\theta$_{0}, t_{1}\in$\theta$_{1}, $\lambda$_{0}>0, $\lambda$_{1}\geq 0 and $\lambda$_{0}+$\lambda$_{1}=1 . Set $\gamma$_{r}(a)=t_{0} . Then,
we can show that $\gamma$_{r}:|f|^{-1}(\{v_{r}\}\cup\mathring{ $\tau$})\rightarrow|f|^{-1}(v_{r}) is well defined and defines a strong
deformation retract. \square 

Let us now show the equivalences (3.4). For each r there exist

(i) a line segment $\omega$_{1} in $\sigma$_{y} joining u_{i_{r-1}+1} and y ,
where the line segment $\omega$_{1} is contained

in |f|^{-1}(\{v_{r}\}\cup\mathring{ $\tau$}) ,

(ii) a path $\omega$_{2} in |f|^{-1}(\overline{|f|}(x)) joining y and \mathrm{z}
,

since y and \mathrm{z} belong to q_{|f|}^{-1}(x) ,
where

the path $\omega$_{2} is contained in |f|^{-1}(\mathring{ $\tau$}) ,
and

(iii) a line segment $\omega$_{3} in $\sigma$_{z} joining w_{j_{r-1}+1} and \mathrm{z}
,
where the line segment $\omega$_{3} is contained

in |f|^{-1}(\{v_{r}\}\cup\mathring{ $\tau$}) .

Let  $\omega$ be the path obtained by connecting  $\omega$_{1}, $\omega$_{2} and \overline{ $\omega$}_{3} , where \overline{ $\omega$}_{3} is the path $\omega$_{3}

with the opposite orientation. The path  $\omega$ is contained in |f|^{-1}(\{v_{r}\}\cup\mathring{ $\tau$}) and connects

u_{i_{r-1}+1} and w_{j_{r-1}+1} . Then  $\gamma$_{r}0 $\omega$ is a path in |f|^{-1}(v_{r}) joining u_{i_{r-1}+1} and w_{j_{r-1}+1}.

Now it is easy to modify the path  $\gamma$_{r}0 $\omega$ , fixing the end points, so that it passes through

only 1‐dimensional simplices of  f^{-1} (vr).
We conclude that u_{i_{r-1}+1}\sim w_{j_{r-1}+1} for all r=0 , 1, . . .

,
k. \square 

Let us define the map  $\beta$:W_{|f|}\rightarrow|\mathcal{V}| by  $\beta$(x)=| $\varphi$|(q_{|f|}^{-1}(x)) , x\in W_{|f|} . This is well
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defined by Lemma 3.5, and we have the following diagram:

(3.5)

Part (II) of the above diagram is clearly commutative. As to part (III), take a point

w\in W_{|f|} . Since | $\psi$|0| $\varphi$|=|f| and \overline{|f|}\circ q_{|f|}=|f| ,
we have | $\psi$|0| $\varphi$|=\overline{|f|}\circ q_{|f|} . Then

(| $\psi$|\circ $\beta$)(w)=| $\psi$|( $\beta$(w))=| $\psi$|(| $\varphi$|(q_{|f|}^{-1}(w)))
=(| $\psi$|\circ| $\varphi$|)(q_{|f|}^{-1}(w))=(\overline{|f|}\circ q_{|f|})(q_{|f|}^{-1}(w))=\overline{|f|}(w) .

Therefore, part (III) is also commutative.

To prove the continuity of  $\alpha$ we need the following.

Lemma 3.7.  If|f|i_{\mathcal{S}} proper and K and L are locally finite, then | $\varphi$|i_{\mathcal{S}} a clo\mathcal{S}ed

proper map.

Proof. Let D be a compact subset of |\mathcal{V}| . Let us show that | $\varphi$|^{-1}(D) is a com‐

pact subset of |K| . By the commutativity of diagram (3.5), we have | $\varphi$|^{-1}(D)\subset
|f|^{-1}(| $\psi$|(D)) . Since | $\psi$| is continuous and |f| is proper, we see that |f|^{-1}(| $\psi$|(D))
is a compact subset of |K| . On the other hand, | $\varphi$|^{-1}(D) is a closed subset, since | $\varphi$|
is continuous. Since it is contained in the compact set |f|^{-1}(| $\psi$|(D)) ,

it is compact.

Therefore, | $\varphi$| is a proper map.

Now let us show that \mathcal{V} is locally finite. Let [v] be a vertex of \mathcal{V} . If a simplex

{ [v_{0}] , [v1], . . .

, [vm]} of \mathcal{V} has [v] as one of its vertices, then there exist vertices v_{i}'\sim v_{i} of

K such that \langle vÓví  v_{m}'\rangle\in K ,
and v\sim v_{i}' for some i . Since |f| is proper, there exist at

most finitely many vertices w of K such that v\sim w . For each w
,

we have only finitely

many simplices of K that have w as one of its vertices, since K is locally finite. Then

only a finite number of simplices of \mathcal{V} have [v] as one of its vertices. Therefore, \mathcal{V} is

locally finite.

Then, by [15, Lemma 2.6, p. 11], |K| and |\mathcal{V}| are locally compact. By [15,
Lemma 2.4, p. 10], they are Hausdorff. Since | $\varphi$| is proper, by [2, Proposition 11.5,

p. 33], | $\varphi$| is a closed map. \square 

Now we are able to show the following.
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Lemma 3.8. Under the hyp_{othe\mathcal{S}}i_{\mathcal{S}} above,  $\alpha$ i_{\mathcal{S}} the inver\mathcal{S}e map of  $\beta$ . Further‐

more,  $\alpha$ and  $\beta$ are  continuou\mathcal{S}.

Proof. Let w be an arbitrary point of W_{|f|} . Then we have

( $\alpha$\circ $\beta$)(w)= $\alpha$( $\beta$(w))= $\alpha$(| $\varphi$|(q_{|f|}^{-1}(w)))
=q_{|f|}(| $\varphi$|^{-1}(| $\varphi$|(q_{|f|}^{-1}(w)))) .

By virtue of Lemmas 3.4 and 3.5, we have that q_{|f|}(| $\varphi$|^{-1}(| $\varphi$|(q_{|f|}^{-1}(w)))) consists of a

single point. Since q_{|f|} is surjective, q_{|f|}(| $\varphi$|^{-1}(| $\varphi$|(q_{|f|}^{-1}(w)))) contains w
,

and we have

q_{|f|}(| $\varphi$|^{-1}(| $\varphi$|(q_{|f|}^{-1}(w))))=w . Therefore, we have  $\alpha$ 0 $\beta$(w)=w, \forall w\in W_{|f|} ,
and

consequently  $\alpha$\circ $\beta$=\mathrm{i}\mathrm{d}_{W_{|f|}}.
Consider now an arbitrary point y of |\mathcal{V}| . We have

( $\beta$\circ $\alpha$)(y)= $\beta$( $\alpha$(y))= $\beta$(q_{|f|}(| $\varphi$|^{-1}(y)))=| $\varphi$|(q_{|f|}^{-1}(q_{|f|}(| $\varphi$|^{-1}(y)))) .

By Lemmas 3.4 and 3.5, | $\varphi$|(q_{|f|}^{-1}(q_{|f|}(| $\varphi$|^{-1}(y)))) consists of a single point of |\mathcal{V}| . On the

other hand, | $\varphi$|(q_{|f|}^{-1}(q_{|f|}(| $\varphi$|^{-1}(y)))) contains y ,
since | $\varphi$| is surjective. Hence, we have

( $\beta$ 0 $\alpha$)(y)=y, \forall y\in|\mathcal{V}| ,
and consequently  $\alpha$ is the inverse map of  $\beta$.

If B\subset|\mathcal{V}| is an open subset of |\mathcal{V}| ,
then by the definition of the quotient topology

on W_{|f|}, $\beta$^{-1}(B) is an open subset of W_{|f|} if and only if q_{|f|}^{-1}($\beta$^{-1}(B)) is an open subset

of |K| . In fact, q_{|f|}^{-1}($\beta$^{-1}(B))=( $\beta$ \mathrm{o}q_{|f|})^{-1}(B)=| $\varphi$|^{-1}(B) is an open subset of |K|,
since | $\varphi$| is continuous. Therefore,  $\beta$ is continuous.

Since  $\alpha$ is the inverse of  $\beta$ ,
in order to show that  $\alpha$ is continuous, we have only

to show that  $\beta$ is a closed map. Let  D be a closed subset of W_{|f|} . Since q_{|f|} is

continuous, q_{|f|}^{-1}(D) is a closed subset of |K| . By Lemma 3.7, | $\varphi$| is a closed map.

Thus, | $\varphi$|(q_{|f|}^{-1}(D)) is closed in |\mathcal{V}| . On the other hand, | $\varphi$|(q_{|f|}^{-1}(D))= $\beta$(D) ,
since q_{|f|}

is surjective. Therefore,  $\alpha$ is continuous. \square 

Summarizing the above argument, we have proved the following.

Proposition 3.9. Let \overline{f}:\overline{K}\rightarrow\overline{L} be a \mathcal{S} implicial map between two locally finite
\mathcal{S} implicial complexe\mathcal{S}\mathcal{S}uch that |\overline{f}|:|\overline{K}|\rightarrow|\overline{L}|i_{\mathcal{S}} proper. Let f:K\rightarrow L be a barycentric
\mathcal{S}ubdivi_{\mathcal{S}}ion of f . Then, there exi_{\mathcal{S}}t a \mathcal{S} implicial complex \mathcal{V}, a\mathcal{S} implicial map  $\varphi$:K\rightarrow \mathcal{V},
a non‐degenerate \mathcal{S} implicial map  $\psi$:\mathcal{V}\rightarrow L and a homeomorphi_{\mathcal{S}}m $\alpha$:|\mathcal{V}|\rightarrow W_{|f|},
making the following diagram\mathcal{S} commutative:

K\rightarrow^{f}L

(3.6) \backslash _{ $\varphi$}c:\mathcal{V},\nearrow^{ $\psi$}
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Remark 3.10. In Proposition 3.9, the first diagram can be regarded as a trian‐

gulation of the Stein factorization of |\overline{f}|:|\overline{K}|\rightarrow|\overline{L}| (see Definition 2.4). In particular,
the quotient space W_{|f|} is homeomorphic to a polyhedron.

Proof of Theorem 2.5. Let g:M\rightarrow N be a continuous map between topological

spaces M and N . Suppose M and N are locally compact, and g is proper and tri‐

angulable. Let \overline{f}:\overline{K}\rightarrow\overline{L} be a triangulation of g , i.e., there exist homeomorphisms

 $\lambda$:|\overline{K}|\rightarrow M and  $\mu$:|\overline{L}|\rightarrow N such that  $\mu$ 0|\overline{f}|=go  $\lambda$ . From [15, Lemma 2.6, p. 11]
it follows that \overline{K} and \overline{L} are locally finite. Let f:K\rightarrow L be a barycentric subdivision

of \overline{f}. It follows that K and L are also locally finite. The map |f|:|K|\rightarrow|L| is proper

and  $\mu$ 0|f|=g\mathrm{o} $\lambda$.
We can define the homeomorphism  $\Lambda$:W_{|f|}\rightarrow W_{g} by  $\Lambda$(x)=q_{g}( $\lambda$(q_{|f|}^{-1}(x))) ,

for

x\in W_{|f|} ,
whose inverse map  $\Gamma$:W_{g}\rightarrow W_{|f|} is given by  $\Gamma$(y)=q_{|f|}($\lambda$^{-1}(q_{g}^{-1}(y))) ,

for

y\in W_{g} . We have the following commutative diagram:

(3.7)

Consider now the simplicial complex \mathcal{V} , the simplicial maps  $\varphi$:K\rightarrow \mathcal{V},  $\psi$:\mathcal{V}\rightarrow L
and the homeomorphism  $\alpha$:|\mathcal{V}|\rightarrow W_{|f|} ,

which exist for f by Proposition 3.9. The

commutative diagrams (3.6) and (3.7) give rise to the following commutative diagram:

Then the map  $\Theta$:|\mathcal{V}|\rightarrow W_{g} defined by  $\Theta$= $\Lambda$ 0 $\alpha$ is a homeomorphism and satisfies

the commutative diagram of Definition 2.4 with  V replaced by \mathcal{V} . Therefore, it follows

that the diagram (3.1) is a triangulation of the Stein factorization of g. \square 
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Remark 3.11. In the above proof, we used a barycentric subdivision of a given

triangulation. This procedure is necessary, since without the barycentric subdivision,
the space that we get may not be a simplicial complex as can be seen in Fig. 3.

Furthermore, we need that the map is proper, in order to guarantee that the re‐

sulting space is locally finite as a simplicial complex. See Fig. 4 for an example of a

non‐proper simplicial map whose Stein factorization is not locally finite. As another ex‐

ample, consider the map g:\mathbb{R}^{2}\backslash \{0\}\rightarrow \mathbb{R} defined by g(x, y)=x ,
which is a non‐proper

submersion. Then its Stein factorization is not even Hausdorff.

[

Figure 3. Stein factorization of a simplicial map

\bullet\circ\circ \bullet\circ\circ

\rightarrow I
Figure 4. Example of a non‐proper simplicial map

§4. Euler characteristic and local indices for simplicial maps

Let  g:M\rightarrow \mathbb{R}^{n} be a C^{\infty} ‐stable map, where M is a smooth closed manifold. We

would like to find formulas relating the number of singularities of g with the Euler

characteristics of certain subsets of M, g(M) and W_{g}.
In [16], Ballesteros and Saeki define local indices for simplicial maps f:K\rightarrow L

between simplicial complexes, where K is finite. They have found a formula relating
such indices with the Euler characteristics of the source and the image of f . In this

section we refine their formula by using the Stein factorization of f.
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Definition 4.1. Let f:X\rightarrow Y be a simplicial map, where X is a finite simpli‐
cial complex.

(i) The closure of the set \{x\in X : f^{-1}(f(x))\neq\{x\}\} in X is called the \mathcal{S}elf-inter\mathcal{S} ection

\mathcal{S}et of f ,
denoted by D(f) .

(ii) The set M(f)=f(D(f)) is called the multiple‐point \mathcal{S}et of f.

Note that D(f) and M(f) constitute subcomplexes of X and Y
, respectively. Further‐

more, if v\in M(f) ,
then f^{-1}(v)\subset D(f) .

In the following, for a simplicial complex C and a vertex u\in C^{(0)} ,
we set

$\chi$_{u}(C)=\displaystyle \sum_{ $\tau$\ni u}\frac{(-1)^{\dim $\tau$}}{\dim $\tau$+1}
with  $\tau$ running over all simplices of  C which contain u . Then, we define the index

\mathrm{I}\mathrm{n}\mathrm{d}_{f}(v) for each vertex v of M(f) by

(4.1) \displaystyle \mathrm{I}\mathrm{n}\mathrm{d}_{f}(v)=$\chi$_{v}(f(X))-\sum_{w\in(f^{-1}(v))^{(0)}}$\chi$_{w}(X)
(see [16]). In other words, we have

(4.2) \displaystyle \mathrm{I}\mathrm{n}\mathrm{d}_{f}(v)=\sum_{f(X)\supset $\tau$\ni v}\frac{(-1)^{\dim $\tau$}}{\dim $\tau$+1}-\sum_{w\in(f^{-1}(v))^{(0)}}\sum_{X\supset $\sigma$\ni w}\frac{(-1)^{\dim $\sigma$}}{\dim $\sigma$+1}.
Remark 4.2. We can define the index for any vertex v\in(f(X))^{(0)} by (4.1).

Then, by definition we have \mathrm{I}\mathrm{n}\mathrm{d}_{f}(v)=0 for all v\in(f(X))^{(0)}\backslash M(f)^{(0)} . Furthermore,
if v\in M(f)^{(0)} ,

then we have

\displaystyle \mathrm{I}\mathrm{n}\mathrm{d}_{f}(v)=$\chi$_{v}(M(f))-\sum_{w\in(f^{-1}(v))^{(0)}}$\chi$_{w}(D(f))
.

In the following,  $\chi$ denotes the Euler characteristic with respect to the singular

homology. By [16, Theorem 3.3], we have the following.

Theorem 4.3. Let  f:X\rightarrow Y be a \mathcal{S} implicial map between two \mathcal{S} implicial com‐

plexe\mathcal{S} , where Xi_{\mathcal{S}} finite. Then, we have

 $\chi$(f(X))- $\chi$(X)= \displaystyle \sum \mathrm{I}\mathrm{n}\mathrm{d}_{f}(v) .

v\in(f(X))^{(0)}

Let f:X\rightarrow Y be a simplicial map, where X is finite. Let us assume that it is the

subdivision of a simplicial map as in Definition 3.2. By Proposition 3.9 we have the
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following Stein factorization, where W_{f} is a finite simplicial complex whose associated

polyhedron is identified with W_{|f|} ,
and q_{f} and \overline{f} are simplicial maps:

X\rightarrow^{f}Y

W_{f}.

Note that f:X\rightarrow Y is proper, since X is a finite simplicial complex and its associated

polyhedron is compact.

Since the quotient space W_{f} is finite, we can apply Theorem 4.3 above three times

to the equality  $\chi$(f(X))- $\chi$(X)=( $\chi$(f(X))- $\chi$(W_{f}))+( $\chi$(W_{f})- $\chi$(X)) to obtain

\displaystyle \sum_{v\in f(X)^{(0)}}\mathrm{I}\mathrm{n}\mathrm{d}_{f}(v)=\sum_{v\in f(X)^{(0)}}\mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}}(v)+\sum_{u\in W_{f}^{(0)}}\mathrm{I}\mathrm{n}\mathrm{d}_{q_{f}}(u)
.

In fact, we have the following.

Lemma 4.4. Let f:X\rightarrow Y be a \mathcal{S} implicial map between two \mathcal{S} implicial com‐

plexe\mathcal{S} , where Xi_{\mathcal{S}} finite. Then, for all v\in f(X)^{(0)} ,
we have

\displaystyle \mathrm{I}\mathrm{n}\mathrm{d}_{f}(v)=\mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}}(v)+\sum_{u\in(\overline{f}^{-1}(v))^{(0)}}\mathrm{I}\mathrm{n}\mathrm{d}_{q_{f}}(u)
.

Proof. The formula follows from the following calculation:

\displaystyle \mathrm{I}\mathrm{n}\mathrm{d}_{f}(v)=\sum_{f(X)\supset $\tau$\ni v}\frac{(-1)^{\dim $\tau$}}{\dim $\tau$+1}-\sum_{w\in(f^{-1}(v))^{(0)}}\sum_{X\supset $\sigma$\ni w}\frac{(-1)^{\dim $\sigma$}}{\dim $\sigma$+1}
= \displaystyle \sum \frac{(-1)^{\dim $\tau$}}{\dim $\tau$+1}- \sum \sum \frac{(-1)^{\dim $\delta$}}{\dim $\delta$+1}

\overline{f}(W_{f})\supset $\tau$\ni v u\in(\overline{f}^{-1}(v))^{(0)}W_{f}\supset $\delta$\ni u

+\displaystyle \sum_{u\in(\overline{f}^{-1}(v))^{(0)}}\sum_{W_{f}\supset $\delta$\ni u}\frac{(-1)^{\dim $\delta$}}{\dim $\delta$+1}-\sum_{w\in(f^{-1}(v))^{(0)}}\sum_{X\supset $\sigma$\ni w}\frac{(-1)^{\dim $\sigma$}}{\dim $\sigma$+1}
=\displaystyle \mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}}(v)+ \sum \sum \frac{(-1)^{\dim $\delta$}}{\dim $\delta$+1}

u\in(\overline{f}^{-1}(v))^{(0)}W_{f}\supset $\delta$\ni u

\displaystyle \sum_{u\in(\overline{f}^{-1}(v))^{(0)}}\sum_{w\in(q_{f}^{-1}(u))^{(0)}}\sum_{X\supset $\sigma$\ni w}\frac{(-1)^{\dim $\sigma$}}{\dim $\sigma$+1}
=\displaystyle \mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}}(v)+ \sum \mathrm{I}\mathrm{n}\mathrm{d}_{q_{f}}(u) .

u\in(\overline{f}^{-1}(v))^{(0)}

\square 



TRIANGULATING STEIN FACTORIZATIONS OF GENERIC MAPS 77

§5. Stable maps of 3‐manifolds into \mathbb{R}^{2}

Let M be a closed orientable 3‐dimensional manifold. In this section, by applying

Corollary 2.6 and Theorem 4.3 to a C^{\infty} ‐stable map g:M\rightarrow \mathbb{R}^{2} and its Stein factoriza‐

tion, we obtain a formula relating the singularities of g to its topological invariants.

In the following, for a topological space X, $\chi$^{c}(X) denotes the Euler characteristic

of X defined by using the Borel‐Moore homology H_{*}^{c}(X;\mathbb{Z}) (see [1]), or the homology
of infinite chains (see [23, Chap. 6, §3]). Note that when X is compact, $\chi$^{c}(X) coincides

with the Euler characteristic  $\chi$(X) defined by using the usual singular homology.
The following well‐known proposition gives us conditions for a C^{\infty} map g:M\rightarrow \mathbb{R}^{2}

to be C^{\infty} ‐stable. For details, see [5, 11, 12].

Proposition 5.1. Let M be a clo\mathcal{S}ed3-dimen\mathcal{S}ional manifold and g:M\rightarrow \mathbb{R}^{2}a
C^{\infty} map. Then gi_{\mathcal{S}}C^{\infty}-\mathcal{S}table if and only if the following local and global condition\mathcal{S}

are \mathcal{S}ati\mathcal{S}fied.

(i) For all p\in M ,
there exi_{\mathcal{S}}t local coordinate\mathcal{S}(x, y, \mathrm{z}) and (X, Y) around p\in M and

g(p)\in \mathbb{R}^{2}, re\mathcal{S}pectively, \mathcal{S}uch that

\{
(x, y) , p : regular point,

(Xog, Yog)=
(x, y^{2}+\mathrm{z}^{2}) , p : definite fold point,

(x, y^{2}-\mathrm{z}^{2}) , p : indefinite fold point,

(x, -\mathrm{z}^{2}+yx+y^{3}) , p:cu\mathcal{S}p point.

Note that then the \mathcal{S}etS(g) of \mathcal{S} ingular p oint_{\mathcal{S}} of gform\mathcal{S} a cl_{0\mathcal{S}}ed_{\mathcal{S}} ubmanifold of M

of dimen\mathcal{S}ion1.

(ii) For every cu\mathcal{S}p point p\in S(g) ,
we have g^{-1}(g(p))\cap S(g)=\{p\} ,

and the map

g|_{S(g)\backslash \{\mathrm{c}\mathrm{u}\mathrm{s}\mathrm{p}} points} i_{\mathcal{S}} an immer\mathcal{S}ion with normal cro\mathcal{S}\mathcal{S}ing_{\mathcal{S}}.

Let M be a closed orientable 3‐dimensional manifold and g:M\rightarrow \mathbb{R}^{2} a C^{\infty} ‐stable

map. The \mathcal{S} ingular \mathcal{S}etS(g) of g is the union of the set S_{0} of the definite fold points,
the set S_{1} of the indefinite fold points, and the set C of the cusp points.

Let us consider the Stein factorization of g :

M\rightarrow^{g}\mathbb{R}^{2}

W_{g}.

Every point p of W_{g} admits one of the canonical neighborhoods as shown in Fig. 5, where

the thick lines represent the image of the singular set S(g) of g by q_{g} (see [11, 12]). \mathrm{A}
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p

p

p\in W_{g}\backslash q_{g}(S(g)) p\in q_{g}(S_{0}) p\in q_{g}(S_{1})

p\in q_{g}(S_{1})
trident double cone p\in q_{g}(C)

Figure 5. Local structures of W_{g}

point p\in S_{1} with q_{g}(p) having a neighborhood as in the upper‐right figure of Fig. 5 is

said to be \mathcal{S}imple ,
and a point p\in S_{1} with q_{g}(p) having a trident or a double cone as

its neighborhood is said to be non-\mathcal{S}imple.

Remark 5.2. The images of the canonical neighborhoods as above by \overline{g} are as

shown in Fig. 6 (see [12]).

From [25, 26] it follows that g is triangulable and by Theorem 2.5 or by Corol‐

lary 2.6, W_{g} is homeomorphic to a polyhedron. Let f:K\rightarrow L be a triangulation
of g ,

and let q_{f} and \overline{f} be triangulations of q_{g} and \overline{g} , respectively. They constitute a

triangulation of the Stein factorization of g :

K\rightarrow^{f}L

W_{f}.

We denote by S(f) , S_{0}, S_{1} and C the subsets of K corresponding to S(g) , S_{0}, S_{1}
and C , respectively, as long as there is no risk of confusion.

Remark 5.3. For r\in\overline{f}(W_{f})=f(K) ,
we can easily describe the multi‐germ

\overline{f}:(W_{f},\overline{f}^{-1}(r))\rightarrow(L, r) . For example, when f^{-1}(r)\cap S(f)=f^{-1}(r)\cap S_{1}=\{p, p'\}
with p\neq p' and q_{f}(p)=q_{f}(p') ,

we have the two possibilities: the multi‐germs are

described as in either Fig. 7 or Fig. 8.
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g(p)
\bullet

 p g(p)

p\in W_{g}\backslash q_{g}(S(g)) p\in q_{g}(S_{0}) p\in q_{g}(S_{1}) simple

p\in q_{g}(S_{1}) not simple p\in q_{g}(C)

Figure 6. Images of canonical neighborhoods by \overline{g}

Figure 7. Multi‐germ corresponding to a trident

Later we will use the representation above to compute the local index for each

vertex of M(\overline{f}) .

Notation 5.4. In the following, for an equivalence class of a singular fiber in the

sense of [19, Remark 3.14], say \mathrm{I}^{0}
,
the symbol IO(g) denotes the set of points y\in \mathbb{R}^{2} such

that the fiber g^{-1}(y) over y is equivalent to \mathrm{I}^{0} and some copies of a fiber of the trivial

circle bundle. We also use the notation \mathrm{I}^{0}(f) , etc., for the corresponding subcomplexes
of f(S(f)) . Furthermore, for a finite set X, |X| denotes the number of its elements.

Remark 5.5. The number of vertices in f(K)\backslash f(S(f)) and that in \mathrm{I}^{*}(f) depend
on the choice of a triangulation f:K\rightarrow L of g ,

while the numbers |\mathrm{I}\mathrm{I}^{*}(f)| do not.

Definition 5.6. For y\in f(K) ,
we call k=|\overline{f}^{-1}(y)| the multiplicity of y . Simi‐

larly, for \mathrm{z}\in g(M) ,
we call k=|\overline{g}^{-1}(\mathrm{z})| the multiplicity of \mathrm{z} . For each positive integer
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Figure 8. Multi‐germ corresponding to a double cone

k
,

the set of points in f(K)\backslash f(S(f)) (or in g(M)\backslash g(S(g)) ) with multiplicity k is

denoted by M_{k}(\overline{f}) (resp. M_{k}(\overline{g}) ).

Remark 5.7. The multiplicities of y\in f(K) and \mathrm{z}\in g(M) are positive integers,
since \overline{f} is a non‐degenerate simplicial map and \overline{g}^{-1}(\mathrm{z}) constitutes a finite set of points
which correspond to the connected components of g^{-1}(\mathrm{z}) .

Set \triangle=f(S(f)) . Consider the following decomposition of the set f(K) into the

union of disjoint subsets:

f(K)=(\displaystyle \bigcup_{k\geq 1}M_{k}(\overline{f}))\cup\triangle.
For v\in\triangle(0) ,

let \mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v) denote the index of v with respect to the map \overline{f}_{\triangle}=

\overline{f}|_{\overline{f}^{-1}(\triangle)}:\overline{f}^{-1}(\triangle)\rightarrow\triangle in the sense of (4.1).
Using Remark 5.3 and considering a neighborhood of each vertex  v\in\triangle^{(0)} ,

we can

compute the index \mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v) as follows. Let k be the multiplicity of a vertex v\in\triangle(0) .

From equation (4.2) it follows

\displaystyle \mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v)=\sum_{ $\tau$\ni v}\frac{(-1)^{\dim $\tau$}}{\dim $\tau$+1}-\sum_{w\in(\overline{f}_{\triangle}^{-1}(v))^{(0)}}\sum_{ $\sigma$\ni w}\frac{(-1)^{\dim $\sigma$}}{\dim $\sigma$+1}.
Then we obtain Table 1. For notations related to singular fibers, refer to [19, §3.1].

In the following, for each positive integer k
,

we denote by \mathrm{I}\mathrm{I}_{k}^{00}(f) the set of points
in \mathrm{I}\mathrm{I}^{00}(f) of multiplicity k . Similarly, we use the notations \mathrm{I}\mathrm{I}_{k}^{01}(f) , \mathrm{I}\mathrm{I}_{k}^{11}(f) , \mathrm{I}\mathrm{I}_{k}^{2}(f) and

\mathrm{I}\mathrm{I}_{k}^{3}(f) . We also use the notation \mathrm{I}\mathrm{I}_{k}^{*}(g) similarly.

Theorem 5.8. Let g:M\rightarrow \mathbb{R}^{2} be a C^{\infty}-\mathcal{S}table map of a clo\mathcal{S}ed orientable 3‐
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Table 1. Index of each vertex v\in\triangle^{(0)}

dimen\mathcal{S}ional manifold into the plane. Then, we have

 $\chi$(g(M))= $\chi$(W_{g})+\displaystyle \sum_{k\geq 2}(1-k)$\chi$^{c}(M_{k}(\overline{g}))+\sum_{k\geq 3}(k-2)|\mathrm{I}\mathrm{I}_{k}^{00}(g)|
+\displaystyle \sum_{k\geq 2}(k-1)|\mathrm{I}\mathrm{I}_{k}^{01}(g)|+\sum_{k\geq 2}k|\mathrm{I}\mathrm{I}_{k}^{11}(g)|+\sum_{k\geq 1}k|\mathrm{I}\mathrm{I}_{k}^{2}(g)|
+\displaystyle \sum_{k\geq 2}(k-1)|\mathrm{I}\mathrm{I}_{k}^{3}(g)|+\frac{|\mathrm{I}\mathrm{I}^{a}(g)|}{2}.

Proof. Since f(K)=\overline{f}(W_{f}) and W_{f}=\overline{f}^{-1}(f(K)) ,
we have

 $\chi$(\overline{f}(W_{f}))- $\chi$(W_{f})

= $\chi$((\displaystyle \bigcup_{k\geq 1}M_{k}(\overline{f}))\cup\triangle)- $\chi$(\overline{f}^{-1}(\bigcup_{k\geq 1}M_{k}(\overline{f}))\cup\overline{f}^{-1}(\triangle))
=$\chi$^{c}(\displaystyle \bigcup_{k\geq 1}M_{k}(\overline{f}))+ $\chi$(\triangle)-($\chi$^{c}(\overline{f}^{-1}(\bigcup_{k\geq 1}M_{k}(\overline{f})))+ $\chi$(\overline{f}^{-1}(\triangle)))
=\displaystyle \sum_{k\geq 1}$\chi$^{c}(M_{k}(\overline{f}))+ $\chi$(\triangle)-\sum_{k\geq 1}k$\chi$^{c}(M_{k}(\overline{f}))- $\chi$(\overline{f}^{-1}(\triangle))
=\displaystyle \sum_{k\geq 2}(1-k)$\chi$^{c}(M_{k}(\overline{f}))+ $\chi$(\triangle)- $\chi$(\overline{f}^{-1}(\triangle))

Applying Theorem 4.3 to \overline{f}_{\triangle}=\overline{f}|_{\overline{f}^{-1}(\triangle)}:\overline{f}^{-1}(\triangle)\rightarrow\triangle ,
we obtain

 $\chi$(\displaystyle \triangle)- $\chi$(\overline{f}^{-1}(\triangle))=\sum_{v\in\triangle(0)}\mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v) .
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Then we have

 $\chi$(\displaystyle \overline{f}(W_{f}))- $\chi$(W_{f})=\sum_{k\geq 2}(1-k)$\chi$^{c}(M_{k}(\overline{f}))+\sum_{v\in\triangle(0)}\mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v) .

Using the indices calculated in Table 1, we have

 $\chi$(\overline{f}(W_{f}))- $\chi$(W_{f})

=\displaystyle \sum_{k\geq 2}(1-k)$\chi$^{c}(M_{k}(\overline{f}))+\sum_{v\in \mathrm{I}\mathrm{I}^{00}(f)}\mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v)+\sum_{v\in \mathrm{I}\mathrm{I}^{01}(f)}\mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v)
+\displaystyle \sum_{v\in \mathrm{I}\mathrm{I}^{11}(f)}\mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v)+\sum_{v\in \mathrm{I}\mathrm{I}^{2}(f)}\mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v)+\sum_{v\in \mathrm{I}\mathrm{I}^{3}(f)}\mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v)
+\displaystyle \sum_{v\in \mathrm{I}\mathrm{I}^{a}(f)}\mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v)

=\displaystyle \sum_{k\geq 2}(1-k)$\chi$^{c}(M_{k}(\overline{f}))+\sum_{k\geq 3}(k-2)|\mathrm{I}\mathrm{I}_{k}^{00}(f)|
+\displaystyle \sum_{k\geq 2}(k-1)|\mathrm{I}\mathrm{I}_{k}^{01}(f)|+\sum_{k\geq 2}k|\mathrm{I}\mathrm{I}_{k}^{11}(f)|+\sum_{k\geq 1}k|\mathrm{I}\mathrm{I}_{k}^{2}(f)|
+\displaystyle \sum_{k\geq 2}(k-1)|\mathrm{I}\mathrm{I}_{k}^{3}(f)|+\frac{|\mathrm{I}\mathrm{I}^{a}(f)|}{2}.

Since f is a triangulation of g and \overline{g}(W_{g})=g(M) ,
we get the desired result. \square 

We have the following immediate corollary, which is originally due to Thom [24].

Corollary 5.9. Let g:M\rightarrow \mathbb{R}^{2} be a C^{\infty}-\mathcal{S}table map of a clo\mathcal{S}ed orientable 3‐

dimen\mathcal{S}ional manifold into the plane. Then, the number of cu\mathcal{S}p_{\mathcal{S}}i_{\mathcal{S}}alway_{\mathcal{S}} even.

Some explicit examples can be found in [6].

§6. Stable maps of 4‐manifolds into \mathbb{R}^{3}

In this section, we study C^{\infty} ‐stable maps g:M\rightarrow \mathbb{R}^{3} ,
where M is a closed ori‐

entable 4‐dimensional manifold. We will obtain an integer formula relating singularities
of such a map with some topological invariants.

Proposition 6.1. Let M be a clo\mathcal{S}ed4-dimen\mathcal{S}ional manifold and g:M\rightarrow \mathbb{R}^{3}a
C^{\infty} map. Then, gi_{\mathcal{S}}C^{\infty}-\mathcal{S}table if and only if the following local and global condition\mathcal{S}

are \mathcal{S}ati\mathcal{S}fied.
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(i) For every p\in M there exi_{\mathcal{S}}t local coordinate\mathcal{S}(x, y, \mathrm{z}, w) and (X, Y, Z) around p\in M
and g(p)\in \mathbb{R}^{3}, re\mathcal{S}pectively, \mathcal{S}uch that

(Xog, Yog, Zog)

=\left\{\begin{array}{l}
(x, y, \mathrm{z}) , p : regular point,\\
(x, y, \mathrm{z}^{2}+w^{2}) , p : definite fold point,\\
(x, y, \mathrm{z}^{2}-w^{2}) , p : indefinite fold point,\\
(x, y, \mathrm{z}^{3}+x\mathrm{z}-w^{2}) , p : cu\mathcal{S}p point,\\
(x, y, \mathrm{z}^{4}+x\mathrm{z}^{2}+y\mathrm{z}+w^{2}) , p : definite \mathcal{S}wallowtail point,\\
(x, y, \mathrm{z}^{4}+x\mathrm{z}^{2}+y\mathrm{z}-w^{2}) , p : indefinite \mathcal{S}wallowtail point.
\end{array}\right.
(ii) Set S(g)= {p\in M : rank dg_{p}<3 }, which i_{\mathcal{S}} a clo ed 2‐dimen ional \mathcal{S} ubmanifold

of M under the above condition (i) and i_{\mathcal{S}} called the \mathcal{S} ingular \mathcal{S}et of g . Then, for

every r\in g(S(g)) , g^{-1}(r)\cap S(g)con\mathcal{S}i_{\mathcal{S}}t_{\mathcal{S}} of at mo\mathcal{S}t three point_{\mathcal{S}} and the multi‐germ

(g|_{S(g)}, g^{-1}(r)\cap S(g))i_{\mathcal{S}} equivalent to one of the \mathcal{S}ixmulti-germ\mathcal{S}a\mathcal{S}de\mathcal{S} cribed in

Fig. 9: (1) repre\mathcal{S}ent_{\mathcal{S}a\mathcal{S}}ingleimmer\mathcal{S}ion germ which corre\mathcal{S}pond_{\mathcal{S}} to a fold point, (2)
and (4) repre\mathcal{S}ent normal cro\mathcal{S}\mathcal{S}ing_{\mathcal{S}} of two and three immer\mathcal{S}iongerm\mathcal{S}, re\mathcal{S}pectively,
each of which corre\mathcal{S}pond_{\mathcal{S}} to a fold point, (3) corre\mathcal{S}pond_{\mathcal{S}} to a cu\mathcal{S}p point, (5)
repre\mathcal{S}ent_{\mathcal{S}} a tran\mathcal{S}ver\mathcal{S}ecro\mathcal{S}\mathcal{S}ing of a cu\mathcal{S}pidal edge a\mathcal{S} in (3) and an immer\mathcal{S}ion

germ corre\mathcal{S}ponding to a fold point, and (6) corre\mathcal{S}pond_{\mathcal{S}} to a \mathcal{S} wallowtail point.

Let g:M\rightarrow \mathbb{R}^{3} be a C^{\infty} ‐stable map of a closed orientable 4‐dimensional manifold

M . Then, as in the previous section, we have a triangulation of the Stein factorization

of g (see Proposition 3.9):
K\rightarrow^{f}L

W_{f}.

We also use notations similar to those in the previous section. In particular, for notations

related to singular fibers, refer to [19, §3.1].

Remark 6.2. The numbers of vertices in f(K)\backslash f(S(f)) , \mathrm{I}^{*}(f) and \mathrm{I}\mathrm{I}^{*}(f) depend
on the choice of a triangulation f:K\rightarrow L of g ,

while the numbers III
*

(f)| do not.

Set \triangle=f(S(f))\backslash (1^{0}(f)\cup \mathrm{I}^{1}(f)) . Note that \triangle is the set of points  r\in f(K)
which correspond to (2) -(6) in Fig. 9 and that \triangle is of dimension one. (Note that here

we use  f(S(f))\backslash (\mathrm{I}^{0}(f)\cup \mathrm{I}^{1}(f)) instead of f(S(f)) as \triangle
,

since we need to ignore the

2‐dimensional simplices in order to simplify the computation.) For  v\in\triangle(0) , \mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v)
denotes the index of v with respect to the map \overline{f}_{\triangle}=\overline{f}|_{\overline{f}^{-1}(\triangle)}:\overline{f}^{-1}(\triangle)\rightarrow\triangle . Let \triangle_{\mathrm{I}\mathrm{I}}

(or \triangle_{\mathrm{I}\mathrm{I}\mathrm{I}} ) denote the subset of \triangle corresponding to \mathrm{I}\mathrm{I}^{*}(f) (resp. \mathrm{I}\mathrm{I}\mathrm{I}^{*}(f) ).
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(1) (2) (3)

(4) (5) (6)

Figure 9. Multi‐germs of g|_{S(g)}

Proposition 6.3. The index \mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v) for each vertex v of \triangle_{\mathrm{I}\mathrm{I}\mathrm{I}}i_{\mathcal{S}} given a\mathcal{S} in

Table 2, where ki_{\mathcal{S}} the multiplicity of v . The index \mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v) for each vertex v of \triangle_{\mathrm{I}\mathrm{I}}
vani_{\mathcal{S}}he\mathcal{S}.

Proof. The index \mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v) can be calculated by analyzing the adjacencies among

the sets \mathrm{I}^{*}(f) , \mathrm{I}\mathrm{I}^{*}(f) and \mathrm{I}\mathrm{I}\mathrm{I}^{*}(f) . For example, for v\in 111^{4}(f) ,
the fibers near the

singular fiber component of f^{-1}(v) are as in Fig. 10 (for details, see [19, §3.1]). Then,
we can calculate the index \mathrm{I}\mathrm{n}\mathrm{d}_{\overline{f}\triangle}(v) according to its definition. Details are left to the

reader. \square 

In the following, for each positive integer k
,

we denote by |\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{*}(f)| (or |\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{*}(g)| ) the

number of elements of III
*

(f) (resp. III
*

(g)) of multiplicity k.

By the same argument as in the proof of Theorem 5.8, we obtain the following.

Theorem 6.4. Let g:M\rightarrow \mathbb{R}^{3} be a C^{\infty}-\mathcal{S}table map of a clo\mathcal{S}ed orientable 4‐
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Table 2. Index of each vertex v\in\triangle^{(0)}

dimen\mathcal{S}ional manifold into \mathbb{R}^{3} . Then, we have

 $\chi$(g(M))

= $\chi$(W_{g})+\displaystyle \sum_{k\geq 2}(1-k)$\chi$^{c}(M_{k}^{3}(\overline{g}))+\sum_{k\geq 2}(1-k)$\chi$^{c}(M_{k}^{2}(\overline{g}))
+\displaystyle \sum_{k\geq 3}(2k-\frac{7}{2})|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{000}(g)|+\sum_{k\geq 3}(2k-\frac{5}{2})|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{001}(g)|
+\displaystyle \sum_{k\geq 3}(2k-\frac{3}{2})|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{011}(g)|+\sum_{k\geq 3}(2k-\frac{1}{2})|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{111}(g)|
+\displaystyle \sum_{k\geq 2}(2k-\frac{3}{2})|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{02}(g)|+\sum_{k\geq 2}(2k-\frac{5}{2})|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{03}(g)|
+\displaystyle \sum_{k\geq 2}(2k-\frac{1}{2})|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{12}(g)|+\sum_{k\geq 2}(2k-\frac{3}{2})|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{13}(g)|
+\displaystyle \sum_{k\geq 1}(2k-\frac{1}{2})|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{4}(g)|+\sum_{k\geq 1}(2k-\frac{1}{2})|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{5}(g)|
+\displaystyle \sum_{k\geq 1}(2k-2)|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{6}(g)|+\sum_{k\geq 1}(2k-\frac{3}{2})|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{7}(g)|+\sum_{k\geq 1}(2k-2)|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{8}(g)|
+\displaystyle \sum_{k\geq 2}(k-1)|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{0a}(g)|+\sum_{k\geq 2}k|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{1a}(g)|+\sum_{k\geq 1}k|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{b}(g)|
+\displaystyle \sum_{k\geq 1}\frac{k}{2}|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{c}(g)|+\sum_{k\geq 1}(\frac{k}{2}-\frac{1}{2})|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{d}(g)|+\sum_{k\geq 1}(\frac{k}{2}+\frac{1}{2})|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{e}(g)|,
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Figure 10. Degeneration of fibers near a 11 1^{}‐type singular fiber

where M_{k}^{3}(\overline{g})=\{y\in g(M)\backslash g(S(g)):|\overline{g}^{-1}(y)|=k\}, \triangle=g(S(g))\backslash (\mathrm{I}^{0}(g)\cup \mathrm{I}^{1}(g)) and

M_{k}^{2}(\overline{g})=\{y\in g(S(g))\backslash \triangle:|\overline{g}^{-1}(y)|=k\}.

As an immediate corollary, we have the following.

Corollary 6.5. Let g:M\rightarrow \mathbb{R}^{3} be a C^{\infty}-\mathcal{S}table map of a clo\mathcal{S}ed orientable 4‐

dimen\mathcal{S}ional manifold into \mathbb{R}^{3} . Then, we have

|T(g)|-(|\mathrm{I}\mathrm{I}\mathrm{I}^{6}(g)|+|\mathrm{I}\mathrm{I}\mathrm{I}^{8}(g)|)

+\displaystyle \sum_{k:\mathrm{o}\mathrm{d}\mathrm{d}}|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{c}(g)|+\sum_{k:\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}(|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{d}(g)|+|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{e}(g)|)\equiv 0 (\mathrm{m}\mathrm{o}\mathrm{d} 2) ,

where T(g)(\subset \mathbb{R}^{3})i_{\mathcal{S}} the \mathcal{S}et of triple point_{\mathcal{S}} of g|_{S(g)} in the target a\mathcal{S} in Fig. 9 (4).

Note that the above congruence can also be obtained by using the adjacencies of

singular fibers. For details, see [19, Remark 4.4].

Example 6.6. Consider the C^{\infty} ‐stable map g:\mathbb{C}P^{2}\# 2\overline{\mathbb{C}P^{2}}\rightarrow \mathbb{R}^{3} constructed in

[19]. Note that g has only fold points as its singularities. Furthermore, the set g(S(g))
is a disjoint union of three spheres, which are the images of definite fold points, and a

Boy surface, which is the image of indefinite fold points. Therefore, g has exactly one

singular fiber of codimension three and g has neither swallowtails nor cusp points.
For this map, we have |\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{c}(g)|=|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{d}(g)|=|\mathrm{I}\mathrm{I}\mathrm{I}_{k}^{e}(g)|=0 for all k> O. From

Corollary 6.5 it follows that |T(g)|-(|111^{6}(g)|+|\mathrm{I}\mathrm{I}\mathrm{I}^{8}(g)|)\equiv 0 (mod2). This implies
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that the singular fiber of codimension three must be of type 11 1^{} or III8, since |T(g)|=1.
In fact, g has exactly one singular fiber of type III8

Example 6.7. In [9, Theorem 2.1, p. 6], Kobayashi presents a C^{\infty} ‐stable map

g_{1}:\mathbb{C}P^{2}\rightarrow \mathbb{R}^{3}

satisfying the following properties.

(1) The singular set S(g_{1}) is diffeomorphic to \mathbb{R}P^{2}\#\mathbb{R}P^{2}\#\mathbb{R}P^{2} (see [7, Example 5.8] as

well).

(2) The map g_{1} has six swallowtails and six curves of cusp points.

For the map g_{1} ,
we have two triple points of g_{1}|_{S(g_{1})} ,

one of which corresponds to a

singular fiber of type \mathrm{I}\mathrm{I}\mathrm{I}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}
,

and six definite swallowtails. Note that the six swallowtails

are of the same type, while three of them have multiplicity one and the other three have

multiplicity two. Then, by Corollary 6.5, we have |111^{6}(g_{1})|+|111^{8}(g_{1})|\equiv 1 (mod2).
Since |T(g_{1})|=2 and |111^{000}(g_{1})|=1 ,

the singular fiber corresponding to the other

triple point of g_{1}|_{S(g_{1})} has to be of type III6 or III8

Example 6.8. In [9, Theorem 3.1, p. 8], Kobayashi presents a C^{\infty} ‐stable map

g_{2}:\mathbb{C}P^{2}\rightarrow \mathbb{R}^{3}

satisfying the following properties.

(1) The singular set S(g_{2}) is diffeomorphic to the disjoint union S^{2}\cup \mathbb{R}P^{2}.

(2) The map g_{2} has a circle of cusp points and some surfaces of fold points, while it

does not have any swallowtails.

(3) The singular value set g_{2}(S(g_{2}))\subset \mathbb{R}^{3} consists of two connected components: the

image of \mathbb{R}P^{2} is a singular surface obtained from an embedded sphere with a cuspidal

edge circle, by replacing a small 2‐dimensional disk with a punctured Boy surface,
and the image of S^{2} is embedded so that it surrounds the image of \mathbb{R}P^{2}.

As in Example 6.6, g_{2} does not have any swallowtails and g_{2}|_{S(g_{2})} has only one

triple point. Therefore, the singular fiber corresponding to this point has to be of type
III6 or III8

Remark 6.9. As a consequence of Corollary 6.5, if a C^{\infty} ‐stable map g:M\rightarrow \mathbb{R}^{3}
of a closed orientable 4‐dimensional manifold M does not have any swallowtails and

g|_{S(g)} has only one triple point, then the singular fiber corresponding to this point has

to be of type \mathrm{I}\mathrm{I}\mathrm{I}6 or III8. Moreover, by [18, Corollary 5.4], the Euler characteristic

 $\chi$(M) is odd.
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Remark 6.10. Some related Euler characteristic formulas based on singular fibers

of maps are obtained in [7].
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