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Tangent varieties and openings of map‐germs

Dedicated to the memory of Vl adimir Zakalyukin

By

Goo ISHIKAWA *

Abstract

By taking embedded tangent spaces to a submanifold in an affine space, we obtain a

ruled variety, which is called the tangent variety to the submanifold and has non‐isolated

singularities in general. We explain a method of modifications of map‐germs, which we call

openings of map‐germs, and study the local classification problem of tangent varieties in terms

of the opening construction. In particular, we present the general stable classification result of

tangent varieties to generic submanifolds of sufficiently high codimension.

§1. Introduction

Embedded tangent spaces to a submanifold in an affine space draw a variety, which

is called the tangent variety to the submanifold.

Let N be an n‐dimensional C^{\infty} manifold. We denote by TN the tangent bundle of

N . Let f : N^{n}\rightarrow \mathrm{R}^{m} be an immersion. Then the tangent mapping \mathrm{T}\mathrm{a}\mathrm{n}(f) :  TN\rightarrow

\mathrm{R}^{m} of f is defined by

\mathrm{T}\mathrm{a}\mathrm{n}(f)(x, v) :=f(x)+f_{*}(v) , (x, v)\in TN,

using the affine structure of \mathrm{R}^{m}.

Then we define the tangent variety of f as the parametrised variety which is

defined by the right equivalence class of \mathrm{T}\mathrm{a}\mathrm{n}(f) . If (xl, . . .

, x_{n} ) is a system of local
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coordinates of N
,

and (xl, . . .

, x_{n}, t_{1}, \ldots, t_{n} ) the induced system of local coordinates of

TN
,

then \mathrm{T}\mathrm{a}\mathrm{n}(f) is given by

Tan(f) (x, t)=f(x)+\displaystyle \sum_{j=1}^{n}t_{j}\frac{\partial f}{\partial x_{j}}(x) .

Also note that we can define similarly the tangent varieties of mappings to a pro‐

jective space. Tangent varieties appear in various geometric problems and applications

naturally ([1][3][8][16][17][23][18][27]). See [14], for the geometric exposition on the local

classification problem of tangent varieties.

It is known, in the three dimensional Euclidean space, that the tangent variety

(tangent developable) to a generic space curve has singularities each of which is locally

diffeomorphic, i.e. right‐left equivalent, to the cuspidal edge or to the folded umbrella,
as is found by Cayley and Cleave ([6][7]).

Figure 1. cuspidal edge and folded umbrella.

The cuspidal edge is parametrised by the map‐germ (\mathrm{R}^{2},0)\rightarrow(\mathrm{R}^{3},0) defined by

(w, x)\mapsto(w, x^{2}, x^{3}) .

Note that it is diffeomorphic to the germ

(t, s)\mapsto(t+s, t^{2}+2st, t^{3}+3st^{2})

of a parametrisation of tangent variety.
The folded umbrella is parametrised by the germ (\mathrm{R}^{2},0)\rightarrow(\mathrm{R}^{3},0) defined by

(t, s)\mapsto(t+s, t^{2}+2st, t^{4}+4st^{3}) ,

which is diffeomorphic to

(w, x)\displaystyle \mapsto(w, x^{2}+ux, \frac{1}{2}x^{4}+\frac{1}{3}ux3) .

The folded umbrella is often called the cuspidal cross cap.

Cuspidal edge singularities appear along ordinary points of a curve in \mathrm{R}^{3}
,

while

the folded umbrella appears at an isolated point of zero torsion([8][23]).
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For more degenerate curves in \mathrm{R}^{3}
,

the singularities of tangent varieties were clas‐

sified by Mond [19][20] and Scherbak [26][4]. See also the survey [13].
Tangent varieties are defined also for higher codimensional curves. Then, it is

known that the tangent variety to a generic curve in \mathrm{R}^{m} with m\geq 4 has singularities
each of which is locally diffeomorphic to the higher codimensional cuspidal edge in \mathrm{R}^{m}

(Theorem 2.6 [14]).
The higher codimensional cuspidal edge is parametrised by the map‐germ

(\mathrm{R}^{2},0)\rightarrow(\mathrm{R}^{m}, 0) defined by

(w, x)\mapsto(w, x^{2}, x^{3},0, \ldots, 0) ,

which is diffeomorphic to the germ

(t, s)\mapsto(t+s, t^{2}+2st, t^{3}+3st^{2}, . . . , t^{m}+mst^{m-1}) ,

and also to

(t, s)\mapsto(t+s, t^{2}+2st, t^{3}+3st^{2},0, \ldots, 0) .

Figure 2. The higher codimensional cuspidal edge

Thus we understand that the local diffeomorphism class of tangent varieties to

generic curves of sufficiently high codimension is determined uniquely. Moreover the

tangent variety to any immersed curve in \mathrm{R}^{m} is obtained locally by a projection of a

higher codimensional cuspidal edge in \mathrm{R}^{m'} for some m'\geq m.

Tangent varieties are defined also for higher dimensional submanifolds. In [14], we

observe several results of tangent varieties to surfaces. For instance, let us consider a

surface in \mathrm{R}^{5} . Then the tangent variety to a generic surface becomes a hypersurface
in \mathrm{R}^{5} and it has conical singularities along the original surface itself, together with

several self‐intersection loci. The local classification problem for singularities of tangent
varieties of generic surfaces in \mathrm{R}^{5} is still open, as far as the author knows. Note that,
in [14], it is treated the classification problem for singularities of tangent varieties to

Legendre surfaces in \mathrm{R}^{5} . In particular we show that the tangent variety of an elliptic
or a hyperbolic Legendre surface in \mathrm{R}^{5} has D_{4}‐singularity along the Legendre surface

itself using the criterion in [24] (Theorem 9.5 of [14]).
Instead, in this paper, we show a simple observation that the local diffeomorphism

class of tangent varieties to generic surface in \mathrm{R}^{m} is unique if m is sufficiently large:
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Theorem 1.1. Suppose m\geq 11 . Then the tangent map‐germ

\mathrm{T}\mathrm{a}\mathrm{n}(f) : (TN, (p, 0))\rightarrow \mathrm{R}^{m}

of a proper immersion f : N^{2}\rightarrow \mathrm{R}^{m} of a two dimensional manifold N
,

which is

generic in Whitney C^{\infty} ‐topology, has the unique right‐left equivalence class for any

(p, 0)\in N\times\{0\} . Moreover \mathrm{T}\mathrm{a}\mathrm{n}(f) : TN\backslash N\times\{0\}\rightarrow \mathrm{R}^{m} is an immersion.

We have that the tangent variety to any surface in \mathrm{R}^{m} is obtained by a projection
of the universal singularity in \mathrm{R}^{m'} for some m'\geq m . Further, we show this is true for

any dimension of submanifolds. (See Theorem 6.3, Corollary 6.4).

The singularities of tangent varieties are obtained in general by so called the open‐

ing construction. In general, given a C^{\infty} map‐germ g:(N, a)\rightarrow(M, b) with \dim N\leq

\dim M
,

we associate a sub‐algebra \mathcal{R}_{g} in the \mathrm{R}‐algebra of C^{\infty} function‐germs on (N, a)
such that, for any element h\in \mathcal{R}_{g} ,

the map‐germ (g, h) : (N, a)\rightarrow(M\times \mathrm{R}, (b, h(a)))
has the same singular locus with g in (N, a) and the same kernels of the differential

(g, h)_{*}:(TN, a\times T_{a}N)\rightarrow T(M\times \mathrm{R}) with g_{*}:(TN, a\times T_{a}N)\rightarrow TM . By adding a

finite number of elements in \mathcal{R}_{g} as components, we obtain an �opening� of g.

The tangent variety to a curve in \mathrm{R}^{m}, m\geq 3 projects locally to the tangent variety
to a space curve in the osculating 3‐space, and to a plane curve in the osculating 2‐plane.
In [14] we observed that the tangent variety in \mathrm{R}^{m} can be regarded as an �opening� of

a tangent variety to a space curve and to a plane curve.

Though name �opening� is firstly used in [14], the notion of opening is, for instance,
used in [11] [12] intrinsically. In fact, openings of map‐germs appear naturally as typical

singularities in several problems of geometry and its applications. For example, the open

swallowtail, which is an opening of the swallowtail as a singular Lagrangian variety [2],
and as a singular solution to certain partial differential equation [10]. The open folded

umbrella appears as a �frontal‐symplectic singularity�([15]). In this paper, we show one

example of this fact that openings appear naturally in geometry.
In §2, we introduce the notion of openings of map‐germs and prepare necessary

results to show the classification results of tangent varieties in this paper. In §3, we

introduce the generalised notion of frontal mappings to connect the singularities of

tangent varieties and opening constructions. In §4, we recall the genericity results of

immersions into higher dimensional space. In §5, we give the proof of Theorem 1.1.

In §6, we show the stable classification for singularities on tangent varieties of generic
submanifold of arbitrary dimension. We introduce the singularity, cuspidal‐conical

edge for our classification problem, which is a generalisation of the cuspidal edge in the

three space.

In [25], it is studied the cuspidal edges in the three space from the differential
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geometric point of view. It would be an interesting problem to investigate the differential

geometry also on higher codimensional cuspidal edges and higher dimensional cuspidal‐
conical edges.

In this paper all manifolds and mappings are assumed of class C^{\infty} unless otherwise

stated.

The author would like to thank the referee for helpful comments to improve the

original manuscript.

§2. Opening construction of differentiable map‐germs

Let (N, a) be a germ of n‐dimensional manifold at a point a\in N . Let g : (N, a)\rightarrow
(\mathrm{R}^{m}, b) , g=(g_{1}, \ldots, g_{m}) , n\leq m be a map‐germ.

We define the Jacobi module \mathcal{J}_{g} of g by

\displaystyle \mathcal{J}_{g}=\{\sum_{j=1}^{m}p_{j}dg_{j} p_{j}\in \mathcal{E}_{N,a}(1\leq j\leq m)\}\subset$\Omega$_{N,a}^{1}
in the space $\Omega$_{N,a}^{1} of l‐form‐germs on (N, a) . Then define the ramification module

\mathcal{R}_{g} of g by

\mathcal{R}_{g}=\{h\in \mathcal{E}_{N,a}|dh\in \mathcal{J}_{g}\},

in the space \mathcal{E}_{N,a} of function‐germs on (N, a) . See [11][12]. The ramification module is

regarded as the set of generating function in symplectic geometry. Note that a related

notion was introduced firstly in [21]. See [28] for the related notion of�generating ideal�

For g : (N, a)\rightarrow(\mathrm{R}^{m}, b) , g' : (N, a)\rightarrow(\mathrm{R}^{m'}, b') , easily we see that \mathcal{J}_{g'}\subseteq \mathcal{J}_{g} if and

only if \mathcal{R}_{g'}\subseteq \mathcal{R}_{g} ,
and therefore that \mathcal{J}_{g'}=\mathcal{J}_{g} if and only if \mathcal{R}_{g'}=\mathcal{R}_{g}.

Definition 2.1. Let g : (N, a)\rightarrow(\mathrm{R}^{m}, b) , g=(g\mathrm{l}, . . . , g_{m}) , n\leq m be a map‐

germ. A map‐germ G : (N, a)\rightarrow \mathrm{R}^{m}\times \mathrm{R}^{r}=\mathrm{R}^{m+r} defined by

G=(g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{r})

is called an opening of g if h_{1} ,
. . .

, h_{r}\in \mathcal{R}_{g} . Then g is called a closing of G.

For any opening G of g ,
we have \mathcal{R}_{G}=\mathcal{R}_{g} and \mathcal{J}_{G}=\mathcal{J}_{g}.

Note that an opening of an opening of g is an opening of g.

Definition 2.2. An opening G= (g, hl, . . .

, h_{r} ) of g is called a versal opening

(resp. a mini‐versal opening) of g : (N, a)\rightarrow(\mathrm{R}^{m}, b) ,
if 1, h_{1} ,

. . .

, h_{r} form \mathrm{a} (minimal)
system of generators of \mathcal{R}_{g} as an \mathcal{E}_{\mathrm{R}^{m},b}‐module via g^{*}:\mathcal{E}_{\mathrm{R}^{m},b}\rightarrow \mathcal{E}_{N,a}.

Note that a versal opening of an opening of g is a versal opening of g . An opening
of a versal opening of g is a versal opening of g.
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Example 2.3. (1) Let h : (\mathrm{R}, 0)\rightarrow(\mathrm{R}, 0) , h(x)=x^{2} . Then \mathcal{R}_{h}=\langle 1, x^{3}\rangle_{h^{*}(\mathcal{E}_{1})}.
The map‐germ H : (\mathrm{R}, 0)\rightarrow(\mathrm{R}^{2},0) , H(x) :=(x^{2}, x^{3}) ,

the simple cusp map, is the mini‐

versal opening of h.

(2) Let g : (\mathrm{R}^{2},0)\rightarrow(\mathrm{R}^{2},0) , g(x, t)=(x, t^{2}) . \mathcal{R}_{g}=\langle 1, t^{3}\rangle_{g^{*}(\mathcal{E}_{2})} . The map‐germ

G : (\mathrm{R}^{2},0)\rightarrow(\mathrm{R}^{3},0) , G(x) :=(x, t^{2}, t^{3}) ,
the cuspidal edge, is the mini‐versal opening

of g.

In this example, we set \mathcal{E}_{n}=\mathcal{E}_{\mathrm{R}^{n},0}.
As examples in a more degenerate case, the swallowtail is an opening of the Whit‐

\mathrm{n}\mathrm{e}\mathrm{y} �s cusp. The open swallowtail is an opening of the swallowtail and of the Whitney�s

cusp ([14]).

In many cases, versal openings do exist. For the general results on the existence of

versal openings, consult with [14].
In this paper we are concerned with only the uniqueness:

Proposition 2.4. (Proposition 6.9 of [14]) Let g:(N^{n}, a)\rightarrow(\mathrm{R}^{m}, b) be a C^{\infty}

map‐germ (n\leq m) . Then the mini‐versal opening G : (N, a)\rightarrow \mathrm{R}^{m+r} of g is, if
it exists, unique up to left ‐equivalence and any versal opening G : (N, a)\rightarrow \mathrm{R}^{m+s} of

g is left ‐equivalent to a mini‐versal opening composed with an immersion (\mathrm{R}^{n}, a)\rightarrow
\mathrm{R}^{m+r}\mapsto \mathrm{R}^{m+s}.

To make assure ourselves, we give a proof of Proposition 2.4 briefly.

Lemma 2.5. Assume that there exists a versal opening of g . Then an opening
G= (g, hl, . . .

, h_{r} ) of g is a mini‐versal opening if and only if 1, h_{1} ,
. . .

, h_{r} form a basis

of \mathrm{R} ‐vector space \mathcal{R}_{g}/g^{*}(\mathfrak{m}_{\mathrm{R}^{m},b})\mathcal{R}_{g}.

Proof: By the assumption, we have that \mathcal{R}_{g} is a finite \mathcal{E}_{\mathrm{R}^{m},b} ‐module via g^{*} . Thus

by Nakayama�s lemma (see for instance [5]), we have that 1, h_{1} ,
. . .

, h_{r} generate \mathcal{R}_{g} as

\mathcal{E}_{\mathrm{R}^{m},b} ‐module via g^{*} if and only if they form a generator of \mathcal{R}_{g}/g^{*}(\mathfrak{m}_{\mathrm{R}^{m},b})\mathcal{R}_{g} over R.

Therefore 1, h_{1} ,
. . .

, h_{r} form a minimal system of generators of \mathcal{R}_{g} as \mathcal{E}_{\mathrm{R}^{m},b} ‐module via

g^{*} if and only if they form a basis of \mathcal{R}_{g}/g^{*}(\mathfrak{m}_{\mathrm{R}^{m},b})\mathcal{R}_{g} over R. \square 

Proof of Proposition 2.4: Let G=(g, h_{1}, \ldots, h_{r}) and G'=(g, k_{1}, \ldots, k_{s}) be mini‐

versal openings of g . Then, by Lemma 2.5, we have r=s and (hl, . . .

, h_{r} ) (resp.
(kl, . . .

, k ) ) form a basis of \mathcal{R}_{g}/g^{*}(\mathfrak{m}_{\mathrm{R}^{m},b})\mathcal{R}_{g} . We may assume h_{i}(a)=0, k_{j}(a)=
0, 1\leq i, j\leq r . Since k_{j}\in \mathcal{R}_{g} ,

there exist c_{j^{0}}, c_{j^{1}} ,
. . .

, c_{j^{r}}\in \mathcal{E}_{\mathrm{R}^{m},b} such that k_{j}=

c_{j^{0}}\circ g+(c_{j^{1}}\circ g)h_{1}+\cdots+(c_{j^{r}}\circ g)h_{r}, (1\leq j\leq r) . Then we see the r\times r‐matrix

(c_{j^{i}}(b)) is regular. We set  $\Psi$(y, z)=(y, (c_{j^{0}}(y)+c_{j^{1}}(y)z_{1}+\cdots+c_{j^{r}}(y)z_{r})_{1\leq j\leq s}) . Then

 $\Psi$ : (\mathrm{R}^{m+r}, (b, 0))\rightarrow(\mathrm{R}^{m+r}, (b, 0)) is a diffeomorphism germ and G'= $\Psi$\circ G . Now
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let G'' be a versal opening of g . Then similarly as above, G''= $\Psi$\circ G and the matrix

(c_{j^{i}}(b)) is of rank r . Then  $\Psi$ is an immersion‐germ. \square 

Actually we need more general result to show the main Theorem 1.1.

Definition 2.6. Let g:(N, a)\rightarrow(\mathrm{R}^{m}, b) , g' : (N, a)\rightarrow(\mathrm{R}^{m'}, b') be map‐germs.

The map‐germs g and g' are called \mathcal{J}‐equivalent if their Jacobi modules coincide:

\mathcal{J}_{g}=\mathcal{J}_{g'}.

If g and g' are left equivalent, then \mathcal{R}_{g}=\mathcal{R}_{g'} and therefore, they are \mathcal{J}‐equivalent.
However the converse does not hold.

Example 2.7. Define g, g' : (\mathrm{R}^{2},0)\rightarrow(\mathrm{R}^{3},0) , by g(s, t)=(s^{2} , st, t^{2}) , g'(s, t)=
(s^{2}+s^{3}, st, t^{2}) . Then g, g' are \mathcal{J}‐equivalent. However g, g' are not left equivalent. In

fact g|_{\mathrm{R}^{2}\backslash 0} is 2 to 1, while g'|_{\mathrm{R}^{2}\backslash 0} is injective on \mathrm{R}^{2}\backslash \{t=0\}.

Definition 2.8. A map‐germ g : (N, a)\rightarrow(\mathrm{R}^{m}, b) is called \mathcal{J}‐minimal if

dg_{1} ,
. . .

, dg_{m} form a minimal system of generators of \mathcal{J}_{g} as an \mathcal{E}_{N,a} ‐module.

Lemma 2.9. Suppose two map‐germs g : (N, a)\rightarrow(\mathrm{R}^{m}, b) and g' : (N, a)\rightarrow
(\mathrm{R}^{m'}, b') are \mathcal{J} ‐equivalent and they are both \mathcal{J} ‐minimal. Then m=m'

In fact m=m'=\dim_{\mathrm{R}}\mathcal{J}_{g}/\mathfrak{m}_{N,a}\mathcal{J}_{g}.

The following generalisation of Proposition 2.4 is the key of the proof on our main

result.

Proposition 2.10. Suppose g : (N, a)\rightarrow(\mathrm{R}^{m}, b) and g' : (N, a)\rightarrow(\mathrm{R}^{m}, b')
are \mathcal{J} ‐equivalent and they are both \mathcal{J} ‐minimal. Moreover suppose G is a mini‐versal

openings of g ,
and G' is a mini‐versal opening of g' ,

Then G and G' are left equivalent.

Proof: We may suppose b=b'=0 and G(a)=G'(a)=0 . Let

G=(g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{r}) , G'=(g_{1}', \ldots, g_{m}', h_{1}', \ldots, h_{r}') .

Let

dh_{k}=\displaystyle \sum_{\ell=1}^{m}a_{k\ell}dg_{\ell}, (1\leq k\leq r) .

Then set \displaystyle \overline{h}_{k}:=h_{k}-\sum_{\ell=1}^{m}a_{k\ell}(a)g_{\ell}, (1\leq k\leq r) ,
and set

\overline{G}:=(g_{1}, \ldots, g_{m},\overline{h}_{1}, \ldots, \overline{h}_{r}) .
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Then we have that \overline{G} is left‐equivalent to G and that \overline{G} is a mini‐versal opening of g.

Note that d\overline{h}_{k}\in \mathfrak{m}_{N,a}\mathcal{J}_{g}, (1\leq k\leq r) . Now set

\overline{G}':=(g_{1}', \ldots, g_{m}',\overline{h}_{1}, \ldots, \overline{h}_{r}) .

Since g' is \mathcal{J}‐equivalent to g ,
we see that \overline{G}' is a mini‐versal opening of g' . Then, by

Proposition 2.4, we have that \overline{G}' is left‐equivalent to G' . Therefore it suffices to show

that \overline{G}' and \overline{G} are left equivalent. Since g' is \mathcal{J}‐equivalent to g and \overline{G} is a versal opening
of g ,

we have that g'= $\Phi$\circ\overline{G} for some  $\Phi$ : (\mathrm{R}^{m+r}, 0)\rightarrow(\mathrm{R}^{m}, 0) . Then \overline{G}'=( $\Phi$\times \mathrm{i}\mathrm{d})\circ\overline{G}.
Then we have

dg_{i}'=d($\Phi$_{i}\displaystyle \circ\overline{G})\equiv\sum_{j=1}^{m}\frac{\partial$\Phi$_{i}}{\partial y_{j}}(0)dg_{j}, \mathrm{m}\mathrm{o}\mathrm{d}. \mathfrak{m}_{N,a}\mathcal{J}_{g}, (1\leq i\leq m) .

Since g' and g are \mathcal{J}‐minimal, we have that the matrix (\displaystyle \frac{\partial$\Phi$_{i}}{\partial y_{j}}(0))_{1\leq i,j\leq m} is regular and

therefore  $\Phi$ is of rank  m at 0 . Therefore  $\Phi$\times \mathrm{i}\mathrm{d} is a diffeomorphism‐germ, and we have

that \overline{G}' is left equivalent to \overline{G}. \square 

§3. Generalised frontal mappings

In this paper we introduce a key notion that connects the study on tangent varieties

and opening procedures of map‐germs.

Let M be an m‐dimensional manifold and 0\leq\ell\leq m . Let

\mathrm{G}\mathrm{r}(\ell, TM)=\{(y, V)|y\in M, V\subset T_{y}M, \dim V=\ell\}

denote the Grassmannian bundle over M consisting of \ell‐dimensional linear tangential

subspaces to  M
,

and  $\pi$ : \mathrm{G}\mathrm{r}(\ell, TM)\rightarrow M the natural projection. The canonical differ‐

ential system C\subset T\mathrm{G}\mathrm{r}(\ell, TM) on \mathrm{G}\mathrm{r}(\ell, TM) is defined by, for (y, V)\in \mathrm{G}\mathrm{r}(\ell, TM) ,

C_{(y,V)}:=\{v\in T_{(y,V)}\mathrm{G}\mathrm{r}(\ell, TM)|$\pi$_{*}v\in V(\subset T_{y}M

Note that \dim \mathrm{G}\mathrm{r}(\ell, TM)=m+\ell(m-\ell) and rank C=\ell+\ell(m-\ell) .

Let N be an n‐dimensional manifold with n\leq m. A C^{\infty} mapping f : N^{n}\rightarrow M^{m}

is called frontal if

(I) the locus of regular points \mathrm{R}\mathrm{e}\mathrm{g}(f)= {x\in N|f : (N, x)\rightarrow(M, f(x)) is immersive}
of f is dense in N

,
and

(II) there exists a C^{\infty} mapping \overline{f}:N\rightarrow \mathrm{G}\mathrm{r}(n, TM) satisfying  $\pi$\circ\overline{f}=f and \overline{f}(x)=
f_{*}(T_{x}N) for any x\in \mathrm{R}\mathrm{e}\mathrm{g}(f) .

The mapping \overline{f} is uniquely determined if it exists, which we call the Grassmann

lifting of f.
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The Grassmann lifting \overline{f} of a frontal mapping f : N\rightarrow M is an integral mapping
to the canonical differential system C on \mathrm{G}\mathrm{r}(n, TM) .

If f is an immersion, then f is frontal. For example, the tangent mapping of a

curve of finite type is a non‐immersive frontal mapping ([14]). The name �frontal� was

firstly introduced by Vladimir Zakalyukin.
If f is frontal and \overline{f} is an immersion, then f is called a front. Note that the above

notions of frontals and fronts are applied usually in the case m=n+1.

The notion of frontal mappings is generalised naturally to the following: Let M

be a manifold of dimension m and \ell a natural number with  0\leq\ell\leq m . Let N be a

manifold of dimension n with n\leq\ell.
A mapping f : N\rightarrow M is called \ell‐frontal if

(I) the locus of regular points \mathrm{R}\mathrm{e}\mathrm{g}(f)\subset N is dense in N and

(II) there exists a C‐integral map \overline{f}:N\rightarrow \mathrm{G}\mathrm{r}(\ell, TM) such that  $\pi$\circ\overline{f}=f and \overline{f}(x)\supset
 f_{*}(T_{x}N) for any x\in N.

Note that an n‐frontal mapping f : N^{n}\rightarrow M is frontal. Any mapping f :  N^{n}\rightarrow

 M^{m} is m‐frontal, because \mathrm{G}\mathrm{r}(m, TM^{m})\cong M.
A germ f : (N, p)\rightarrow M is called \ell‐frontal if some representative of  f is \ell‐frontal

in the above sense. For  n\leq\ell\leq\ell'\leq m ,
if a germ f is \ell‐frontal, then it is \ell'‐frontal.

Remark 3.1. A mapping f : N\rightarrow M is called sub‐frontal if there exist a

frontal mapping g : L\rightarrow M and an embedding i : N\rightarrow L such that f=g\circ i . Then f
is \ell‐frontal with \ell=\dim L.

Remark 3.2. Let \ell, m be a natural number with 0\leq\ell\leq m . Consider the

Grassmannian bundle \mathrm{G}\mathrm{r}(\ell, TP(\mathrm{R}^{m+1})) over m‐dimensional projective space P(\mathrm{R}^{m+1}) .

Let V\subset T_{y}P(\mathrm{R}^{m+1}) be an \ell‐dimensional linear subspace for a  y\in P(\mathrm{R}^{m+1}) . Then

there exists uniquely an (\ell+1) ‐dimensional linear subspace V\subset \mathrm{R}^{m+1} such that

the projective subspace P(\overline{V})\subset P(\mathrm{R}^{m+1}) has the tangent space  V=T_{y}P(\overline{V})\subset
 T_{y}P(\mathrm{R}^{m+1}) at y . Then \mathrm{G}\mathrm{r}(\ell, TP(\mathrm{R}^{m+1})) is identified with the flag manifold

\mathcal{F}_{1,\ell+1}(\mathrm{R}^{m+1})=\{(V_{1}, V_{\ell+1})|V_{1}\subset V_{\ell+1}\subset \mathrm{R}^{m+1}, \dim(V_{1})=1, \dim(V_{\ell+1})=\ell+1\},

by mapping (y, V)\mapsto(y,\overline{V}) ([14]). The canonical differential system C=C_{1,\ell+1}(\mathrm{R}^{m+1})
is defined by, for each (V_{1}, V_{\ell+1})\in \mathcal{F}_{1,\ell+1}(\mathrm{R}^{m+1}) ,

C_{(V_{1},V_{l+1})}=\{v\in T_{(V_{1},V_{l+1})}\mathcal{F}_{1,\ell+1}(\mathrm{R}^{m+1})|$\pi$_{1*}(v)\in TP(V_{\ell+1})(\subset TP(\mathrm{R}^{m+1}))\},
where $\pi$_{1}:\mathcal{F}_{1,\ell+1}(\mathrm{R}^{m+1})\rightarrow P(\mathrm{R}^{m+1}) is the natural projection.

The following lemma gives a description of the canonical system C in terms of local

coordinates:
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Lemma 3.3. (Remark 3.7 of [14]) The canonical system C on \mathcal{F}_{1,\ell+1}(\mathrm{R}^{m+1}) is

locally given by

dx_{i+1}^{0}-\displaystyle \sum_{j=1}^{\ell}x_{i+1}^{j}dx_{j}^{0}=0, (\ell\leq i\leq m-1) ,

for a system of local coordinates x_{i+1}^{0}, (0\leq i\leq m-1) , x_{i+1}^{j}, (1\leq j\leq\ell, \ell\leq i\leq m-1) .

The projection $\pi$_{1} : \mathcal{F}_{1,\ell+1}(\mathrm{R}^{m+1})\rightarrow P(\mathrm{R}^{m+1}) is represented by (x_{1^{0}}, \ldots, x_{m}^{0}) . If we

write y_{j}=x_{j^{0}}(1\leq j\leq\ell) , z_{i}=x_{n+i}^{0}(1\leq i\leq m-\ell) and p_{ij}=x_{n+i}^{j}(1\leq i\leq m-\ell,  1\leq

 j\leq\ell) ,
then we have

dz_{i}-\displaystyle \sum_{j=1}^{n}p_{ij}dy_{j}=0, 1\leq i\leq m-\ell.
TherefO re the condition that a map F : N^{n}\rightarrow \mathrm{G}\mathrm{r}(\ell, TP(\mathrm{R}^{m+1})) is C ‐integral is ex‐

pressed by

d(z_{i}\displaystyle \circ F)-\sum_{j=1}^{\ell}(p_{ij}\circ F)d(y_{j}\circ F)=0, 1\leq i\leq m-\ell.
The following lemma characterises \ell‐frontal map‐germs.

Lemma 3.4. Let  1\leq n\leq\ell\leq m. A map‐germ f : (N^{n}, p)\rightarrow M^{m} is \ell ‐frontal if
and only if  f is left equivalent to an opening of a map‐germ g:(N,p)\rightarrow \mathrm{R}^{\ell} with dense

\mathrm{R}\mathrm{e}\mathrm{g}(g) .

Proof: Suppose f is \ell‐frontal. Let \overline{f}:(N,p)\rightarrow \mathrm{G}\mathrm{r}(\ell, TM) be an C‐integral map

such that  $\pi$\circ\overline{f}=f and \overline{f}(x)\supset f_{*}(T_{x}N) for any x\in(N,p) . We take a system of

local coordinates y_{1} ,
. . .

, y_{\ell}, z_{1} ,
. . .

, z_{m-}\ell;p_{ij} of \mathrm{G}\mathrm{r}(\ell, TM) around \overline{f}(p) such that the

\ell‐dimensional subspace \overline{f}(p) of T_{p}M is given by dz_{1}(p)=\cdots=dz_{m-\ell}(p)=0 ,
and that

z_{i}\displaystyle \circ f=\sum_{j=1}^{\ell}(p_{ij}\circ\overline{f})d(y_{j}\circ f) , (1\leq i\leq m-\ell) 
We set g=(y\mathrm{l}, . . . , y_{\ell}) \circ f . Then \mathrm{R}\mathrm{e}\mathrm{g}(g) is dense in (N, p) and z_{i}\circ f\in \mathcal{R}_{g} by (^{*} ),
 1\leq i\leq m-\ell . Therefore  f is left‐equivalent to an opening of g.

Conversely let g : (N, p)\rightarrow \mathrm{R}^{\ell} be a map‐germ with dense \mathrm{R}\mathrm{e}\mathrm{g}(g) and G=

(g , hl, . . .

, h_{m-\ell} ) be an opening of g . Then \mathrm{R}\mathrm{e}\mathrm{g}(G)=\mathrm{R}\mathrm{e}\mathrm{g}(g) is dense in (N,p) . Since

h_{i}\in \mathcal{R}_{g} ,
there exist a_{ij} on (N,p) satisfying

dh_{i}=\displaystyle \sum_{j=1}^{\ell}a_{ij}dg_{j}, (1\leq i\leq m-\ell) .
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Now we define a map‐germ H : (N,p)\rightarrow \mathrm{G}\mathrm{r}(\ell, TM) by H(x)=(G(x), a_{ij}(x))=
(g(x), h(x), a_{ij}(x)) . Then H is a C‐integral map and satisfies  $\pi$\circ H=G . Moreover

H(x)\supset G_{*}(T_{x}N) for any x\in N . Therefore G is \ell‐frontal and hence  f is \ell‐frontal.

\square 

Corollary 3.5. Openings of an \ell ‐frontal map‐germ are \ell ‐frontal.

Proof: Let  f be \ell‐frontal and  F=(f, h) be an opening of f . By Lemma 3.4, f is left‐

equivalent to an opening G=(g, k) of a map‐germ g : (N, a)\rightarrow \mathrm{R}^{\ell} . Then f= $\Psi$\circ G
for a diffeomorphism‐germ  $\Psi$ . Then \mathcal{R}_{f}=\mathcal{R}_{G}=\mathcal{R}_{g} . Therefore (G, h) is an opening
of g . Moreover F is left‐equivalent to (G, h) . Hence we see that F is \ell‐frontal again by
Lemma 3.4. \square 

§4. Higher order non‐degenerate immersions

Let f : N^{n}\rightarrow \mathrm{R}^{m} be a mapping and f(x)=(f_{1}(x), \ldots, f(x)) be a local expression
of f via an affine system of local coordinates on \mathrm{R}^{m} . We define the matrix W_{i}(f)(x) ,

for i=1
, 2, 3, . . .

, by

W_{i}(f)(x) :=(\displaystyle \frac{\partial^{| $\alpha$|}f}{\partial x^{ $\alpha$}}(x)  $\alpha$\in \mathrm{N}^{n}\backslash \{0\}, 1\leq| $\alpha$|\leq i)
Here we regard each \displaystyle \frac{\partial^{| $\alpha$|}f}{\partial x^{ $\alpha$}}(x) as a column vector. Let k be a positive integer. Then f

is called k‐non‐degenerate if rank W_{k}(x)=\displaystyle \sum_{j=1}^{k}{}_{n}C_{j} ,
the number of columns, (cf.

[22][9]). Here {}_{n}C_{j}=\displaystyle \frac{n!}{(n-j)!j!} . Note that, in this case, we must have m\displaystyle \geq\sum_{j=1}^{k}{}_{n}C_{j}.
Lemma 4.1. Let N be an n ‐dimensional manifold and m\displaystyle \geq n+\sum_{j=1}^{k}{}_{n}C_{j}.

Then, in the space of proper immersions N^{n}\rightarrow \mathrm{R}^{m} with Whitney C^{\infty} topology, the set

of k‐non‐degenerate immersions form a residual set.

Proof: In the k‐jet space J^{k}(N, \mathrm{R}^{m}) ,
the condition that the rank of W_{k} is less than

\displaystyle \sum_{j=1}^{k}{}_{n}C_{j} defines an algebraic subset of codimension m-(\displaystyle \sum_{j=1}^{k}{}_{n}C_{j})+1 . Since

n<m-(\displaystyle \sum_{j=1}^{k}{}_{n}C_{j})+1 ,
we see that k‐non‐degenerate immersions form a residual set

in the space of proper immersions N\rightarrow \mathrm{R}^{m}
, by the transversality theorem. \square 

Corollary 4.2. Let N be an n ‐dimensional manifold and m\displaystyle \geq 2n+\frac{1}{2}n(n+
1). Then, in the space of proper immersions N^{n}\rightarrow \mathrm{R}^{m}

,
the set of 2‐non‐degenerate

immersions form a residual set.

Corollary 4.3. Let N be an n ‐dimensional manifold and m\displaystyle \geq 2n+\frac{1}{2}n(n+
1)+\displaystyle \frac{1}{6}n(n+1)(n+2) . Then, in the space of proper immersions N^{n}\rightarrow \mathrm{R}^{m}

,
the set of

3‐non‐degenerate immersions form a residual set.
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For to make clear the behaviour of tangent mapping outside of zero‐section, we

need the following:

Lemma 4.4. Let f : N\rightarrow \mathrm{R}^{m} be a 2‐non‐degenerate immersion. Then \mathrm{T}\mathrm{a}\mathrm{n}(f) :

TN\backslash N\times\{0\}\rightarrow \mathrm{R}^{m} is an immersion.

Proof: Recall that F=\mathrm{T}\mathrm{a}\mathrm{n}(f) is defined locally by

F(x, t)=\displaystyle \mathrm{T}\mathrm{a}\mathrm{n}(f)(x, t)=f(x)+\sum_{j=1}^{n}t_{j}\frac{\partial f}{\partial x_{j}}(x) .

Then we have

\displaystyle \frac{\partial F}{\partial t_{i}}=\frac{\partial f}{\partial x_{i}}, \frac{\partial F}{\partial x_{i}}=\frac{\partial f}{\partial x_{i}}+\sum_{j=1}^{n}t_{j}\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}.
Then, for the rank of Jacobi matrix of F

,
we have

rank (\displaystyle \frac{\partial F}{\partial t} , \displaystyle \frac{\partial F}{\partial x})= rank (\displaystyle \frac{\partial f}{\partial x_{1}} ,
. . .

, \displaystyle \frac{\partial f}{\partial x_{n}},\sum_{j=1}^{n}t_{j}\frac{\partial^{2}f}{\partial x_{1}\partial x_{j}} ,
. . .

, \displaystyle \sum_{j=1}^{n}t_{j}\frac{\partial^{2}f}{\partial x_{n}\partial x_{j}}) .

Since f is 2‐non‐degenerate, we see that rank (\displaystyle \frac{\partial F}{\partial t}, \frac{\partial F}{\partial x})=2n ,
for any (tl, . . .

, t_{n} ) \neq

(0, \ldots, 0) . In fact suppose

\displaystyle \sum_{i=1}^{n}a_{i}\frac{\partial f}{\partial x_{i}}+\sum_{i=1}^{n}b_{i}(\sum_{j=1}^{n}t_{j}\frac{\partial^{2}f}{\partial x_{n}\partial x_{j}})=0,
for some a_{i}, b_{i}\in \mathrm{R} . Then we have

\displaystyle \sum_{i=1}^{n}a_{i}\frac{\partial f}{\partial x_{i}}+\sum_{1\leq i\leq j\underline{<}n}(b_{i}t_{j}+b_{j}t_{i})\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}=0.
Therefore a_{i}=0, (1\leq i\leq n) and b_{i}t_{j}+b_{j}t_{i}=0, (1\leq i\leq j\leq n) . Suppose t_{1}\neq 0 . Then,
since 2b_{1}t_{1}=0 ,

we have b_{1}=0 . Then, since b_{1}t_{j}+b_{j}t_{1}=0 ,
we have b_{j}=0, 2\leq j\leq n.

Suppose, in general, t_{i}\neq 0 for some i . Then b_{i}=0 . For j<i ,
we have b_{j}t_{i}+b_{i}t_{j}=0,

hence b_{j}=0 . For j>i ,
we have b_{i}t_{j}+b_{j}t_{i}=0 ,

hence b_{j}=0 . Thus b_{j}=0, 1\leq j\leq n.
\square 

Remark 4.5. A mapping f : N^{n}\rightarrow \mathrm{R}^{m}, n\leq m is called of finite type at

p\in N if the  m\times\infty‐matrix

 W_{\infty}(f)(x)=(\displaystyle \frac{\partial^{| $\alpha$|}f}{\partial x^{ $\alpha$}}(x)  $\alpha$\in \mathrm{N}^{n}\backslash \{0\})
is of rank m . Moreover, f is called of finite type if it is if finite type at every point in

N.

Using the transversality theorem, we can show easily:
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Lemma 4.5. Let N be an n ‐dimensional manifold and n\leq m . Then map‐

pings of non‐finite type N\rightarrow \mathrm{R}^{m} form an infinite codimensional subset of C^{\infty}(N, \mathrm{R}^{m}) .

Namely, for any \ell
, any \ell ‐dimensional family of mapping  F:N\times \mathrm{R}^{\ell}\rightarrow \mathrm{R}^{m} is approxi‐

-

mated by F in C^{\infty} ‐topology such that any F_{ $\lambda$}, ( $\lambda$\in \mathrm{R}^{\ell}) is of finite type.

§5. Tangent varieties of surfaces with large codimension

First we consider the classification problem of tangent varieties of generic immer‐

sions N^{2}\rightarrow \mathrm{R}^{m} for a sufficiently large m and prove Theorem 1.1.

Lemma 5.1. Let g:(\mathrm{R}^{4},0)\rightarrow(\mathrm{R}^{5},0) be the map‐germ defined by

g(u, v, s, t)=(u, v, s^{2}, st, t^{2}) .

Then we have

\mathcal{R}_{g}=\{h\in \mathcal{E}_{u,v,s,t}|h_{s}(u, v, 0,0)=0, h_{t}(u, v, 0,0)=0\}

=\mathrm{R}+\mathfrak{m}_{s,t}^{2}\mathcal{E}_{u,v,s,t}
Moreover \mathcal{R}_{g} is minimally generated by 1, s^{3}, s^{2}t, st^{2}, t^{3} as a g^{*}\mathcal{E}_{5} ‐module.

Proof: Set A=\{h\in \mathcal{E}_{u,v,s,t}|h_{s}(u, v, 0,0)=0, h_{t}(u, v, 0,0)=0\}, B=\mathrm{R}+\mathfrak{m}_{s,t}^{2}\mathcal{E}_{u,v,s,t}
and C=\langle 1, s^{3}, s^{2}t, st^{2}, t^{3}\rangle_{g^{*}\mathcal{E}_{5}} . It is clear that \mathcal{R}_{g}\subseteq A . By Haramard�s lemma we see

A\subseteq B . Let h\in B . Using the preparation theorem, we write h=g^{*}K+g^{*}L s+

g^{*}M\cdot t ,
for some K, L, M\in \mathcal{E}_{5} . Then L(u, v, 0,0,0)=M(u, v, 0,0,0)=0 . Therefore

g^{*}L=(g^{*}L_{1})s^{2}+(g^{*}L_{2})st+(g^{*}L_{2})t^{2}, g^{*}M=(g^{*}M_{1})s^{2}+(g^{*}M_{2})st+(g^{*}M_{3})t^{2} for

some L_{1}, L_{2}, L_{3}, M_{1}, M_{2}, M_{3}\in \mathcal{E}_{5} . Thus we see h\in C . Hence we have B\subseteq C . Since

s^{3}, s^{2}t, st^{2}, t^{3}\in \mathcal{R}_{g} ,
we have C\subseteq \mathcal{R}_{g} . Thus we have \mathcal{R}_{g}=A=B=C . The minimality

is clear. \square 

Corollary 5.2. The mini‐versal opening of g:(\mathrm{R}^{4},0)\rightarrow(\mathrm{R}^{5},0) in Lemma 5.1

is given by G : (\mathrm{R}^{4},0)\rightarrow(\mathrm{R}^{5}\times \mathrm{R}^{4},0)=(\mathrm{R}^{9},0) ,

G(u, v, s, t)=(u, v, s^{2}, st, t^{2}, s^{3}, s^{2}t, st^{2}, t^{3}) .

A map‐germ from a 4‐dimensional manifold to a 9‐dimensional manifold is called

the 4‐dimensional cuspidal conical edge if it is diffeomorphic to the above map‐germ

G.

Proposition 5.3. Let f : N^{2}\rightarrow \mathrm{R}^{m} be an immersion with m\geq 9 . Suppose f
is 3‐non‐degenerate at a point p\in N. Then the germ \mathrm{T}\mathrm{a}\mathrm{n}(f) : (TN, (p, 0))\rightarrow \mathrm{R}^{m} is

diffeomorphic to the 4‐dimensional cuspidal‐conical edge composed with an immersion.
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\mathrm{R}^{2}

Figure 3. Four‐dimensional cuspidal‐conical edge

Proof: Let f is 3‐non‐degenerate at p\in N . Then, for a system of affine local coordinates

of \mathrm{R}^{m} and a system of local coordinates of N centred at p ,
we have a local representation

f : (\mathrm{R}^{2},0)\rightarrow(\mathrm{R}^{m}, 0) in the form

f(x_{1}, x_{2})=(x_{1}, x_{2}, x_{1}^{2}+$\varphi$_{1}(x), x_{1}x_{2}+$\varphi$_{2}(x), x_{2}^{2}+$\varphi$_{3}(x) ,

x_{1}^{3}+$\psi$_{1}(x) , x_{1}^{2}x_{2}+$\psi$_{2}(x) , x_{1}x_{2}^{2}+$\psi$_{3}(x) , x_{2}^{3}+$\psi$_{4}(x) ,

$\rho$_{1}(x) ,
. . .

, $\rho$_{m-9}(x)) ,

with $\varphi$_{i}\in \mathfrak{m}_{2}^{3}, $\psi$_{j}\in \mathfrak{m}_{2}^{4}, $\rho$_{k}\in \mathfrak{m}_{2}^{4}, i=1
, 2, 3, j=1 , 2, 3, 4, k=1

,
. . .

, m-9 ,
where

\mathfrak{m}_{2}=\mathfrak{m}_{\mathrm{R}^{2},0}.
Then the tangent mapping F=\mathrm{T}\mathrm{a}\mathrm{n}(f) : (\mathrm{R}^{4},0)\rightarrow \mathrm{R}^{m} of f is given by

F(x_{1}, x_{2}, s, t)=f(x_{1}, x_{2})+s\displaystyle \frac{\partial f}{\partial x_{1}}(x_{1}, x_{2})+t\frac{\partial f}{\partial x_{2}}(x_{1}, x_{2}) ,

namely by

\displaystyle \ovalbox{\tt\small REJECT} F_{81}^{22}1F7_{=xx_{2}+$\psi$_{3}++\frac {}{}2x_{1}x_{2}+\frac{}{})}=x^{2}1x2+$\psi$_{2}+s(x_{1^{X}}F_{6}=x^{3}+$\psi$_{1}+s+\frac{}{}\frac {}{}F_{5}=x^{2}2+$\varphi$_{3}+s\frac{\partial$\varphi$_{3}s(}{(3x_{1}^{2}\partial x_{1}}++\frac{t\partial}{t\partial}F=xx_{2}+$\varphi$_{2}+x_{2}+\frac{\partial$\varphi$_{2}$\varphi$_{1}x_{1})}{\partial$\psi$_{3}\partial x,\partial x_{1}$\psi$_{1}x_{1}3_{X_{2}^{2}}^{+}2x_{2}1)})++\frac{\partial$\varphi$_{2}}{\partial x_{2}})F_{3}$\varphi$_{11_{2}}F=x+tF=x+s12+\frac{\partial}{t(,t(\partial\partial\partial 2}+\frac{\partial$\varphi$_{1}}{)+\partial^{X}$\psi$_{l_{1}}^{)}t(x_{1}\partial x_{2}\partial x_{2}$\varphi$_{3}}
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We set u=x_{1}+s, v=x_{2}+t . Then, in terms of coordinates u, v, s, t of (R4,0), we have

\left\{\begin{array}{l}
F_{1}=u\\
F_{2}=v\\
F_{3}=-s^{2}+u^{2}+$\Phi$_{1}\\
F_{4}=-st+uv+$\Phi$_{2}\\
F_{5}=-t^{2}+v^{2}+$\Phi$_{3}\\
F_{6}=2s^{3}-3us^{2}+u^{3}+$\Psi$_{1}\\
F_{7}=2s^{2}t-2ust-vs^{2}+u^{2}v+$\Psi$_{2}\\
F_{8}=2st^{2}-ut^{2}-2vst+uv^{2}+$\Psi$_{3}\\
F_{9}=2t^{3}-3vt^{2}+v^{3}+$\Psi$_{4}\\
F_{9+k}=R_{k}
\end{array}\right.
with $\Phi$_{i}\in \mathfrak{m}_{4}^{3}, $\Psi$_{j}\in \mathfrak{m}_{4}^{4}, R_{k}\in \mathfrak{m}_{4}^{4}, i=1

, 2, 3, j=1 , 2, 3, 4, k=1
,

. . .

, m-9 ,
where

\mathfrak{m}_{4}=\mathfrak{m}_{\mathrm{R}^{4},0}.
We set g, g' : (\mathrm{R}^{4},0)\rightarrow(\mathrm{R}^{5},0) by

g(u, v, s, t)=(u, v, s^{2}, st, t^{2}) , g'(u, v, s, t)=(F_{1}, F_{2}, F_{3}, F_{4}, F_{5}) .

Then we see \mathcal{R}_{g'}=\mathcal{R}_{g} by Lemma 5.1. Therefore we have \mathcal{J}_{g'}=\mathcal{J}_{g} and that g, g' are

\mathcal{J}‐equivalent. Moreover both g and g' are \mathcal{J}‐minimal.

We set G, G' : (\mathrm{R}^{4},0)\rightarrow(\mathrm{R}^{9},0) by

G(u, v, s, t)=(g;s^{3}, s^{2}t, st^{2}, t^{3}) , G'(u, v, s, t)=(g';F_{6}, F_{7}, F_{8}, F_{9}) .

Then G is a mini‐versal opening of g . Moreover G' is a mini‐versal opening of g'
Therefore by Proposition 2.10, G and G' are left equivalent. By Lemma 5.1, F is an

opening of G' . Thus we have, by Proposition 2.4, F is left equivalent to (G', 0) ,
which

is left equivalent to (G, 0) , namely to the 4‐dimensional cuspidal‐conical edge composed
with an immersion. \square 

Now to show Theorem 1.1, it is enough to prove the following:

Theorem 5.4. Let m\geq 11 . Then for a generic proper immersion f :  N^{2}\rightarrow

\mathrm{R}^{m}
,

in Whitney C^{\infty} topology, from a 2‐dimensional manifold N
,

we have, at any point

p\in N, \mathrm{T}\mathrm{a}\mathrm{n}(f) : (TN, (p, 0))\rightarrow \mathrm{R}^{m} is diffeomorphic to the 4‐dimensional cuspidal‐
conical edge composed with an immersion. In particular \mathrm{T}\mathrm{a}\mathrm{n}(f) is 5‐frontal. Moreover

\mathrm{T}\mathrm{a}\mathrm{n}(f) is an immersion on TN\backslash N\times\{0\}.

Proof: By Corollary 4.3 (n=2) ,
we may suppose f is 3‐non‐degenerate at p . Then by

Proposition 5.3, we have the first‐half. The second‐half follows from Lemma 4.4 (n=2) .

\square 
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§6. Stable classification of tangential singularities

Let v_{n} : (\mathrm{R}^{n}, 0)\rightarrow(\mathrm{R}^{\frac{1}{2}n(n+1)}, 0) be the Veronese map defined by

v_{n}(t_{1}, t2, . . . , t_{n}):=(t_{1}^{2}, t_{1}t_{2}, . . . , t_{1}t_{n}, . . . , t_{n}^{2}) ,

all monomials of second order appearing. Then consider the trivial \ell‐parameter unfold‐

ing  v_{\ell,n} : (\mathrm{R}^{\ell+n}, 0)\rightarrow(\mathrm{R}^{\ell+\frac{1}{2}n(n+1)}, 0) of v_{n},

v_{\ell,n}(u_{1}, \ldots, u\ell, t_{1}, t_{2}, \ldots, t_{n})=(u_{1}, \ldots, u\ell, v_{n}(t_{1}, t_{2}, \ldots, t_{n})) .

Lemma 6.1. Let m=\displaystyle \ell+\frac{1}{2}n(n+1) and g=v_{\ell,n} : (\mathrm{R}^{\ell+n}, 0)\rightarrow(\mathrm{R}^{m}, 0) be the

trivial unfolding of ve ronese map‐germ. Then

\displaystyle \mathcal{R}_{g}=\{h\in \mathcal{E}_{\mathrm{R}^{l+n},0}|\frac{\partial h}{\partial t_{i}}|_{\mathrm{R}^{p}\times 0}=0, 1\leq i\leq n\}
=\mathrm{R}+\mathfrak{m}_{\mathrm{R}^{n},0}^{2}\mathcal{E}_{\mathrm{R}^{l+n},0}

Moreover \mathcal{R}_{g} is generated by 1 and all cubic monomials on t_{1} ,
. . .

, t_{n} as a g^{*}\mathcal{E}_{\mathrm{R}^{m},0^{-}}
module.

Proof: Set A=\displaystyle \{h\in \mathcal{E}_{\mathrm{R}^{l+n},0}|\frac{\partial h}{\partial t_{i}}|_{\mathrm{R}^{p}\times 0}=0, 1\leq i\leq n\}, B=\mathrm{R}+\mathfrak{m}_{\mathrm{R}^{n},0}^{2}\mathcal{E}_{\mathrm{R}^{l+n},0} and

denote by C the g^{*}\mathcal{E}_{\mathrm{R}^{n},0} ‐module generated by 1 and all cubic monomials on t_{1} ,
. . .

, t_{n}.

It is clear that \mathcal{R}_{g}\subseteq A . By Haramard�s lemma we see A\subseteq B . Let h\in B . Using the

preparation theorem, we write h=g^{*}K+\displaystyle \sum_{i=1}^{n}(g^{*}L_{i})t_{i} ,
for some K, L_{1} ,

. . .

, L_{n}\in \mathcal{E}_{\mathrm{R}^{m},0}.
Then L_{i}(u, 0)=0, 1\leq i\leq n . Therefore h\in C . Hence we have B\subseteq C . Since any cubic

monomial belongs to \mathcal{R}_{g} ,
we have C\subseteq \mathcal{R}_{g} . Thus we have \mathcal{R}_{g}=A=B=C. \square 

The versal opening of v_{1,1} is the cuspidal edge. The versal opening of v_{2,2} is the

4‐dimensional cuspidal‐conical edge.

Similarly we get the mini‐versal opening of v_{n,n} by just putting all monomials of

degree 3 of t_{1} ,
. . .

, t_{n} to v_{n,n} . We define w_{n} : (\mathrm{R}^{n}, 0)\rightarrow(\mathrm{R}^{\frac{1}{6}n(n+1)(n+2)}, 0) by all cubic

monomials on t_{1} ,
. . .

, t_{n}.

A map‐germ is called 2n‐dimensional cuspidal‐conical edge if it is diffeomor‐

phic to the map‐germ (\mathrm{R}^{2n}, 0)\rightarrow(\mathrm{R}^{m}, 0) defined by

(u, t)=(u_{1}, \ldots, u_{n}, t_{1}, \ldots, t_{n})\mapsto(u, v_{n}(t), w_{n}(t), 0)=

(ul, . . .

, u_{n}, t_{1}^{2}, t_{1}t_{2} ,
. . .

, t_{1}t_{n} ,
. . .

, t_{n}^{2},

t_{1}^{3}, t_{1}^{2}t_{2} ,
. . .

, t_{1}^{2}t_{n}, t_{1}t_{2}^{2}, t_{1}t_{2}t_{3} ,
. . . . . .

, t_{n}^{3}, 0 ,
. . .

, 0) .

Proposition 6.2. Let f : N^{n}\rightarrow \mathrm{R}^{m} be an immersion with m\displaystyle \geq 2n+\frac{1}{2}n(n+1) .

Suppose f is 3‐non‐degenerate at a point p\in N . Then the germ \mathrm{T}\mathrm{a}\mathrm{n}(f) : (TN, (p, 0))\rightarrow
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\mathrm{R}^{m} is diffeomorphic to the 2n ‐dimensional cuspidal‐conical edge composed with an im‐

mersion.

Recall that f is 3‐non‐degenerate at p\in N if

rank (\displaystyle \frac{\partial^{ $\alpha$}f}{\partial x^{ $\alpha$}}(p) | $\alpha$|=1,2,3)=n+\displaystyle \frac{1}{2}n(n+1)+\frac{1}{6}n(n+1)(n+2) .

Proof: The proof of Proposition 6.2 is similar to that of Proposition 5.3 in the previous
section. In fact f is affine equivalent to the form

f(x)=(x, v_{n}(x)+ $\varphi$(x), w_{n}(x)+ $\psi$(x),  $\rho$(x)) ,

such that each component of  $\varphi$ (resp.  $\psi$,  $\rho$ ) belongs to \mathfrak{m}_{n}^{3} , (resp. \mathfrak{m}_{n}^{4} ), where \mathfrak{m}_{n}=

\mathfrak{m}_{\mathrm{R}^{n},0} . Then F=\mathrm{T}\mathrm{a}\mathrm{n}(f) is given by

F(x, t)=f(x)+\displaystyle \sum_{i=1}^{n}t_{i}\frac{\partial f}{\partial x_{i}}(x)

=\left(\begin{array}{l}
+tx\\
v_{n}(x)+\sum_{i=1}^{n}\frac{}{x_{i} $\rho$}(x)+ $\varphi$(x)+\sum_{i=1}^{n}t_{i}\frac{\partial}{\partial}(x)w_{n}(X)+\sum_{i^{t_{i}\frac{\partial v_{n}(x)\partial w_{n}(x)\partial x_{i}}{\partial x_{i}(x)}(x)+ $\psi$(x)+\sum_{i=1}^{n}t_{i}\frac{x_{i}\partial $\psi \varphi$}{\partial x_{i}}(x)} $\rho$(x)+\sum_{i=1}^{n}t\frac{\partial}{\partial}}^{t_{i}}n
\end{array}\right)
We set u=x+t . Then x=u-t . Put g(u, t)=(u, v(t)) and

g'(u, t)=(u, v_{n}(u-t)+\displaystyle \sum_{i=1}^{n}t_{i}\frac{\partial v_{n}(x)}{\partial x_{i}}(u-t)+ $\varphi$(u-t)+\sum_{i=1}^{n}t_{i}\frac{\partial $\varphi$}{\partial x_{i}}(u-t)) .

Then g and g' are \mathcal{J}‐equivalent and both g and g' are \mathcal{J}‐minimal. Moreover, we set

G(u, t)=(u, v_{n}(t), w(t)) and

G'(u, t)=(g'(u, t), w_{n}(u-t)+\displaystyle \sum_{i=1}^{n}t_{i}\frac{\partial w_{n}(x)}{\partial x_{i}}(u-t)+ $\psi$(u-t)+\sum_{i=1}^{n}t_{i}\frac{\partial $\psi$}{\partial x_{i}}(u-t)) .

Then G is a mini‐versal opening of g and G' is a mini‐versal opening of g' . Thus we see

G and G' are left equivalent by Proposition 2.10. Then F is left equivalent to (G', 0)
and therefore to (G, 0) .

\square 

The normal form for singularity of tangent variety of a generic n‐dimensional sub‐

manifold in \mathrm{R}^{m} for sufficiently large m is given by 2n‐dimensional cuspidal‐conical edge:

Theorem 6.3. For a generic immersion f:N^{n}\rightarrow \mathrm{R}^{m} with m\displaystyle \geq 2n+\frac{1}{2}n(n+
1)+\displaystyle \frac{1}{6}n(n+1)(n+2) ,

the germ of tangent variety \mathrm{T}\mathrm{a}\mathrm{n}(f) : (TN, (p, 0))\rightarrow \mathrm{R}^{m} has unique
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local diffeomorphism class for any p\in N ,
that is the 2n ‐dimensional cuspidal‐conical

edge composed with an immersion. In particular \mathrm{T}\mathrm{a}\mathrm{n}(f) is \displaystyle \{n+\frac{1}{2}n(n+1)\} ‐frontal.
Moreover \mathrm{T}\mathrm{a}\mathrm{n}(f) is an immersion on TN\backslash N\times\{0\}.

The genericity condition of Theorem 6.3 is given by that f is 3‐non‐degenerate.
Also we have

Corollary 6.4. Any tangent variety \mathrm{T}\mathrm{a}\mathrm{n}(f) : (TN, (p, 0))\rightarrow \mathrm{R}^{m} of any immer‐

sion N^{n}\rightarrow \mathrm{R}^{m} is obtained locally by some projection of the 2n ‐dimensional cuspidal‐
conical edge, for any p\in N.

Proof: Let f : N\rightarrow \mathrm{R}^{m} be any immersion and p\in N . Then by a right equivalence and

a linear coordinate change of the target we have

f=(x_{1}, \ldots, x_{n}, $\varphi$_{1}, \ldots, $\varphi$_{m-n}) ,

with $\varphi$_{i}\in \mathfrak{m}_{n}^{2}, 1\leq i\leq m-n . Consider the map

f'=(x_{1}, \ldots, x_{n}, $\varphi$_{1}, \ldots, $\varphi$_{m-n}, v_{n}, w_{n}) ,

where v_{n} (resp. w_{n} ) is the mapping with components which consist of all quadratic (resp.
cubic) monomials in x_{1} ,

. . .

, x_{n} as above. Then \mathrm{T}\mathrm{a}\mathrm{n}(f') is 2n‐dimensional cuspidal‐
conical edge by Theorem 6.3 and \mathrm{T}\mathrm{a}\mathrm{n}(f)= $\Pi$\circ \mathrm{T}\mathrm{a}\mathrm{n}(f') by the projection  $\Pi$ to the first

 m‐components. \square 
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