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On line degenerated torus curves and weak Zariski

pairs

By

Kawashima Masayuki
*

Abstract

Let C=\{f=0\} be an affine plane curve. We are interested in a form of the defining
polynomial f . In this paper, we study line degenerations of torus curves. Line degenerations
of torus type are divided into two types which are called visible or invisible degenerations. We

construct a pair of plane curves of degree 2p-2 such that they have the same configuration of

singularities. If p is even, their complements in \mathbb{P}^{2} have different topologies. Thus they give a

weak Zariski pair.

§1. Introduction

Let \mathbb{P}^{2} be a complex projective space of dimension 2 with homogeneous coordinates

[X_{0}, X_{1}, X_{2}] and let \mathbb{C}^{2}=\mathbb{P}^{2}\backslash \{X_{2}=0\} be the affine space with coordinates (x, y)=
(X_{0}/X_{2}, X_{1}/X_{2}) . We study reduced plane curves in \mathbb{P}^{2} and \mathbb{C}^{2} . Let \mathcal{M}(d) and \mathcal{M}^{a}(d)
be the set of projective and affine plane curves of degree d respectively. For a given
curve C\in \mathcal{M}(d) or \mathcal{M}^{a}(d) ,

we are interested in forms of the defining polynomial of C.

Let p and q be positive integers such that p>q\geq 2 . We say that C=\{f=
0\}\in \mathcal{M}^{a}(d) is a torus curve of type (p, q) if f is written as f=f_{a}^{p}+f_{b}^{q} where f_{j} is a

polynomial in \mathbb{C}[x, y] of degree j . Put \mathcal{T}(p, q;d) as the set of curves of (p, q) torus type
of degree d.

We also consider another class of plane curves which are called quasi torus curves

of type (p, q) (c.f [7], [2]). We say that C=\{f=0\}\in \mathcal{M}^{a}(d) quasi torus curve of type

(p, q) if there exist three polynomials f_{a}, f_{b} and f_{c} such that they do not have same
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components and they satisfy the following relation:

f_{c}^{pq}f=f_{a}^{p}+f_{b}^{q} in \mathbb{C}[x, y] \deg f_{j}=j

where \deg f_{j} is the degree of f_{j} . Put \mathcal{Q}\mathcal{T}(p, q;d) as the set of curves of (p, q) quasi torus

type of degree d.

For a given curve C\in \mathcal{M}^{a}(d) ,
we say that C has a torus decomposition (resp. quasi

torus decomposition) if C is in \mathcal{T}(p, q;d) (resp. \mathcal{Q}\mathcal{T}(p, q;d) ) for some (p, q) .

Example 1.1. The following example is the motivation of this work. Let Q=

\{f=0\}\in \mathcal{M}^{a}(4) be a 3‐cuspidal quartic. Then Q has at least two torus and one quasi
torus decompositions ([6]):

(1.1) f=f_{1}^{3}+f_{2}^{2}, f=g_{2}^{3}+g_{3}^{2}, h_{1}^{6}f=h_{3}^{3}+h_{5}^{2}

where \deg f_{i}=i, \deg g_{i}=i and \deg h_{i}=i.

To construct these torus decompositions, we used line degenerated torus curves.

Now we recall line degeneration of torus curves which are defined by M. Oka in [8].

Denition 1.2. Let C=\{F=F_{q}^{p}+F_{p}^{q}=0\}\in \mathcal{M} (pq) be a projective (p, q)
torus curve. Suppose that F has the following form:

(1.2) F(X_{0}, X_{1}, X_{2})=X_{2}^{j}G(X_{0}, X_{1}, X_{2})

where G(X, Y, Z) is a reduced homogeneous polynomial of degree pq—j. We call a

curve D=\{G=0\} a line degenerated torus curve of type (p, q) of order j and the line

L_{\infty}=\{X_{2}=0\} the limit line of the degeneration ([8]).

Put \mathcal{L}\mathcal{T}_{j}(p, q;d) as the set of line degenerated torus curves of type (p, q) of order

j . and \mathcal{L}\mathcal{T}(p, q) is the union of \mathcal{L}\mathcal{T}_{j}(p, q;d) with respect to j.
We divide the situations (1.2) into two cases which are called visible degenerations

and invisible degenerations. Put the integer r_{k} :=\displaystyle \max\{r\in \mathbb{Z}|X_{2}^{r}|F_{k}\} for k=p, q.

Visible case. Suppose that r_{p}\cdot r_{q}\neq 0 and qr_{p}\neq pr_{q} . Then F_{q} and F_{p} are written

as follows:

F_{q}(X_{0}, X_{1}, X_{2})=F_{q-r_{q}}'(X_{0}, X_{1}, X_{2})X_{2}^{r_{q}}, F_{p}(X_{0}, X_{1}, X_{2})=F_{p-r_{p}}'(X_{0}, X_{1}, X_{2})X_{2}^{r_{p}}.

Putting  j:=\displaystyle \min{  qr_{p} , prq}, we can factor F as F(X_{0}, X_{1}, X_{2})=X_{2}^{j}G(X_{0}, X_{1}, X_{2}) .

Then G is written using F_{p-r_{p}}' and F_{q-r_{q}}' as

(1.3)

G(X_{0}, X_{1}, X_{2})=\left\{\begin{array}{ll}
F_{q-r_{q}}'(X_{0}, X_{1}, X_{2})^{p}+F_{p-r_{p}}'(X_{0}, X_{1}, X_{2})^{q}X_{2}^{qr_{p}-pr_{q}} & \mathrm{i}\mathrm{f} j=pr_{q},\\
F_{q-r_{q}}'(X_{0}, X_{1}, X_{2})^{p}X_{2}^{pr_{q}-qr_{p}}+F_{p-r_{p}}'(X_{0}, X_{1}, X_{2})^{q} & \mathrm{i}\mathrm{f}\mathrm{j} =qr_{p}.
\end{array}\right.
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Such a factorization is called a visible factorization and D is called a visible degener‐
ation of (p, q) torus curves. We denote the set of visible degenerations of order j by

\mathcal{L}\mathcal{T}_{j}^{v}(p, q;d) .

Invisible case. Either r_{p}=0 or r_{q}=0 but F can be written as (1.2). Then D

is called an invisible degeneration of (p, q) torus curves. In this case, write F_{p}^{q}+F_{q}^{p}=
\displaystyle \sum_{i=0}^{pq}A_{i}(X_{0}, X_{1})X_{2}^{i} . Then A_{j}(X_{0}, X_{1})=0 for i\leq j-1 and therefore X_{2}^{J} F . We

denote the set of invisible degenerations of order j by \mathcal{L}\mathcal{T}_{j}^{I}(p, q;d) .

Using these terminologies, we will show that torus decompositions (1.1) satisfy:

\{f_{1}^{3}+f_{2}^{2}=0\}\in \mathcal{L}\mathcal{T}_{2}^{V}(3,2;4) , \{g_{2}^{3}+g_{3}^{2}=0\}\in \mathcal{L}\mathcal{T}_{2}^{I}(3,2;4) .

Thus Q=\{f=0\} is in \mathcal{L}\mathcal{T}_{2}^{V}(3,2;4)\cap \mathcal{L}\mathcal{T}_{2}^{I}(3,2;4) .

We consider whether such phenomena occur or not for other curves. Before we

consider this problem, we study line degenerated torus curves. More precisely, we look

for a pair of curves \{C, D\} such that C\in \mathcal{L}\mathcal{T}_{j}^{V}(p, q;d) and D\in \mathcal{L}\mathcal{T}_{j}^{I}(p, q;d) such that

Sing C= Sing D . Here Sing C is the configuration of the singularities. If there exists

such a pair (C, D) ,
then we discuss if the topologies of C and D are the same or not.

Denition 1.3. A pair of plane curves (C_{1}, C_{2}) is called a weak Zariski pair
if they have the same degree and configuration of singularities, while the complements

\mathbb{P}^{2}\backslash C_{1} and \mathbb{P}^{2}\backslash C_{2} are not homeomorphic to each other ([9, 5]).

To express singularities of curves, we use an important class of singularities which

is called Brieskorn‐Pham singularities:

B_{n,m}:x^{n}+y^{m}=0, n, m\geq 2.

Theorem 1.4. For each p\geq 3 ,
there is a pair of plane curves (C, D)\in

\mathcal{L}\mathcal{T}_{2}^{V}(p, 2;2p-2)\times \mathcal{L}\mathcal{T}_{2}^{I}(p, 2;2p-2) with

Sing C= Sing D=\{pA_{p-1}, A_{p-3}, B_{p-2,2(p-2)}\}.

If p is even, then (C, D) is a weak Zariski pair.

§2. Preliminaries

In section 2, we follow the terminologies in [3] and [4].
Let p:$\Sigma$_{d}\rightarrow \mathbb{P}^{1} be a Hirzebruch surface of degree d and let \triangle_{\infty,d} be the exceptional

section with the self‐intersection multiplicity \triangle_{\infty,d}^{2} is -d . Let (X_{0}, X_{1}, X_{2}) and (Y_{0}, Y_{1})
be homogeneous coordinates of \mathbb{P}^{2} and \mathbb{P}^{1} respectively. Using these coordinates, $\Sigma$_{d} is

defined as

$\Sigma$_{d}:=\{((X_{0}, X_{1}, X_{2}), (Y_{0}, Y_{1}))\in \mathbb{P}^{2}\times \mathbb{P}^{1}|X_{1}Y_{1}^{d}=X_{2}Y_{0}^{d}\}
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and p:$\Sigma$_{d}\rightarrow \mathbb{P}^{1} is the canonical projection. There are four affine coordinates which

cover $\Sigma$_{d} . We use two affine spaces W_{d}^{1}, W_{d}^{2}\subset$\Sigma$_{d} with coordinates (y_{d}, $\tau$_{d}) and (z_{d}, $\tau$_{d})
respectively where

y_{d}=X_{2}/X_{0}, z_{d}=X_{0}/X_{2}, $\tau$_{d}=Y_{0}/Y_{1}

and they are glued by the relation y_{d}z_{d}=1 . Putting V_{1}=\{(Y_{0}, Y_{1})\in \mathbb{P}^{1}|Y_{1}\neq 0\},
they satisfy p^{-1}(V_{1})=W_{d}^{1}\cup W_{d}^{2}.

We denote the fiber over $\tau$_{d}=0 in $\Sigma$_{d} by F_{\infty} and the origin of the affine space W_{d}^{i}
by O_{i,d}:=(0,0)\in W_{d}^{i} . We put the affine line F_{\infty}^{\mathrm{o}} :=F_{\infty}\backslash \triangle_{\infty,d}=F_{\infty}\cap W_{d}^{2}.

§2.1. p‐gonal curves

Let B\subset$\Sigma$_{d} be a reduced curve such that B does not contain the exceptional section

\triangle_{\infty,d} . If B intersects with a generic fiber at p points, then we call B a generalized p‐

gonal curve. A generalized p‐gonal curve B is called a p ‐gonal curve if B disjoint from

the exceptional section \triangle_{\infty,d}.
Let f_{i} be a defining equation of B on W_{d}^{i} and then we have the equality f_{1}(y_{d}, $\tau$_{d})=

y_{d}^{p}f_{2}(z_{d}, $\tau$_{d}) on W_{d}^{1}\cap W_{d}^{2} . Using affine coordinates (z_{d}, $\tau$_{d})\in W_{d}^{2} ,
the local equation

f_{2}(z_{d}, $\tau$_{d}) is written as

f_{2}(z_{d}, $\tau$_{d})=\displaystyle \sum_{i=0}^{p}b_{i}($\tau$_{d})z_{d}^{i}, \deg b_{i}($\tau$_{d})\leq d(p-i) .

The exceptional section \triangle_{\infty,d} is defined as \{y_{d}=0\} in the affine coordinates (y_{d}, $\tau$_{d})\in
 W_{d}^{1}.

§2.2. Nagata transformations

Let P be a fixed point in $\Sigma$_{2}\backslash \triangle_{\infty,2} and let F be the fiber which passes through P.

A Nagata transfO rmation N : $\Sigma$_{2}--\mathrm{K}$\Sigma$_{1} is a birational transformation which consists

of the blowing‐up at P\not\in\triangle_{\infty,2} and the blowing‐down the strict transform F^{*} of F . We

observe that the exceptional section \triangle_{\infty,1} of $\Sigma$_{1} is the image N(\triangle_{\infty,2}) .

We express a Nagata transformation using local coordinates (z_{2}, $\tau$_{2}) and (z_{1}, $\tau$_{1})
assuming P=O_{2,2}\in W_{2}^{2} . Let $\mu$_{1} : \tilde{W}_{2}^{2}\rightarrow W_{2}^{2} and $\mu$_{2} : \tilde{W}_{1}^{1}\rightarrow W_{1}^{1} be blowing‐ups
centered at O_{2,2} and O_{1} ,1 respectively. There is an affine coordinate \tilde{W} with coordinates

(s, t) such that $\mu$_{1}(s, t)=(t, ts) and $\mu$_{2}(s, t)= ( s
, st). Note that \{t=0\} defines the

exceptional curve of $\mu$_{1} and \{s=0\} defines the exceptional curve of $\mu$_{2} . Then we have:

N(z_{2}, $\tau$_{2})=(z_{1}, $\tau$_{1})=(\displaystyle \frac{z_{2}}{$\tau$_{2}}, $\tau$_{2}) .

Let B be a p‐gonal curve in $\Sigma$_{2} which is defined by \{f_{2}(z_{2}, $\tau$_{2})=0\} in W_{2}^{2} . We con‐

sider the defining equation of the image of a p‐gonal curve by a Nagata transformation.

By the definition of a Nagata transformation, B':=N(B)\subset$\Sigma$_{1} is defined as
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(2.1) B':f_{2}'(z_{1}, $\tau$_{1})=\displaystyle \frac{1}{$\tau$_{1}^{M}}f_{2}(z_{1}$\tau$_{1}, $\tau$_{1})=0
where M is the multiplicity of B at P . As B is assumed to be p‐gonal, B'\cap\triangle_{\infty,1} is

\{O_{1,1}\} . Thus B' is a generalized p‐gonal curve.

§2.3. Contraction of p‐gonal curves from $\Sigma$_{2} to \mathbb{P}^{2}

We recall that a Hirzebruch surface $\Sigma$_{1} is obtained as a blowing‐up at an any point
in \mathbb{P}^{2} . In this section, we consider the defining polynomial of a plane curve which is

obtained as the image of the composition of a Nagata transformation and a blowing‐up.
Let B=\{f_{2}(z_{2}, $\tau$_{2})=0\} be a p‐gonal curve in W_{2}^{2} and let  B'=\{f_{2}'(z_{1}, $\tau$_{1})=0\}\subset

 W_{1}^{2} be the image of B by a Nagata transformation N : $\Sigma$_{2}--\mathrm{K}$\Sigma$_{1} at O_{2,2} . Put m

the intersection multiplicity of B' and \triangle_{\infty,1} at O_{1,1} . Let U_{1} be the affine coordinate

chart \mathbb{P}^{2}\backslash \{X_{1}=0\} with the coordinate (x_{0}, x_{2})=(X_{0}/X_{1}, X_{2}/X_{1}) . Let  $\pi$ : \tilde{U}_{1}\rightarrow U_{1}
be a blowing‐up at (0,0)\in U_{1} . We naturally identify \tilde{U}_{1} with $\Sigma$_{1} as follows: Let \tilde{U}_{10}
and \tilde{U}_{11} be two affine coordinates of Ũ and let (s, t) be the affine coordinate of \tilde{U}_{11}.
Then  $\pi$ is defined as  $\pi$(s, t)=(x_{0}, x_{2})= (s

, st) on \tilde{U}_{11} . We identify \tilde{U}_{11} with W_{1}^{1} as

(s, t)\mapsto(y_{1}, $\tau$_{1}) .

By the definition of  $\pi$ :  $\Sigma$_{1}\rightarrow U_{1} and the equality (2.1), the defining polynomial f
of C:=( $\pi$\circ N)(B)\subset U_{1} as

(2.2) f(x_{0}, x_{2})=\displaystyle \frac{x_{0}^{M+m+p}}{x_{2}^{M}}f_{2}(\frac{x_{2}}{x_{0}^{2}}, \frac{x_{2}}{x_{0}}) .

Indeed, let fí (y_{1}, $\tau$_{1}) be the defining equation of B' in W_{1}^{1} which is written as

f_{1}'(y_{1}, $\tau$_{1})=y_{1}^{p}f_{2}'(1/y_{1}, $\tau$_{1})=\displaystyle \frac{y_{1}^{p}}{$\tau$_{1}^{M}}f_{2}($\tau$_{1}/y_{1}, $\tau$_{1}) .

where we use (2.1) for the second equality. And f must satisfy f(y_{1}, y_{1}$\tau$_{1})=y_{1}^{m} fí (y_{1}, $\tau$_{1}) .

Using these equalities and  $\pi$(y_{1}, $\tau$_{1})=(x_{0}, x_{2})=(y_{1}, y_{1}$\tau$_{1}) ,
we have the equality (2.2).

Next we consider singularities of B' and C . Assume that B satisfies the following
conditions:

\bullet  B has an A_{\ell-1}=B_{\ell,2} singularity at O_{2,2}\in W_{2}^{2} and its tangent cone is transverse

to the fiber F_{\infty}=\{$\tau$_{2}=0\}.

\bullet  B intersects transversely at p-2 distinct points with F_{\infty} outside of O_{2,2}\in W_{2}^{2}.

Under the above conditions, the intersection B\cap(F_{\infty}\backslash \{O_{2,2}\}) consists of distinct p-2

points and B' intersects with F_{\infty}^{\mathrm{o}} so that
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\bullet If \ell=2
,

then B' intersects transversely with F_{\infty}^{\mathrm{o}} at two points.

\bullet If \ell=3 ,
then B' is tangent to F_{\infty}^{\mathrm{o}} with the intersection multiplicity 2.

\bullet If \ell>3 ,
then B' has A_{\ell-3}=B_{\ell-2,2} singularity.

Observation. If B is a trigonal curve (p=3) ,
then B' is smooth and intersects

transversely with \triangle_{\infty,1} at O_{1,1} . If p is greater than 3, then B' has B_{p-2,p-2} singularity
at O_{1} ,1 and C= $\pi$(B') has B_{p-2,2(p-2)} singularity at (0,0)\in U_{1}.

Proof. The first assertion is obvious. Assume p>3 . The defining equation

fí (y_{1}, $\tau$_{1}) of B' in W_{1}^{1} is written as:

f_{1}'(y_{1}, $\tau$_{1})=c\displaystyle \prod_{i=1}^{p-2}(y_{1}-$\alpha$_{i}$\tau$_{1})+ (higher terms), c\neq 0, $\alpha$_{i}\neq$\alpha$_{j}(i\neq j) .

Now we use the equality f(x_{0}, x_{2})=x_{0}^{p-2} fí (x, x_{2}/x_{0}) which is obtained from (2.2).
Then we have

f(x_{0}, x_{2})=x_{0}^{p-2}f_{1}'(x_{0}, x_{2}/x_{0})=\displaystyle \prod_{i=1}^{p-2}(x_{0}^{2}-$\alpha$_{i}x_{2})+ (higher terms).

Thus C has B_{p-2,2(p-2)} singularity at (0,0)\in U_{1}. \square 

§3. p‐gonal curves of (p, 2) torus type

Let B be a p‐gonal curve in $\Sigma$_{2} . We say that B is torus curve of type (p, 2) if the

defining equation f_{2} of B in the affine space (W_{2}^{2}, (z_{2}, $\tau$_{2})) is written as

f_{2}(z_{2}, $\tau$_{2})=k(z_{2}, $\tau$_{2})^{p}-h(z_{2}, $\tau$_{2})^{2}

We assume further that

\left\{\begin{array}{l}
k(z_{2}, $\tau$_{2})=z_{2}+b_{2}($\tau$_{2}) ,\\
h(z_{2}, $\tau$_{2})=b_{p-2}($\tau$_{2})z_{2}+b_{p}($\tau$_{2}) ,
\end{array}\right. \deg b_{i}($\tau$_{2})=i.

§3.1. Singularities of (p, 2) torus type

We consider curves K:=\{k=0\} and H:=\{h=0\} in W_{2}^{2} where h and k are as

above. Let P\in B be a singular point. If P\in K\cap H ,
we call P an inner singularity.

Otherwise P is called an outer singularity. We put \triangle_{1}($\tau$_{2}) :=h(-b_{2}($\tau$_{2}), $\tau$_{2})=b_{p}($\tau$_{2})-
b_{p-2}($\tau$_{2})b_{2}($\tau$_{2}) and take an inner singular point P\in K\cap H . Then P is written as

(-b_{2}(s), s) for some s\in \mathbb{C} with \triangle_{1}(s)=0 and the multiplicity of \triangle_{1}($\tau$_{2}) at s
, say  $\iota$

,
is

equal to the intersection multiplicity of  K and H at P.

By a similar argument as that in Lemma 1 in [1], we have the following.
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Lemma 3.1. Let B be the p ‐gonal curve as above in $\Sigma$_{2} . Suppose that s is a root

of \triangle_{1}( $\tau$) and let P=(-b_{q}(s), s)\in B be an inner singular point with the intersection

multiplicity  $\iota$ . If \triangle_{2}(s)\neq 0 ,
then B has B_{p $\iota$,2}=A_{p $\iota$-1} singularity at P.

§4. Proof of Theorem 1.4

Let B\subset$\Sigma$_{2} be a p‐gonal curve of (p, 2) torus type. As the degree of \triangle_{1}($\tau$_{2}) is p,

B has pA_{p-1} inner singularities by Lemma 3.1. We may assume that B has an outer

A_{p-1} singularity. For example, we take b_{2}($\tau$_{2}) , b_{p-2}($\tau$_{2}) and b_{p}($\tau$_{2}) as

b_{2}($\tau$_{2})=1+$\tau$_{2}^{2}, b_{p}($\tau$_{2})=1+\displaystyle \frac{p}{2}$\tau$_{2}^{2}+$\tau$_{2}^{p}, b_{p-2}($\tau$_{2})=\frac{p}{2}+p$\tau$_{2}^{p-2}
Then f_{2}=k^{p}-h^{2} has an outer A_{p-1} singularity at O_{2,2} and its tangent cone does not

contain \{$\tau$_{2}=0\} . As \displaystyle \triangle_{1}($\tau$_{2})=1-\frac{p}{2}-p$\tau$_{2}^{p-2}+(1-p)$\tau$_{2}^{p} and p\geq 3, K and H intersect

transversely at distinct p points and K\cap H\cap F_{\infty}=\emptyset.
Let P be an inner A_{p-1} singular point and let Q be an outer A_{p-1} singular point of

B . Let N_{1} and N_{2} be the Nagata transformations from $\Sigma$_{2} to $\Sigma$_{1} at P and Q respectively.
We consider the defining polynomial of C:=( $\pi$\circ N)(B) and D:=( $\pi$\circ N)(B) where

 $\pi$ :  $\Sigma$_{1}\rightarrow U_{1} is the blowing‐up at (0,0)\in U_{1}.

inner \mathrm{p}1outer \mathrm{p}1

$\Sigma$_{1}

§4.1. Construction of a visible degeneration

Hereafter we assume that K and H intersect transversely at p points. Assume that

P=O_{2,2} in the affine space W_{2}^{2} . Let f_{2}(z_{2}, $\tau$_{2})=k(z_{2}, $\tau$_{2})^{p}-h(z_{2}, $\tau$_{2})^{2} be the defining
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equation of B where

k(z_{2}, $\tau$_{2})=z_{2}+b_{2}($\tau$_{2}) , h(z_{2}, $\tau$_{2})=b_{p-2}($\tau$_{2})z_{2}+b_{p}($\tau$_{2}) , \deg b_{i}($\tau$_{2})=i.

As k(0,0)=h(0,0)=0 ,
we can write b_{2}($\tau$_{2}) and b_{p}($\tau$_{2}) as

b_{2}($\tau$_{2})=$\tau$_{2}b_{1}($\tau$_{2}) , b_{p}($\tau$_{2})=$\tau$_{2}b_{p-1}($\tau$_{2}) , \deg b_{i}=i.

Let f be the defining polynomial of C and using (2.2), we have

f(x_{0}, x_{2})=\displaystyle \frac{x_{0}^{2p}}{x_{2}^{2}}f_{2}(\frac{x_{2}}{x_{0}^{2}}, \frac{x_{2}}{x_{0}}) .

We calculate the above equation as the following:

x_{2}^{2}f(x_{0}, x_{2})=x_{0}^{2p}(k(\displaystyle \frac{x_{2}}{x_{0}^{2}}, \frac{x_{2}}{x_{0}})^{p}-h(\frac{x_{2}}{x_{0}^{2}}, \frac{x_{2}}{x_{0}})^{2})
=x_{0}^{2p}((\displaystyle \frac{x_{2}}{x_{0}^{2}}+\frac{x_{2}}{x_{0}}b_{1}(\frac{x_{2}}{x_{0}}))^{p}-(b_{p-2}(\frac{x_{2}}{x_{0}})\frac{x_{2}}{x_{0}^{2}}+\frac{x_{2}}{x_{0}}b_{p-1}(\frac{x_{2}}{x_{0}}))^{2})
=x_{2}^{p}(1+x_{0}b_{1}(\displaystyle \frac{x_{2}}{x_{0}}))^{p}-x_{2}^{2}(x_{0}^{p-2}b_{p-2}(\frac{x_{2}}{x_{0}})+x_{0}^{p-1}b_{p-1}(\frac{x_{2}}{x_{0}}))^{2}
=f_{1}(x_{0}, x_{2})^{p}x_{2}^{p}-f_{p-1}(x_{0}, x_{2})^{2}x_{2}^{2}.

and then where

f_{1}(x_{0},x_{2}):=1+c_{1}(x_{0},x_{2}) , f_{p-1}(x_{0},x_{2}):=c_{p-2}(x_{0},x_{2})+c_{p-1}(x_{0},x_{2}) .

Note that c_{i}(x_{0}, x_{2}) :=x_{0}^{i}b_{i}(x_{2}/x_{0}) is a polynomial for i=1, p-2 and p-1 . Hence

we have

x_{2}^{2}f(x_{0}, x_{2})=(f_{1}(x_{0}, x_{2})x_{2})^{p}-(f_{p-1}(x_{0}, x_{2})x_{2})^{2}
Thus the above equation shows that C:=\{f=0\} is a visible line degeneration of order

2 of (p, 2) torus type.

§4.2. Construction of an invisible degeneration

Assume that Q=O_{2,2} in the affine space W_{2}^{2} . Let f_{2}(z_{2}, $\tau$_{2})=k(z_{2}, $\tau$_{2})^{p}-h(z_{2}, $\tau$_{2})^{2}
be the defining equation of B where

k(z_{2}, $\tau$_{2})=z_{2}+b_{2}($\tau$_{2}) , h(z_{2}, $\tau$_{2})=b_{p-2}($\tau$_{2})z_{2}+b_{p}($\tau$_{2}) , \deg b_{i}($\tau$_{2})=i.

Let g be the defining polynomial of D and using (2.2) in §2.3, we have

g(x_{0}, x_{2})=\displaystyle \frac{x_{0}^{2p}}{x_{2}^{2}}f_{2}(\frac{x_{2}}{x_{0}^{2}}, \frac{x_{2}}{x_{0}}) .
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We calculate the above equation:

x_{2}^{2}g(x_{0}, x_{2})=x_{0}^{2p}(k(\displaystyle \frac{x_{2}}{x_{0}^{2}}, \frac{x_{2}}{x_{0}})^{p}-h(\frac{x_{2}}{x_{0}^{2}}, \frac{x_{2}}{x_{0}})^{2})
=x_{0}^{2p}((\displaystyle \frac{x_{2}}{x_{0}^{2}}+b_{2}(\frac{x_{2}}{x_{0}}))^{p}-(b_{p-2}(\frac{x_{2}}{x_{0}})\frac{x_{2}}{x_{0}^{2}}+b_{p}(\frac{x_{2}}{x_{0}}))^{2})
=(x_{2}+x_{0}^{2}b_{2}(\displaystyle \frac{x_{2}}{x_{0}}))^{p}-(x_{0}^{p-2}b_{p-2}(\frac{x_{2}}{x_{0}})x_{2}+x_{0}^{p}b_{p}(\frac{x_{2}}{x_{0}}))^{2}
=g_{2}(x_{0}, x_{2})^{p}-g_{p}(x_{0}, x_{2})^{2}

where the polynomials g_{2} and g_{p} are defined as

g_{2}(x_{0}, x_{2}) :=x_{2}+d_{2}(x_{0}, x_{2}) g_{p}(x_{0}, x_{2}) :=d_{p-2}(x_{0}, x_{2})x_{2}+d_{p}(x_{0}, x_{2})

where d_{i}(x_{0}, x_{2}) :=x_{0}^{i}b_{i}(x_{2}/x_{0}) for i=2, p-2 and p . Thus the above equation shows

that D:=\{g=0\} is an invisible line degeneration of order 2 of (p, 2) torus type:

x_{2}^{2}g(x_{0}, x_{2})=g_{2}(x_{0}, x_{2})^{p}-g_{p}(x_{0}, x_{2})^{2}

§4.3. Singularities of constructed curves

We consider singularities of C and D.

§2.3, we have the following:

\bullet Sing  C and Sing D are the same:

By our constructions and the argument in

Sing C= Sing D=\{pA_{p-1}, A_{p-3}, B_{p-2,2(p-2)}\}.

\bullet  C has (p-1)A_{p-1} and A_{p-3} singularities as inner and one A_{p-1} singularity as outer.

\bullet  D has pA_{p-1} singularities as are inner and A_{p-3} singularity as outer.

Thus we have a pair (C, D) which satisfy the statement of the first part of Theorem 1.4.

§4.4. The case p is even

In this section, we suppose that p is even. We will show that the pair (C, D) is a

weak Zariski pair. Recall that the defining polynomials f and g of C and D satisfy

f(x_{0}, x_{2})=f_{1}(x_{0}, x_{2})^{p}x_{2}^{p-2}-f_{p-1}(x_{0}, x_{2})^{2}
x_{2}^{2}g(x_{0}, x_{2})=g_{2}(x_{0}, x_{2})^{p}-g_{p}(x_{0}, x_{2})^{2}

As p is even, C is decomposed as C=C_{1}\cup C_{2} where \deg C_{1}=\deg C_{2}=p-1.
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Lemma 4.1. \mathrm{D} \mathrm{s} decomposed as \text{∪ where \mathrm{e}\mathrm{g}
-

andLemma 4.1. D is decomposed as D=D_{p-2}\cup D_{p} where \deg D_{p-2}=p-2 and

D_{p}=p.

Proof. Put p=2s . Let B=\{f_{2}=k^{2s}-h^{2}=0\} be a 2s‐gonal curve in $\Sigma$_{2} and

let  $\pi$\circ N_{2} : $\Sigma$_{2^{--\mathrm{K}}}\mathbb{P}^{2} be a birational map which are considered in the proof of Theorem

1.4. Then we can factorize f_{2}(z_{2}, $\tau$_{2}) as

f_{2}(z_{2}, $\tau$_{2})=(k(z_{2}, $\tau$_{2})^{s}-h(z_{2}, $\tau$_{2}))(k(z_{2}, $\tau$_{2})^{s}+h(z_{2}, $\tau$_{2}))

=k_{1}(z_{2}, $\tau$_{2})k_{2}(z_{2}, $\tau$_{2})

where

k_{1}(z_{2}, $\tau$_{2})=k(z_{2}, $\tau$_{2})^{s}-h(z_{2}, $\tau$_{2}) , k_{2}(z_{2}, $\tau$_{2})=k(z_{2}, $\tau$_{2})^{s}+h(z_{2}, $\tau$_{2}) .

As we assumed that O_{2,2} is an outer singular point of B
,

we may assume that O_{2,2}
is in \{k_{1}=0\}\backslash \{k_{2}=0\} . Then, using (2.2) in §2.3, the defining polynomial w_{1} of

 $\pi$\circ N_{2}(\{k_{1}=0\}) is given by

w_{1}(x_{0}, x_{2})=\displaystyle \frac{x_{0}^{2s}}{x_{0}^{2}}k_{1}(\frac{x_{2}}{x_{0}^{2}}, \frac{x_{2}}{x_{0}})=\frac{1}{x_{0}^{2}}(g_{2}(x_{0}, x_{2})^{s}-g_{p}(x_{0}, x_{2})) .

As w_{1}, g_{2} and g_{p} are polynomials and degg2 =2 and \deg g_{p}=p ,
the degree w_{1} must

be p-2 . Note that \{w_{1}=0\} has A_{p-3} singularity. As g is obtained as

g(x_{0}, x_{2})=\displaystyle \frac{x_{0}^{4s}}{x_{2}^{2}}f_{2}(\frac{x_{2}}{x_{0}^{2}}, \frac{x_{2}}{x_{0}})=w_{1}(x_{0}, x_{2})w_{2}(x_{0}, x_{2})
where w_{2}:=x_{0}^{2s}k_{2} . As \deg g=2p-2 and degw1 =p-2 ,

the degree w_{2} must be p. \square 

Now we consider the irreducibility of C_{1} and C_{2} . Let P_{1} ,
. . .

, P_{p-1}, Q, R and O^{*}

be the singular points of C such that

(C, P_{i})\sim A_{p-1}, i=1
,

. . .

, p-1,

(C, Q)\sim A_{p-3}, (C, R)\sim A_{p-1}, (C, O^{*})\sim B_{p-2,2(p-2)}
and P_{i} and Q are inner singularities and R is an outer singular point of C . As P_{i} and

Q are inner, they are in \{f_{1}=0\}\cap\{f_{p-1}=0\} . Hence P_{i} and Q are also in C_{1}\cap C_{2}.
Note that C_{1} and C_{2} are smooth at P_{i} and Q . As R is the outer singular point, we may

assume that R\in C_{1}\backslash C_{2}.
By the form of the defining polynomials of C_{1} and C_{2} ,

both curves have B_{\frac{p-2}{2},p-2}
singularity at O^{*} . Note that C_{1} and C_{2} have no other singularities.

Now we assume that C_{1} is reducible as C_{1}=E_{a}\cup E_{b} where \deg E_{i}=i and a\leq b.

Assume that p>4 . As O^{*} and R are singular points of C_{1} ,
the intersection E_{a}\cap E_{b} is

one of the following:

\{O^{*}\}, \{R\}, \{O^{*}, R\}.
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We consider the cases E_{a}\cap E_{b}=\{O^{*}\} or \{O^{*}, R\} . Let n and m be positive integers
such that (E_{a}, O^{*})\sim B_{n,2n} and (E_{b}, O^{*})\sim B_{m,2m} . Positive integers (a, b, n, m) must

satisfy the following equations:

(1) a+b=p-1.

(2) 2m+2n=p-2.

(3) a\geq 2n, b\geq 2m.

(4) If E_{a}\cap E_{b}=\{O^{*}\} ,
then ab=2mn.

(5) If E_{a}\cap E_{b}=\{O^{*}, R\} ,
then ab=\displaystyle \frac{p}{2}+2mn.

Equalities (4) and (5) are obtained by Bézout theorem. By simple calculations, there are

no positive integers (a, b, n, m) which satisfy the above equations. Hence if O^{*}\in E_{a}\cap E_{b},
then C_{1} is irreducible. By the same argument, we can show that C_{2} is irreducible because

C_{2} has only a B_{\frac{p-2}{2},p-2} singularity.
Now we consider the case E_{a}\cap E_{b}=\{R\} . Then E_{a} and E_{b} are smooth at R

with I(E_{a}, E_{b};R)=\displaystyle \frac{p}{2} . As E_{a}\cap E_{b}=\{R\} ,
we have ab=\displaystyle \frac{p}{2} by Bézout theorem. The

equations a+b=p-1 and ab=\displaystyle \frac{p}{2} are satisfied for the case (p, a, b)=(4,1,2) only.
Hence if p>4 ,

then C_{1} and C_{2} are irreducible. Therefore the pair (C, D) is a weak

Zariski pair.

§4.5. The case p=4

We suppose that p=4 . Then \deg C=\deg D=6 and their singularities are

Sing C= Sing D=\{5A_{3}, A_{1}\}.

By the above argument, C is decomposed as E_{1}\cup E_{2}\cup C_{2} and C_{2} is a smooth

cubic. Their intersection points and intersection multiplicities of these curves are the

following:

E_{1}\cap E_{2}=\{R\}, E_{2}\cap C_{3}=\{P_{1}, P_{2}, P_{3}\}, E_{1}\cap C_{3}=\{P_{4}, Q\}

I(E_{1}, E_{2};R)=2, I(E_{1}, C_{3};Q)=1, I(E_{i}, C_{3};P_{k})=2, k=1
,

. . .

,
4.
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On the other hand, D is also decomposed as D_{4}\cup D_{1}\cup D\'{i} where \deg D_{4}=4 and

\deg D_{1}=\deg  D\'{i}=1 . Indeed, outer A_{1} singularity must be in D_{2} . Hence D_{2} consists

of two distinct lines. Thus D is decomposed as D_{4}\cup D_{l}\cup D\'{i}. Note that D_{1} and Dí
are bitangent lines of D_{4}.

Thus C and D have different irreducible decompositions. Hence the pair (C, D) is

a weak Zariski pair.

§4.6. Observation for the case p=3

By our construction, C and D are 3‐cuspidal quartics. As we mentioned in the

introduction, each curve has both torus decompositions. Moreover it is known that the

moduli space of 3‐cuspidal quartic is irreducible and hence C and D are in the same

moduli space.
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