3次元球面の向き付けられた測地線の空間について Note on the Space of Oriented Geodesics in the three-Sphere

By

本田 淳史 Atsufumi Honda*

Abstract

3次元空間形の向き付けられた測地線の空間は自然な中間符号 Kähler 構造を持つ. ユークリッド空間の場合, Guilfoyle-Klingenberg はその中間符号 Kähler 構造を調べ, 測地線の空間の部分多様体の幾何とユークリッド空間のそれとを結びつける結果を導いた. Georgiou-Guilfoyle は双曲空間の場合に Guilfoyle-Klingenberg の類似の結果を導いた.本稿では,彼らの結果の紹介を交えながら, S^3 の場合に類似の結果が成り立つことを示す.

The space of oriented geodesics in the 3-dimensional space form admits a neutral Kähler structure naturally. In the case of the Euclidean space, Guilfoyle-Klingenberg investigated the neutral Kähler structure, and derived some results which connect the submanifold geometry of the Euclidean space and that of the space of oriented geodesics. Georgiou-Guilfoyle proved similar results in the case of the hyperbolic space. In this note, introducing their results, we show analogue results in the case of the sphere.

§1. 導入

近年, n 次元単連結空間形 M^n の超曲面と, M^n の向き付けられた測地線の空間 $\mathcal{L}(M^n)$ の Lagrange 部分多様体との間の関係が盛んに研究されている [A, AGK, Ge, GG1, GG2, GK1, GK2, GK3, GK4, S1, S2]. 測地線の空間 $\mathcal{L}(M^n)$ は (2n-2) 次元多様体であり, さらに M^n の等長変換群 Isom (M^n) の $\mathcal{L}(M^n)$ への自然な作用は推移的であるため, $\mathcal{L}(M^n)$

Received July 10, 2012. Revised February 25, 2013.

²⁰⁰⁰ Mathematics Subject Classification(s): Primary 53A35; Secondary 53C22, 53C50.

Key Words: the space of oriented geodesics, minitwistor space, neutral-Kähler structure, isometry group, ruled surface, geodesic congruence.

This work is partly supported by JSPS KAKENHI Grant Number 11J09534.

^{*}Department of Mathematics, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo 152-8551, Japan. e-mail: 10d00059@math.titech.ac.jp

^{© 2013} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

は Isom(M^n) の等質空間である. ユークリッド空間 $M^n = \mathbb{R}^n$ の場合, $\mathcal{L}(\mathbb{R}^n)$ に不変計 量が存在するとき n = 3 もしくは n = 7 であり,存在するのはその時に限る [S1]. 非平坦 空間形 M^n の場合は,任意の n に対し $\mathcal{L}(M^n)$ に不変計量が存在する. さらに, $\mathcal{L}(M^n)$ の不変計量のなす空間の次元は, $n \neq 3$ のとき 1 であり,n = 3 のとき 2 である (M^n が 双曲空間の場合には [S2] を,より一般の場合には [AGK] を参照). つまり,n = 3 の場合 は他の次元の場合とは異なる状況が起こっている.また,Hitchin [Hi] により構成された ミニツイスター空間と呼ばれる複素曲面の構造 ($\mathcal{L}(M^3), J_{tw}$)の存在からも,n = 3の場 合は特殊 であると考えられる.

測地線の空間 $\mathcal{L}(M^n)$ には標準的にシンプレクティック構造 Ω が定まることが知られ ている.従って, n = 3の場合,ミニツイスター空間には Kähler 曲面 ($\mathcal{L}(M^3)$, J_{tw} , Ω)の構 造が自然に導かれる.これから得られる Kähler 計量をミニツイスター計量と呼ぶ.3次元 ユークリッド空間 $M^3 = \mathbf{R}^3$ の場合, $\mathcal{L}(\mathbf{R}^3)$ は2次元球面 S^2 の接束 TS^2 と同一視できる. Guilfoyle-Klingenberg は, ($\mathcal{L}(\mathbf{R}^3)$, J_{tw} , Ω)の幾何構造を研究し,特に,($\mathcal{L}(\mathbf{R}^3)$, J_{tw} , Ω) の等長変換群や測地線,平坦曲面を \mathbf{R}^3 の部分多様体の幾何と対応付ける結果を導いた [GK1, GK2, GK3, GK4].また,Georgiou-Guilfoyle は M^3 が3次元双曲空間 H^3 の場 合に, \mathbf{R}^3 における Guilfoyle-Klingenberg の結果の類似を導いた [GG1, GG2, Ge].一方 で,著者は H^3 の可展面と ($\mathcal{L}(H^3)$, J_{tw} , Ω)の null 曲線との対応することを示し,ある種 の H^2 の H^3 への等長はめ込みを分類し,無限遠での挙動を調べた [Ho].近年,Anciaux [A] は Guilfoyle, Klingenberg や Georgiou とは異なる手法を用いて彼らの結果のうちい くつかを任意の次元の空間形へと一般化した.本稿では M^3 が3次元球面 S^3 の場合に, Guilfoyle, Klingenberg や Georgiou による手法を用いて得られる結果を紹介する.

本稿の構成は以下の通りである. §2 では, $\mathcal{L}(S^3)$ のミニツイスター複素構造 J_{tw} や標準シンプレクティック構造 Ω などの幾何構造を復習する.

ユークリッド空間 \mathbb{R}^3 の測地線の空間 $\mathcal{L}(\mathbb{R}^3)$ のミニツイスター計量は共形平坦であ り [GK2],双曲空間 H^3 の場合にも同様の結果が成り立つ [GG1]. §3 では、ミニツイス ター空間 ($\mathcal{L}(S^3), J_{tw}$)の複素構造に両立する複素座標系を明示的に記述し、球面の場合 にも同様に $\mathcal{L}(S^3)$ のミニツイスター計量は共形平坦であることを紹介する (命題 3.4).ま た $M^3 = \mathbb{R}^3, H^3$ の場合, ($\mathcal{L}(M^3), J_{tw}, \Omega$)の等長変換群の単位連結成分は M^3 のそれと 同型であることが知られている ($M^3 = \mathbb{R}^3$ の場合 [GK2, Theorem 1], $M^3 = H^3$ の場合 [GG1, Theorem 3] を参照).ここでは、球面の場合にも同様の結果が従うことを示す (命 題 3.6).

§4 では、ミニツイスター空間 ($\mathcal{L}(S^3), J_{tw}, \Omega$)の測地線と S^3 の線織面の対応を記述 する. ミニツイスター空間の測地線に対応する M^3 の線織面は極小であることが、 $M^3 = \mathbf{R}^3, H^3$ の場合に知られている ($M^3 = \mathbf{R}^3$ の場合 [GK2, Theorem 2], $M^3 = H^3$ の場合 [GG1, Theorem 4] を参照). ここでは、球面の場合にも類似の結果が従うことを示す (定 理 4.1).

2次元多様体の $\mathcal{L}(S^3)$ へのはめ込みを $\mathcal{L}(S^3)$ の曲面,または測地線叢と呼ぶ. §5 では、測地線叢の性質を述べる.まず、Guilfoyle-Klingenberg [GK1, GK2, GK3, GK4] や

Georgiou-Guilfoyle [GG1, GG2, Ge] に従って, S^3 の場合に測地線に沿う null 枠を構成 する. この構成は S^3 の群構造を用いるため,他の空間形の場合より簡素に記述される. 一般に 3 次元空間形 M^3 の曲面は法測地線叢を介して ($\mathcal{L}(M^3), J_{tw}, \Omega$)の Lagrange 曲面 と対応する.この対応のもとで, $M^3 = \mathbf{R}^3, H^3$ の Weingarten 曲面は ($\mathcal{L}(M^3), J_{tw}, \Omega$)の ローレンツ平坦 Lagrange 曲面と対応することが知られている ($M^3 = \mathbf{R}^3$ の場合 [GK4, Main Theorem 3], $M^3 = H^3$ の場合 [GG2, Main Theorem] を参照).ここでは,球面の 場合にも同様の結果が従うことを示す (定理 5.13).

謝辞.本稿作成にあたり,詳細なコメントと洞察に富む助言を与えて頂いたレフェ リーに心からの感謝の意を表する.また,本研究の草稿段階から建設的なコメントを頂い た山田光太郎先生,梅原雅顕先生,佐治健太郎先生にも深く御礼申し上げる.

§2. 準備

ここでは、まず3次元球面の測地線の空間がグラスマン多様体であることを復習し、 それから定まる標準的な Kähler 構造を紹介する.次に、測地線の空間に標準的に定まる シンプレクティック形式を導入する.最後に、Hitchin により導入された複素構造 [Hi] を 定義する.

3次元完備リーマン多様体 (M^3, g) の単位速さを持つ完備測地線 $\gamma_1(t), \gamma_2(t)$ に対し, ある実数 t_0 が存在して

$$\gamma_1(t) = \gamma_2(t+t_0) \qquad (\forall t \in \mathbf{R})$$

となるとき $\gamma_1(t) \sim_g \gamma_2(t)$ と表す. この同値関係 \sim_g による商集合

 $\left\{\gamma: \mathbf{R} \to (M^3, g); \gamma$ は単位速さを持つ完備測地線 $\right\} / \sim_{\mathrm{g}}$

を向き付けられた測地線の空間と呼び、 $\mathcal{L}(M^3)$ と表す. 測地線 $\gamma(t)$ の同値類を $[\gamma]$ とする.

§2.1. 3次元球面の四元数モデル

四元数体 **H** を

$$oldsymbol{H} = \left\{ egin{pmatrix} a_1 & -ar{a}_2 \ a_2 & ar{a}_1 \end{pmatrix} \ ; \ a_1, \ a_2 \in oldsymbol{C}
ight\}$$

と表し、4次元ユークリッド空間 \mathbf{R}^4 とのベクトル空間としての同型写像

(2.1)
$$\mathbf{R}^{4} \ni (x_{0}, x_{1}, x_{2}, x_{3}) \longleftrightarrow \begin{pmatrix} x_{0} + \mathrm{i}x_{3} & -x_{2} + \mathrm{i}x_{1} \\ x_{2} + \mathrm{i}x_{1} & x_{0} - \mathrm{i}x_{3} \end{pmatrix} \in \mathbf{H}$$

を一つ固定する.四元数体 H に,内積

$$\langle X, Y \rangle := \frac{1}{2} \operatorname{trace} \left(X^{\mathsf{t}} \overline{Y} \right), \qquad (X, Y \in \boldsymbol{H})$$

を与えるとき, **H** は対応 (2.1) のもとで \mathbb{R}^4 と等長的になる. このとき, $S^3 = SU(2) = {A \in \mathbf{H}; \det A = 1}$ と実現される. スピン群 Spin(4) は SU(2) × SU(2) と同一視される が, S^3 に

(2.2) $S^3 \ni p \longmapsto ApB^{-1} \in S^3, \qquad (A,B) \in \mathrm{SU}(2) \times \mathrm{SU}(2)$

と等長的かつ推移的に作用する.

§2.2. 球面の測地線の空間

球面の単位接束 US^3 は $US^3 = \{(p, v) \in \mathbf{H} \times \mathbf{H}; \langle p, p \rangle = \langle v, v \rangle = 1, \langle p, v \rangle = 0\}$ と表され、射影

$$\pi: US^3 \ni (p, v) \longmapsto p \in S^3$$

は S^2 -束を与える. 球面 S^3 の任意の測地線は $(p, v) \in US^3$ を用いて

(2.3)
$$\gamma_{p,v}(t) := (\cos t)p + (\sin t)v$$

と表すことができる.これは, S^3 の測地線の像は $H = R^4$ の原点を通る平面と S^3 との 交わりであることを意味するので, $\mathcal{L}(S^3)$ は R^4 の向き付けられた2次元部分空間全体の グラスマン多様体 $\tilde{G}r_2(R^4)$ である.ここで $\tilde{G}r_2(R^4)$ は, $US^3 \sim O$ SO(2)-作用

$$US^3 \ni (p,v) \longmapsto ((\cos t)p + (\sin t)v, -(\sin t)p + (\cos t)v) \in US^3$$

の軌道空間である.従って $\mathcal{L}(S^3) = \tilde{G}r_2(\mathbf{R}^4)$ には、自然な射影

(2.4)
$$\hat{\pi}: US^3 \ni (p, v) \longmapsto [\gamma_{p,v}] \in \mathcal{L}(S^3)$$

が滑らかな沈め込みとなるような可微分構造が一意的に定まり、このとき $\hat{\pi}$ は S^1 -束となる.

実際, $\mathcal{L}(S^3) = \tilde{G}r_2(\mathbb{R}^4)$ は3次元複素射影空間 \mathbb{CP}^3 内の複素2次曲面を \mathbb{Q}^2 と同一視できることが知られている ([K, Section 2] を参照).3次元複素射影空間 \mathbb{CP}^3 の Fubini-Study 計量から \mathbb{Q}^2 へ誘導されるリーマン計量 G_0 は Kähler-Einstein 計量である.

定義 2.1 (標準複素構造). 同一視 $\mathcal{L}(S^3) = \mathbf{Q}^2$ から誘導される $\mathcal{L}(S^3)$ 上の複素構造 J_0 を標準複素構造, Kähler 計量 G_0 を標準計量と呼ぶ.

複素 2 次曲面 Q^2 はリーマン球面 $\hat{C} := C \cup \{\infty\}$ の直積 $\hat{C} \times \hat{C}$ と正則同型である. それらの間の同型写像は [F, Section 5.2] に明示的に記述されている. その同型写像を用いると、標準計量 G_0 は

(2.5)
$$G_0 = \frac{2dz_1d\bar{z}_1}{(1+|z_1|^2)^2} + \frac{2dz_2d\bar{z}_2}{(1+|z_2|^2)^2}$$

と表すことができる.ここで, (z_1, z_2) は $\mathcal{L}(S^3) = \mathbf{Q} = \hat{\mathbf{C}} \times \hat{\mathbf{C}}$ の複素座標系を表しており, $\mathcal{L}(S^3)$ の標準複素構造 J_0 に両立する座標系である (cf. 命題 3.1).

Note on the Space of Oriented Geodesics in the three-Sphere

§2.3. 標準シンプレクティック形式

一般に、リーマン多様体の単位余接束には自然に接触形式が存在する.これを用いて、 測地線の空間に標準的なシンプレクティック形式を定めよう.単位接束 US³の点 (p,v) に おける接空間は

$$T_{(p,v)}US^3 = \{(X,V) \in \boldsymbol{H} \times \boldsymbol{H} ; \langle p, X \rangle = \langle v, V \rangle = \langle p, V \rangle + \langle X, v \rangle = 0\}$$

と表せる. このとき

$$\Theta_{(p,v)}(X,V) = \langle X,v \rangle = -\langle p,V \rangle, \qquad \left((X,V) \in T_{(p,v)}US^n \right)$$

は US^3 上の接触形式を定める. 接触形式 Θ を US^3 の標準接触形式と呼ぶ.

定義 2.2 (標準シンプレクティック形式). 写像 $\hat{\pi}$ を式 (2.4) により定義される射影 とするとき

(2.6)
$$\Omega := \hat{\pi}_*(d\Theta)$$

は $\mathcal{L}(S^3)$ 上のシンプレクティック形式を定める. これを標準シンプレクティック形式と呼ぶ.

標準複素構造 J_0 に両立する複素座標系 (z_1, z_2) を用いて計算することにより、標準 的な Kähler 構造 $(\mathcal{L}(S^3), J_0, G_0)$ の Kähler 形式は標準シンプレクティック形式 Ω と定数 倍を除いて一致することがわかる:

$$(2.7) G_0 = 2\Omega(J_0, \cdot).$$

§2.4. ミニツイスター複素構造

3次元単連結空間形 (M^3, g) の測地線の空間 $\mathcal{L}(M^3)$ において,点 $[\gamma]$ における $\mathcal{L}(M^3)$ の接空間は $\gamma(t)$ の測地変分の $\gamma'(t)$ に直交する方向の変分ベクトル場全体と同一視できる ので, $\gamma(t)$ に沿う直交ヤコビ場全体 $\mathcal{J}^{\perp}(\gamma)$ と線型同型である.直交ヤコビ場全体 $\mathcal{J}^{\perp}(\gamma)$ の線型変換 $(J_{tw})_{[\gamma]}: \mathcal{J}^{\perp}(\gamma) \to \mathcal{J}^{\perp}(\gamma)$ を

(2.8)
$$(J_{tw})_{[\gamma]}(V) := \gamma' \times V \qquad (V \in \mathcal{J}^{\perp}(\gamma))$$

と定義すると、これは $\mathcal{L}(M^3)$ の概複素構造を定めるが、 J_{tw} は可積分である [Hi]. ただし、× は計量 g から定まる M^3 の接空間のベクトル積である.

定義 2.3 (ミニツイスター複素構造). 複素構造 J_{tw} をミニツイスター複素構造, 複素曲面 ($\mathcal{L}(M^3), J_{tw}$) を M^3 のミニツイスター空間と呼ぶ.

Atsufumi Honda

§3. ミニツイスター空間に付随する計量

ここでは、ミニツイスター複素構造 J_{tw} に両立する複素座標系を用いて、 J_{tw} と標準 複素構造 J_0 が一致しないことを述べる (命題 3.1). さらに、ミニツイスター複素構造 J_{tw} に付随する Kähler 計量 (ミニツイスター計量、定義 3.3 参照) の曲率 (命題 3.4)、等長変 換群 (命題 3.6) を記述する.

§3.1. ミニツイスター複素構造に両立する局所座標系

§2.2 で紹介したように, $(\mathcal{L}(S^3), J_0)$ は $\hat{C} \times \hat{C}$ と正則同型である. その同型写像 ([F, Section 5.2] 参照) を用いることで, 任意の向き付けられた測地線 [γ] $\in \mathcal{L}(S^3)$ は点 $(z_1, z_2) \in \hat{C} \times \hat{C}$ に対して [Ξ^{z_1, z_2}] と表すことができることがわかる. ただし, Ξ^{z_1, z_2} は

(3.1)
$$\Xi^{z_1, z_2}(t) := \frac{1}{\sqrt{(1+|z_1|^2)(1+|z_2|^2)}} \begin{pmatrix} e^{it} + e^{-it}z_1z_2 & e^{-it}z_1 - e^{it}\bar{z}_2\\ -e^{it}\bar{z}_1 + e^{-it}z_2 & e^{-it} + e^{it}\bar{z}_1\bar{z}_2 \end{pmatrix}$$

で定まる測地線である.ここで、 $S^3 = SU(2)$ と同一視している.

この明示的表示により、定義 2.3 のミニツイスター複素構造 J_{tw} に両立する複素座標系は、標準複素構造 J_0 に両立する複素座標系 (z_1, z_2) を用いて、以下のように記述されることがわかる.

命題 3.1. 測地線の空間 *L*(*S*³) に対して

(3.2)
$$(\mu_1, \mu_2) := (z_1, \bar{z}_2)$$

は、ミニツイスター複素構造 J_{tw} に両立する複素座標系を与える.

命題 3.1 は,式 (3.1) を用いて J_{tw} の定義式 (2.8) の通りに計算することにより得られる.

命題 3.1 により、ミニツイスター空間の点 $(\mu_1, \mu_2) \in \hat{C} \times \hat{C} = (\mathcal{L}(S^3), J_{tw})$ に対応 する測地線 γ^{μ_1, μ_2} は、式 (3.1) に $(z_1, z_2) = (\mu_1, \bar{\mu}_2)$ を代入したものとして表すことがで きる. 球面 $S^3 = SU(2)$ の群構造を用いて計算することで、以下のことがわかる.

補題 3.2. ミニツイスター空間の点 $(\mu_1, \mu_2) \in \hat{C} \times \hat{C} = (\mathcal{L}(S^3), J_{tw})$ に対応する 測地線 γ^{μ_1, μ_2} は

$$\gamma^{\mu_1,\mu_2}(t) = \mathcal{M}(\mu_1) c(t) \mathcal{M}(\mu_2)^{-1}$$

と表示される. ここで, $\mathcal{M}: \hat{C} \to \mathrm{SU}(2)$ と $c: S^1 = \mathbf{R}/2\pi \mathbf{Z} \to \mathrm{SU}(2)$ は, 埋め込み

$$\mathcal{M}(\zeta) := \frac{1}{\sqrt{1+|\zeta|^2}} \begin{pmatrix} 1 & \zeta \\ -\bar{\zeta} & 1 \end{pmatrix}, \qquad c(t) := \begin{pmatrix} e^{\mathrm{i}t} & 0 \\ 0 & e^{-\mathrm{i}t} \end{pmatrix}, \qquad \left(\zeta \in \hat{\boldsymbol{C}}, \, t \in S^1\right)$$

である.

§3.2. ミニツイスター空間の Kähler 構造

標準計量 G_0 は,標準複素構造 J_0 と標準シンプレクティック形式 Ω から定まる Kähler 計量である (式 (2.7) 参照). ここでは、ミニツイスター複素構造 J_{tw} と Ω を用いて定まる Kähler 計量を導入する.

定義 3.3 (ミニツイスター計量). 標準シンプレクティック形式 Ω (式 (2.6) 参照) とミニツイスター複素構造 J_{tw} に対して,次で定まる計量

$$G_{\rm tw} := 2\Omega(J_{\rm tw}, \cdot)$$

をミニツイスター計量と呼ぶ.

ミニツイスター空間 ($\mathcal{L}(S^3), J_{tw}$)の複素座標系 (μ_1, μ_2)を用いると

(3.3)
$$G_{\rm tw} = \frac{2d\mu_1 d\bar{\mu}_1}{(1+|\mu_1|^2)^2} - \frac{2d\mu_2 d\bar{\mu}_2}{(1+|\mu_2|^2)^2}$$

と表せる.計算すると、 G_{tw} の曲率テンソルRの0でない成分は

$$R_{1\bar{1}1}^1 = \frac{2}{(1+|\mu_1|^2)^2}, \quad R_{2\bar{2}2}^2 = \frac{2}{(1+|\mu_2|^2)^2}$$

となり,以下のことがわかる:

命題 3.4. ミニツイスター空間 ($\mathcal{L}(S^3), G_{tw}, J_{tw}$) は中間符号を持つ Kähler 多様体 であり、共形平坦である.

この命題は、ユークリッド空間 \mathbf{R}^3 の場合 [GK2, Proposition 7]、双曲空間 H^3 の場合 [GG1, Theorem 2] の類似である.

§3.3. 測地線の空間への群作用、等長変換群

測地線 $[\gamma] \in \mathcal{L}(S^3)$, $A, B \in SU(2)$ に対して, $A\gamma(t)B^{-1}$ が与える $\mathcal{L}(S^3)$ の元 $[A\gamma(t)B^{-1}]$ は代表元 γ の取り方によらず定まる. これを $A[\gamma]B^{-1}$ と表す. 従って, スピ ン群 Spin(4) = SU(2) × SU(2) の S^3 への作用 (2.2) は測地線の空間 $\mathcal{L}(S^3)$ への作用

(3.4)
$$\mathcal{L}(S^3) \ni [\gamma] \longmapsto A[\gamma]B^{-1} = [A\gamma B^{-1}] \in \mathcal{L}(S^3),$$

を自然に誘導する. この作用 (3.4) は座標系 (μ_1, μ_2) の各成分の Möbius 変換を誘導する:

命題 3.5. リーマン球面の点 $\mu_1, \mu_2 \in \hat{C}$ に対し

$$A\left[\gamma^{\mu_1,\mu_2}\right]B^{-1} = \left[\gamma^{A\star\mu_1,B\star\mu_2}\right], \qquad A,B \in \mathrm{SU}(2)$$

となる. ただし $A \in SU(2)$ に対して, $A \star \cdot : \hat{C} \to \hat{C}$ は Möbius 変換を表す.

注意. 一般に $A\gamma^{\mu_1,\mu_2}(t)B^{-1} \neq \gamma^{A\star\mu_1,B\star\mu_2}(t)$ である.

従って、 S^3 の等長変換群はミニツイスター空間 ($\mathcal{L}(S^3), G_{tw}, J_{tw}$)の等長変換群の部 分群となっていることがわかるが、逆に次が従う.

命題 3.6. ミニツイスター空間 ($\mathcal{L}(S^3), G_{tw}, J_{tw}$)の等長変換群の単位元の連結成分は, S^3 の等長変換群の単位元の連結成分と同型である.

この命題は、ユークリッド空間 \mathbb{R}^3 の場合 [GK2, Theorem 1],双曲空間 H^3 の場合 [GG1, Theorem 3])の類似である.証明はそれらと同様の方法、すなわち、($\mathcal{L}(S^3), G_{tw}, J_{tw}$)のキリングベクトル場を分類し、それらのなすリー環の次元を計算することにより 従う.

§4. 測地線

3 次元球面 S^3 の線織面は S^3 の測地線の 1-パラメータ族の軌跡で与えられる曲面な ので、測地線の空間 $\mathcal{L}(S^3)$ の曲線に対応する.ここでは、次が成り立つことを示す.

定理 4.1. 測地線の空間 ($\mathcal{L}(S^3), G_{tw}, J_{tw}$)の測地線は S^3 の極小線織面を生成する. 逆に, S^3 の全測地的でない極小線織面は ($\mathcal{L}(S^3), G_{tw}, J_{tw}$)の測地線を与える.

定理 4.1 は, ユークリッド空間 \mathbf{R}^3 の場合 [GK2, Theorem 2], 双曲空間 H^3 の場合 [GG1, Theorem 4])の類似である.

まず §4.1 において主張の前半 (補題 4.3) を示し,次に §4.2 では後半 (補題 4.4) を示す.

§4.1. 測地線の空間の測地線が生成する線織面

任意の測地線 $\ell \in \mathcal{L}(S^3)$ に対して,点 $\mu_1, \mu_2 \in \hat{C}$ が存在して $\ell = [\gamma^{\mu_1,\mu_2}]$ (ただし, γ^{μ_1,μ_2} は補題 3.2 参照) と表せていたので,すべての $\mathcal{L}(S^3)$ の曲線 $\alpha(s)$ は,ある球面曲 線のペア $\mu_1(s), \mu_2(s) \in \hat{C}$ を用いて $\alpha(s) = [\gamma^{\mu_1(s),\mu_2(s)}]$ と表せる.従って補題 3.2 より, 線織面のパラメータ表示

(4.1)
$$f(s,t) = \mathcal{M}_1(s)c(t)\mathcal{M}_2(s)^{-1}$$

を得る.ここでは、このような線織面と $\mathcal{L}(S^3)$ の曲線の対応を用いて、 $\mathcal{L}(S^3)$ のミニツ イスター計量 G_{tw} に関する測地線が S^3 の極小線織面を与えることを示そう.まず、補題 4.2 で $\mathcal{L}(S^3)$ の G_{tw} に関する測地線を求め、それらが極小線織面を与えることを補題 4.3 で示す.

補題 4.2. 測地線の空間 $\mathcal{L}(S^3) = \hat{C} \times \hat{C}$ のミニツイスター計量 G_{tw} に関する測地 線を $\alpha(s)$ とする. このとき、 $\alpha(s)$ は $\mathcal{L}(S^3)$ の適当な等長変換を施すことで、実数 a, b を 用いて次のように表すことができる:

$$\alpha(s) = (\mu_1(s), \mu_2(s)) = (e^{\imath a s}, e^{\imath b s}).$$

証明. ミニツイスター計量 G_{tw} の Levi-Civita 接続 ∇ は次のように表すことができる.

$$\nabla_{\frac{\partial}{\partial\mu_1}}\frac{\partial}{\partial\mu_1} = \frac{-2\bar{\mu}_1}{1+|\mu_1|^2}\frac{\partial}{\partial\mu_1}, \quad \nabla_{\frac{\partial}{\partial\mu_2}}\frac{\partial}{\partial\mu_2} = \frac{-2\bar{\mu}_2}{1+|\mu_2|^2}\frac{\partial}{\partial\mu_2}, \quad \nabla_{\frac{\partial}{\partial\mu_1}}\frac{\partial}{\partial\mu_2} = \nabla_{\frac{\partial}{\partial\mu_2}}\frac{\partial}{\partial\mu_1} = 0.$$

従って, $\mathcal{L}(S^3) = \hat{C} \times \hat{C}$ の測地線 $\alpha : \mathbf{R} \supset I \rightarrow \hat{C} \times \hat{C}$ を $\alpha(s) = (\mu_1(s), \mu_2(s))$ とすると

$$0 = \nabla_{\alpha'} \alpha' = \left(\mu_1'' + \frac{-2\bar{\mu}_1}{1 + |\mu_1|^2} (\mu_1')^2\right) \frac{\partial}{\partial\mu_1} + \left(\mu_2'' + \frac{-2\bar{\mu}_2}{1 + |\mu_2|^2} (\mu_2')^2\right) \frac{\partial}{\partial\mu_2}$$

を満たすので、 $\mu_1(s), \mu_2(s)$ は $\hat{C} = S^2$ の測地線もしくは定値曲線となる.

次に、 $\mathcal{L}(S^3)$ の測地線が生成する線織面が極小であることを示そう.

補題 4.3. 測地線の空間 $\mathcal{L}(S^3)$ の測地線が生成する S^3 の線織面は極小である.

証明. 補題 4.2 より, $\mathcal{L}(S^3) = \hat{C} \times \hat{C}$ の測地線 $\alpha(s)$ は $\mathcal{L}(S^3)$ の適当な等長変換を 施すことで、実数 a, bを用いて $\alpha(s) = (\mu_1(s), \mu_2(s)) = (e^{ias}, e^{ibs})$ と表すことができる. これを式 (4.1) に代入すると測地線 $\alpha(s)$ が生成する線織面 f は

(4.2)
$$f(s,t) = \frac{1}{2} \begin{pmatrix} e^{it} + e^{i((a-b)s-t)} & e^{i(as-t)} - e^{i(bs+t)} \\ -e^{-i(as-t)} + e^{-i(bs+t)} & e^{-it} + e^{-i((a-b)s-t)} \end{pmatrix}$$

と表すことができる. 直接計算により f が極小であることがわかる.

§4.2. 極小線織面が与える測地線の空間の曲線

球面 S^3 の極小線織面が与える測地線の空間 $\mathcal{L}(S^3)$ の曲線は、ミニツイスター計量 G_{tw} に関する測地線であることを示そう.ここで、全測地的な曲面は全臍的であり $\mathcal{L}(S^3)$ の曲線を一意的に定めないため、ここでは除外する.

補題 4.4. 球面 S^3 の全測地的でない極小線織面は,測地線の空間 $\mathcal{L}(S^3)$ の測地線 を与える.

証明. 極小線織面 f に対して,ある球面曲線のペア ($\mu_1(s), \mu_2(s)$) $\in \hat{C} \times \hat{C}$ が存 在して,f を式 (4.1) のように表すことができる.このとき 補題 4.2 により,球面曲線 $\mu_1(s), \mu_2(s)$ の各々が定値曲線でないならば, \hat{C} の Fubini-Study 計量に関する測地線と なることを示せば良い.すなわち,勝手に選んだ点 $s = s_0$ において, f of $f(s_0,t)$ にお ける平均曲率 $H(s_0,t)$ が消えるとき, $\kappa_1(s_0) = \kappa_2(s_0) = 0$ であることを示す.ただし, $\kappa_1(s), \kappa_2(s)$ は $\hat{C} = S^2$ の曲線 $\mu_1(s), \mu_2(s)$ の各々の Fubini-Study 計量に関する測地的 曲率を表す. 球面 S^2 の等長変換 $A, B \in SU(2)$ を用いて, $A \star \mu_1(s_0) = B \star \mu_2(s_0) = 0$ であり $A \star \mu'_1(s_0), B \star \mu'_2(s_0)$ は実数とできるので, はじめから

 $\mu_1(s_0) = \mu_2(s_0) = 0, \qquad \mu'_1(s_0) = a, \qquad \mu'_2(s_0) = b, \qquad (a, b \in \mathbf{R})$

であったとしてよい. このとき (s_0, t) における f の平均曲率 $H(s_0, t)$ は

$$H(s_0, t) = \frac{a \operatorname{Im} \left(e^{\mathrm{i}t} \mu_2''(s_0) - \mu_1''(s_0) \right) + b \operatorname{Im} \left(e^{-\mathrm{i}t} \mu_1''(s_0) - \mu_2''(s_0) \right)}{2 \left(\sqrt{a^2 + b^2 - 2ab \cos 2t} \right)^3}$$

と表すことができる. 従って

$$H(s_0,0) = \frac{-\operatorname{Im}(\mu_1''(s_0)) + \operatorname{Im}(\mu_2''(s_0))}{2(a-b)^2}, \quad \frac{d}{dt}\Big|_{t=0} H(s_0,t) = -\frac{\operatorname{Im}(\mu_1''(s_0)) + \operatorname{Im}(\mu_2''(s_0))}{2(a+b)^2}$$

となり、 $\operatorname{Im}(\mu_1''(s_0)) = \operatorname{Im}(\mu_2''(s_0)) = 0$ を得る.一方で、球面曲線 $\mu_1(s), \mu_2(s) \mathcal{O} s = s_0$ における測地的曲率 $\kappa_1(s_0), \kappa_2(s_0)$ は

$$\kappa_1(s_0) = -\frac{\operatorname{Im}(\mu_1''(s_0))}{a^2}, \qquad \kappa_2(s_0) = -\frac{\operatorname{Im}(\mu_2''(s_0))}{b^2}$$

であるので, 主張が証明された.

注意 (極小線織面の分類). 補題 4.4,補題 4.3 から,全ての極小線織面は式 (4.2) で定まる曲面の開部分多様体であることがわかる. これは [La, Proposition 7.2] の "全ての極小線織面は

(4.3)
$$\Psi(x,y) = (\cos \alpha x \cos y, \sin \alpha x \cos y, \cos x \sin y, \sin x \sin y) \in S^3 \subset \mathbf{R}^4$$

で定まる曲面の開部分多様体である"という主張の別証明を与えている.実際,式 (4.2) で定まる極小線織面 f において $x = -\frac{(a+b)s}{2}, y = -t + \frac{(a-b)s}{2}, \alpha = \frac{b-a}{b+a}$ を代入し, 同一視 (2.1) を通して **R**⁴ の部分集合として実現すると式 (4.3) の Ψ を得る.

§5. 法線叢のミニツイスター計量に関する幾何的性質

2次元多様体の $\mathcal{L}(S^3)$ へのはめ込みを $\mathcal{L}(S^3)$ の曲面,または測地線叢と呼ぶ.ここでは、 $\mathcal{L}(S^3)$ の曲面のミニツイスター計量 G_{tw} に関する性質を調べる.特に S^3 のWeingarten曲面と $\mathcal{L}(S^3)$ のLagrange曲面でミニツイスター計量に関して平坦であるものが対応すること(定理 5.13)を示す.

§5.1. 測地線に沿う枠

測地線に沿う枠を求めたい.しかし,測地線は曲率が0であるから Frenet 枠は定義 されないため、以下のように $S^3 = SU(2)$ の群構造を用いて構成する.

補題 5.1. 測地線 $\gamma^{\mu_1,\mu_2}(t)$ を補題 3.2 のように表すとき, $\tau \in S^1 = \mathbf{R}/2\pi \mathbf{Z}$, k = 1, 2, 3 に対して $\gamma^{\mu_1,\mu_2}(t)$ に沿うベクトル場 $\mathcal{E}_k(\mu_1,\mu_2,t,\tau)$ を

$$\mathcal{E}_k(\mu_1, \mu_2, t, \tau) = \left(\mathcal{M}(\mu_1)c\left(\frac{t+\tau}{2}\right)\right)\sigma_k\left(\mathcal{M}(\mu_2)c\left(\frac{-t+\tau}{2}\right)\right)^{-1}$$

とおくと, { $\mathcal{E}_1(\mu_1,\mu_2,t,\tau), \mathcal{E}_2(\mu_1,\mu_2,t,\tau), \mathcal{E}_3(\mu_1,\mu_2,t,\tau)$ } は $\gamma^{\mu_1,\mu_2}(t)$ に沿う S^3 の正規 直交枠である.

証明. ユークリッド空間 \mathbf{R}^4 の標準基底は同一視 (2.1) を通じて以下のように表す ことができる:

(5.1)
$$\sigma_0 = \mathrm{id}, \quad \sigma_1 = \begin{pmatrix} 0 & \mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} \mathrm{i} & 0 \\ 0 & -\mathrm{i} \end{pmatrix}.$$

従って、 $\{\sigma_1, \sigma_2, \sigma_3\}$ は $T_{\sigma_0}S^3$ の正規直交基底だから、任意の $A, B \in SU(2)$ に対して $\{A\sigma_1B^{-1}, A\sigma_2B^{-1}, A\sigma_3B^{-1}\}$ は $T_{A\sigma_0B^{-1}}S^3$ における正規直交基底である。任意の $\tau \in S^1$ に対して

$$\gamma^{\mu_1,\mu_2}(t) = \left(\mathcal{M}(\mu_1)c\left(\frac{t+\tau}{2}\right)\right)\sigma_0\left(\mathcal{M}(\mu_2)c\left(\frac{-t+\tau}{2}\right)\right)^{\frac{1}{2}}$$

となることにより従う.

補題 5.1 の正規直交枠 $\{\mathcal{E}_1(\mu_1,\mu_2,t,\tau),\mathcal{E}_2(\mu_1,\mu_2,t,\tau),\mathcal{E}_3(\mu_1,\mu_2,t,\tau)\}$ に対し

(5.2)
$$\mathcal{E}_3(\mu_1, \mu_2, t, \tau) = (\gamma^{\mu_1, \mu_2})'(t)$$

となるので、 $\mathcal{E}_3(\mu_1,\mu_2,t,\tau)$ は τ によらない.以後は $\tau = 0$ とし、 $\mathcal{E}_3(\mu_1,\mu_2,t,0)$ を $\mathcal{E}_3 = \mathcal{E}_3(\mu_1,\mu_2,t)$ と表す.さらに、各k = 1,2に対して $\mathcal{E}_k(\mu_1,\mu_2,t,0)$ はtによらないので、以後 $\mathcal{E}_k = \mathcal{E}_k(\mu_1,\mu_2)$ と表す.このとき正規直交枠 { $\mathcal{E}_1,\mathcal{E}_2,\mathcal{E}_3$ }は

(5.3)
$$\mathcal{E}_k(\mu_1, \mu_2) = \mathcal{M}(\mu_1)\sigma_k \mathcal{M}(\mu_2)^{-1}, \qquad \mathcal{E}_3(\mu_1, \mu_2, t) = \mathcal{M}(\mu_1)c'(t)\mathcal{M}(\mu_2)^{-1}$$

(k = 1, 2)と表される.

記号の簡略のため、次の枠を導入する.

定義 5.2 (Null 枠). 3次元リーマン多様体 (M^3, \langle, \rangle) の null 枠とは、 M^3 の複素 ベクトル場 $\{e_{(0)}, e_{(+)}, e_{(-)}\}$ で次を満たすものである:

- e₍₀₎ は実ベクトル場, e₍₊₎ は e₍₋₎ の複素共役,
- C-線形に拡張された $(TM^3)^C$ の内積を同じ記号 \langle , \rangle で表すとき

$$\langle \boldsymbol{e}_{(0)}, \boldsymbol{e}_{(0)} \rangle = 1, \qquad \langle \boldsymbol{e}_{(0)}, \boldsymbol{e}_{(+)} \rangle = \langle \boldsymbol{e}_{(+)}, \boldsymbol{e}_{(+)} \rangle = 0, \qquad \langle \boldsymbol{e}_{(+)}, \boldsymbol{e}_{(-)} \rangle = \frac{1}{2}.$$

Atsufumi Honda

与えられた3次元リーマン多様体の正規直交枠 $\{e_1, e_2, e_3\}$ に対して、 $\{e_{(0)}, e_{(+)}, e_{(-)}\}$ を

$$e_{(0)} := e_3, \qquad e_{(+)} := \frac{e_1 - ie_2}{2}, \qquad e_{(-)} := \frac{e_1 + ie_2}{2}$$

と定めると (M^3, g) の null 枠である. 従って,式 (5.3) のベクトル場 $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$ に対して, e, \mathcal{E} を

(5.4)
$$\boldsymbol{e} := \mathcal{E}_3, \qquad \boldsymbol{\mathcal{E}} := \frac{\mathcal{E}_1 - \mathrm{i}\mathcal{E}_2}{2}$$

と定めると、 $\{e, \mathcal{E}, \overline{\mathcal{E}}\}$ は測地線 γ^{μ_1, μ_2} に沿う S^3 の null 枠である. このとき、次は直接 計算により確かめられる.

補題 5.3. 写像 $\Gamma : \hat{C} \times \hat{C} \times S^1 \to S^3$ を $\Gamma(\mu_1, \mu_2, t) := \gamma^{\mu_1, \mu_2}(t)$ とし (ただし, $\gamma^{\mu_1, \mu_2}(t)$ は補題 3.2 参照), $\{e, \mathcal{E}, \bar{\mathcal{E}}\}$ を式 (5.4) で定まる $\gamma^{\mu_1, \mu_2}(t)$ に沿う S^3 の null 枠 とする. このとき, Γ の微分は次のように表される :

(5.5)
$$(\gamma^{\mu_1,\mu_2}(t))_{\mu_1} = \frac{i\bar{\mu}_1}{2(1+|\mu_1|^2)}\boldsymbol{e} - \frac{ie^{-it}}{1+|\mu_1|^2}\boldsymbol{\mathcal{E}},$$
$$(\gamma^{\mu_1,\mu_2}(t))_{\mu_2} = -\frac{i\bar{\mu}_2}{2(1+|\mu_2|^2)}\boldsymbol{e} + \frac{ie^{it}}{1+|\mu_2|^2}\boldsymbol{\mathcal{E}}$$

§5.2. 線叢の幾何学

ここでは、測地線の空間 $\mathcal{L}(S^3)$ のミニツイスター複素構造 J_{tw} に関する測地線叢の 性質を記述する.

定義 5.4 (適合 null 枠). 測地線の空間 $\mathcal{L}(M^3)$ の曲面に対して, M^3 の null 枠 $\{e_{(0)}, e_{(+)}, e_{(-)}\}$ が適合的であるとは、曲面の各点 [γ] に対して $\gamma' = e_{(0)}$ であり、 $\{e_{(0)}, \text{Re } e_{(+)}, \text{Im } e_{(+)}\}$ の向きが M^3 の向きに同調しているときをいう.

リーマン面 Σ^2 の $\mathcal{L}(S^3)$ へのはめこみ $F: \Sigma^2 \to \mathcal{L}(S^3)$ に対し、 Σ^2 の複素座標 z を用 いて局所的に $F(z) = (\mu_1(z), \mu_2(z)) \in \hat{C} \times \hat{C}$ と表す. このとき $j, k = 1, \bar{1}, 2, \bar{2}$ に対して

(5.6)
$$J_{jk}(z) := \frac{\partial \mu_j}{\partial z} \frac{\partial \mu_k}{\partial \bar{z}} - \frac{\partial \mu_j}{\partial \bar{z}} \frac{\partial \mu_k}{\partial z}$$

と定める.各 $j, k = 1, \overline{1}, 2, \overline{2}$ に対して $J_{jk}dz d\overline{z}$ は Σ^2 の複素座標 zの取り方によらない. 定め方から,各 $j, k = 1, \overline{1}, 2, \overline{2}$ に対して次が成り立つ:

$$J_{jj} = 0, \quad J_{kj} = -J_{jk}, \quad \overline{J_{jk}} = J_{\bar{k}\bar{j}} = -J_{\bar{j}\bar{k}},$$
$$J_{j\bar{j}} = |(\mu_j)_z|^2 - |(\mu_j)_{\bar{z}}|^2, \quad J_{12}J_{\bar{2}\bar{1}} = J_{1\bar{2}}J_{2\bar{1}} - J_{1\bar{1}}J_{2\bar{2}}.$$

補題 5.5. リーマン面 Σ^2 の $\mathcal{L}(S^3)$ へのはめこみ $F: \Sigma^2 \to \mathcal{L}(S^3)$ に対し, Σ^2 の複 素座標 z を用いて局所的に $F(z) = (\mu_1(z), \mu_2(z)) \in \hat{C} \times \hat{C}$ と表す. このとき, $\{\varepsilon, E, \overline{E}\}$ は F の適合 null 枠を与える. ただし, ε は $\varepsilon := \mathcal{E}_3 \circ F$ (式 (5.3) 参照) で定められるも ので, E は

(5.7)
$$\boldsymbol{E} = \frac{1}{\Lambda} \left[\varphi \,\boldsymbol{\varepsilon} + \left(\frac{(\bar{\mu}_2)_{\bar{z}} e^{-\mathrm{i}t}}{1 + |\mu_2|^2} - \frac{(\bar{\mu}_1)_{\bar{z}} e^{\mathrm{i}t}}{1 + |\mu_1|^2} \right) (\gamma^{\mu_1(z),\mu_2(z)}(t))_z - \left(\frac{(\bar{\mu}_2)_z e^{-\mathrm{i}t}}{1 + |\mu_2|^2} - \frac{(\bar{\mu}_1)_z e^{\mathrm{i}t}}{1 + |\mu_1|^2} \right) (\gamma^{\mu_1(z),\mu_2(z)}(t))_{\bar{z}} \right]$$

と定義する ($\gamma^{\mu_1,\mu_2}(t)$ は補題 3.2 参照). ここで、 φ, Λ は

$$\begin{split} \varphi &:= \frac{\mathrm{i}}{2} \left\{ e^{\mathrm{i}t} \left(\frac{\bar{\mu}_1 J_{1\bar{1}}}{(1+|\mu_1|^2)^2} + \frac{\mu_2 J_{\bar{2}\bar{1}} - \bar{\mu}_2 J_{2\bar{1}}}{(1+|\mu_1|^2)(1+|\mu_2|^2)} \right) \\ &+ e^{-\mathrm{i}t} \left(\frac{\bar{\mu}_2 J_{2\bar{2}}}{(1+|\mu_2|^2)^2} + \frac{\mu_1 J_{\bar{1}\bar{2}} - \bar{\mu}_1 J_{1\bar{2}}}{(1+|\mu_1|^2)(1+|\mu_2|^2)} \right) \right\}, \end{split}$$

(5.8)
$$\Lambda := \frac{J_{1\bar{1}}}{(1+|\mu_1|^2)^2} + \frac{J_{2\bar{2}}}{(1+|\mu_2|^2)^2} - \frac{J_{2\bar{1}}e^{2it} + J_{1\bar{2}}e^{-2it}}{(1+|\mu_1|^2)(1+|\mu_2|^2)}$$

で定められる関数である.

証明. 式 (5.5) を $(\gamma^{\mu_1(z),\mu_2(z)})_z = (\gamma^{\mu_1(z),\mu_2(z)})_{\mu_1}(\mu_1)_z + (\gamma^{\mu_1(z),\mu_2(z)})_{\mu_2}(\mu_2)_z$ に代 入して整理すると

$$\begin{split} (\gamma^{\mu_1(z),\mu_2(z)})_z &= \frac{\mathrm{i}}{2} \left(\frac{\mu_2(\bar{\mu}_2)_z - \bar{\mu}_2(\mu_2)_z}{1 + |\mu_2|^2} - \frac{\mu_1(\bar{\mu}_1)_z - \bar{\mu}_1(\mu_1)_z}{1 + |\mu_1|^2} \right) \varepsilon \\ &+ \left(\frac{(\mu_2)_z e^{\mathrm{i}t}}{1 + |\mu_2|^2} - \frac{(\mu_1)_z e^{-\mathrm{i}t}}{1 + |\mu_1|^2} \right) E + \left(\frac{(\bar{\mu}_2)_z e^{-\mathrm{i}t}}{1 + |\mu_2|^2} - \frac{(\bar{\mu}_1)_z e^{\mathrm{i}t}}{1 + |\mu_1|^2} \right) \bar{E} \end{split}$$

となる.これと $(\gamma^{\mu_1(z),\mu_2(z)})_{\overline{z}} = \overline{(\gamma^{\mu_1(z),\mu_2(z)})_z}$ を合わせると従う.

測地線の空間 $\mathcal{L}(S^3)$ の曲面の適合 null 枠 $\{e_{(0)}, e_{(+)}, e_{(-)}\}$ に対して、複素数値関数 $\sigma, \rho \delta$

(5.9)
$$\sigma := \left\langle \nabla_{\boldsymbol{e}_{(+)}} \boldsymbol{e}_{(+)}, \boldsymbol{e}_{(0)} \right\rangle, \qquad \rho := \left\langle \nabla_{\boldsymbol{e}_{(-)}} \boldsymbol{e}_{(+)}, \boldsymbol{e}_{(0)} \right\rangle$$

と定め, [PR] にしたがって, $\sigma \varepsilon$ shear, $\mathfrak{K} := \operatorname{Re} \rho \varepsilon$ convergence, $\mathfrak{T} := \operatorname{Im} \rho \varepsilon$ twist と呼ぶ. 以下は直接計算により従うことがわかる.

補題 5.6. リーマン面 Σ^2 の $\mathcal{L}(S^3)$ へのはめこみ $F: \Sigma^2 \to \mathcal{L}(S^3)$ に対し, Σ^2 の 複素座標 z を用いて局所的に $F(z) = (\mu_1(z), \mu_2(z)) \in \hat{C} \times \hat{C}$ と表す. このとき, F の

shear σ , convergence \mathfrak{K} , twist \mathfrak{T} は以下で与えられる:

(5.10)
$$\sigma = -\frac{\mathrm{i}}{\Lambda} \frac{\overline{J_{12}}}{(1+|\mu_1|^2)(1+|\mu_2|^2)}, \qquad \mathfrak{K} = \frac{\mathrm{Im}\left(J_{1\bar{2}}e^{-2\mathrm{i}t}\right)}{\Lambda(1+|\mu_1|^2)(1+|\mu_2|^2)}, \\ \mathfrak{T} = -\frac{1}{2\Lambda}\left(\frac{J_{1\bar{1}}}{(1+|\mu_1|^2)^2} - \frac{J_{2\bar{2}}}{(1+|\mu_2|^2)^2}\right).$$

§5.3. Lagrange曲面

ここでは、測地線の空間 $\mathcal{L}(S^3)$ の標準的なシンプレクティック構造 Ω (§2.3 参照) を 用いて、 S^3 の曲面の法線叢を記述する.

補題 5.7. 測地線の空間 ($\mathcal{L}(S^3), \Omega$)の曲面が Lagrange はめ込みであることと, twist が常に消えることは同値である. さらに,測地線の空間 $\mathcal{L}(S^3)$ の曲面が S^3 の曲 面の法線叢で与えられることと, twist が常に消えることは同値である.

補題 5.7 は, ユークリッド空間 \mathbb{R}^3 の場合 [GK2, Proposition 10], 双曲空間 H^3 の 場合 [GG2, Proposition 4, Proposition 5] の類似であり, それらと同様の方法で証明され る. 証明には, 式 (5.10) や式 (5.7) を用いる.

補題 5.7 より次が従う:

系 5.8. 測地線の空間 ($\mathcal{L}(S^3), \Omega$)の曲面が Lagrange はめ込みであることと、 S^3 の曲面の法線叢で与えられることは同値である.

球面 S^3 の曲面の曲率と、その法線叢の shear, twist は次のような関係を持つ.

補題 5.9. リーマン面 Σ^2 の S^3 へのはめこみ $f: \Sigma^2 \to S^3$ に対して, その法線叢 により与えられる $\mathcal{L}(S^3)$ の曲面の shear を σ , convergence を \mathfrak{K} とするとき

(5.11)
$$\mathfrak{K} = \frac{1}{4}(\lambda_1 + \lambda_2), \qquad |\sigma| = \frac{1}{4}|\lambda_1 - \lambda_2|$$

となる. ただし, λ_1 , λ_2 は曲面 f の主曲率である.

補題 5.9 は, ユークリッド空間 \mathbf{R}^3 の場合 [GK4, Proposition 7], 双曲空間 H^3 の場合 [GG2, Proposition 7] の類似であり, それらと同様の方法で証明される.

補題 5.9 により, $\Re^2 - |\sigma|^2 = \lambda_1 \lambda_2 / 4$ なので, 曲面 f のガウス曲率 K, 平均曲率 H は以下のように表される:

(5.12)
$$K = \lambda_1 \lambda_2 + 1 = 4(\mathfrak{K}^2 - |\sigma|^2) + 1, \qquad H = \frac{\lambda_1 + \lambda_2}{2} = 2\mathfrak{K}.$$

以下の補題 5.10 と補題 5.9 を用いると, S³ の曲面の法線叢で与えられるミニツイス ター空間の正則はめ込みは分類される (命題 5.11). 補題 5.10. リーマン面 Σ^2 の $\mathcal{L}(S^3)$ へのはめ込み $F: \Sigma^2 \to \mathcal{L}(S^3)$ が、 J_{tw} に関 して正則もしくは反正則となる必要十分条件は、F の shear が常に消えることである.

証明. リーマン面 Σ^2 の複素座標を z とし、局所的に曲面を $F(z) = (\mu_1(z), \mu_2(z))$ と表すとき、その shear σ は式 (5.10) で与えられるので、 $\sigma = 0$ と $J_{12} = 0$ は同値である (J_{12} は式 (5.6) 参照). ここで

(5.13)
$$J_{12} = (\mu_1)_z (\mu_2)_{\bar{z}} - (\mu_1)_{\bar{z}} (\mu_2)_z = \det\left(\begin{pmatrix} (\mu_1)_z \\ (\mu_2)_z \end{pmatrix}, \begin{pmatrix} (\mu_1)_{\bar{z}} \\ (\mu_2)_{\bar{z}} \end{pmatrix}\right) = \det\left(F_z, F_{\bar{z}}\right)$$

なので、もし*F*が J_{tw} に関して正則もしくは反正則ならば、 $J_{12} = 0$ である。逆に、 $J_{12} = 0$ ならば式 (5.13)より、 $F_z \ge F_z$ が線形従属となってしまうので、 $F_z = 0$ もしくは $F_z = 0$ となる。

命題 5.11. 球面 S^3 の曲面の法線叢で与えられる $\mathcal{L}(S^3)$ の曲面が J_{tw} に関して正 則であるならば,全臍的である.

証明. 補題 5.10 より、ミニツイスター空間 ($\mathcal{L}(S^3), J_{tw}$)の正則はめ込みは shear-free, すなわち $\sigma = 0$ である. 補題 5.9 より、($\mathcal{L}(S^3), \Omega$)の shear-free な Lagrange 曲面は全臍 的である.

§5.4. ミニツイスター計量から誘導される計量

ここでは、 $\mathcal{L}(S^3)$ の曲面にミニツイスター計量 G_{tw} から誘導される計量を考える.

命題 5.12. リーマン面 Σ^2 のミニツイスター空間 ($\mathcal{L}(S^3), \Omega, J_{tw}, G_{tw}$) へのはめ 込みを $F: \Sigma^2 \rightarrow (\mathcal{L}(S^3), \Omega, J_{tw}, G_{tw})$ とする. このとき

- F が S^3 の曲面 $f: \Sigma^2 \to S^3$ の法線叢のとき, G_{tw} の F による誘導計量は Σ^2 上で ローレンツ 計量もしくは退化し,退化する必要十分条件は f が臍点を持つときである.
- F が J_{tw} に関して正則のとき、 G_{tw} の F による誘導計量は Σ^2 上で半正定値であり、 退化する必要十分条件は F が Ω に関して Lagrange はめ込みのときである.

証明. 局所的に曲面を $F(z) = (\mu_1(z), \mu_2(z))$ と表し,誘導計量を $F^*G_{tw} = Pdz^2 + \overline{P}d\overline{z}^2 + 2Qdzd\overline{z}$ とする. このとき,式 (3.3) より

(5.14)

$$P = 2\left(\frac{(\mu_1)_z(\bar{\mu}_1)_z}{(1+|\mu_1|^2)^2} - \frac{(\mu_2)_z(\bar{\mu}_2)_z}{(1+|\mu_2|^2)^2}\right),$$

$$Q = \frac{|(\mu_1)_z|^2 + |(\mu_1)_{\bar{z}}|^2}{(1+|\mu_1|^2)^2} - \frac{|(\mu_2)_z|^2 + |(\mu_2)_{\bar{z}}|^2}{(1+|\mu_2|^2)^2}$$

Atsufumi Honda

となる. ここで、座標を z = u + iv として $F^*G_{tw} = g_{11}du^2 + 2g_{12}du dv + g_{22}dv^2$ と表し たとき det $(F^*G_{tw}) = g_{11}g_{22} - g_{12}^2 = -4(P\bar{P} - Q^2)$ なので

(5.15)
$$\det (F^* G_{tw}) = 16 \Lambda^2 \left(\mathfrak{T}^2 - |\sigma|^2 \right)$$

を得る. ただし, Λ は式 (5.8), shear σ , twist \mathfrak{T} は式 (5.10) でそれぞれ与えられるもので ある. 従って, 補題 5.7 より, F が S^3 の曲面 $f: \mathfrak{D}^2 \to S^3$ の法線叢のときには $\mathfrak{T} = 0$ と なるので, 式 (5.15) から誘導計量は $F^*G_{\mathrm{tw}} = -16 \Lambda^2 |\sigma|^2$ となり不定値となるか退化し ている. 補題 5.9 より, F^*G_{tw} が退化することと f の主曲率が一致することが同値であ ることがわかる. 後半について, 補題 5.10 より, F が J_{tw} に関して正則のとき $\sigma = 0$ と なるので, 式 (5.15) から誘導計量は $F^*G_{\mathrm{tw}} = 16 \Lambda^2 \mathfrak{T}^2$ となり半正定値である. 退化する ための必要十分条件は, 補題 5.7 より従う.

球面 S^3 の臍点を持たない曲面が Weingarten であるとは,

$$(5.16) d\lambda_1 \wedge d\lambda_2 = 0$$

が成り立つときをいう.このとき、次が成り立つ.

定理 5.13. 測地線の空間 $\mathcal{L}(S^3)$ の曲面 $F: \Sigma^2 \to \mathcal{L}(S^3)$ が S^3 の臍点を持たない 曲面 $f: \Sigma^2 \to S^3$ の法線叢で与えられるとき,ミニツイスター計量から F により誘導さ れる計量が平坦な ローレンツ 計量であるための必要十分条件は, f が Weingarten とな ることである.

定理 5.13 は、ユークリッド空間 \mathbb{R}^3 の場合 [GK4, Main Theorem 3]、双曲空間 H^3 の場合 [GG2, Main Theorem] の類似である.

定理 5.13 を示すために、測地線の座標の群構造を用いた計算法 (補題 5.14) を紹介する. 特殊ユニタリ群 SU(2) のリー環を $\mathfrak{su}(2)$ とする. リー環 $\mathfrak{su}(2)$ と \mathbf{R}^3 を

(5.17)
$$\mathfrak{su}(2) \ni \begin{pmatrix} \mathrm{i}x_3 & -x_2 + \mathrm{i}x_1 \\ x_2 + \mathrm{i}x_1 & -\mathrm{i}x_3 \end{pmatrix} \longmapsto (x_1, x_2, x_3) \in \mathbf{R}^3$$

と同一視する. リー環 su(2) に、キリング計量の定数倍の内積

(5.18) $\langle X, Y \rangle_{\mathfrak{su}(2)} = -(1/2) \operatorname{trace}(XY), \qquad \langle X, X \rangle_{\mathfrak{su}(2)} = \det X, \qquad (X, Y \in \mathfrak{su}(2))$

を与えると、 $(\mathfrak{su}(2), \langle, \rangle_{\mathfrak{su}(2)})$ と \mathbb{R}^3 は等長的である.このとき、写像 $\Phi_L, \Phi_R : \mathcal{L}(S^3) \to S^2$ を

(5.19)
$$\Phi_L([\gamma]) := -\gamma^{-1} \gamma', \qquad \Phi_R([\gamma]) := -\gamma' \gamma^{-1}$$

と定める. ただし, S^2 は $\mathfrak{su}(2) \cong \mathbb{R}^3$ の単位球面である. (5.19) の 2 つの式の右辺はそ れぞれ [γ] の代表元 γ によらない. 実際, 任意の単位速さを持つ測地線 $\gamma = \gamma(t) \in SU(2)$ は SU(2) の元 A, Bを用いて $\gamma = Ac(t)B^{-1}$ と表せるが, このとき

$$(\gamma(t))^{-1} \gamma'(t) = iB\sigma_3 B^{-1}, \qquad \gamma'(t) (\gamma(t))^{-1} = iA\sigma_3 A^{-1}$$

補題 5.14. 球面 S^2 とリーマン球面 \hat{C} を,立体射影

$$\pi_N:\mathfrak{su}(2)\supset S^2\ni \begin{pmatrix} \mathrm{i}x_3 & -x_2+\mathrm{i}x_1\\ x_2+\mathrm{i}x_1 & -\mathrm{i}x_3 \end{pmatrix}\longmapsto \frac{x_1+\mathrm{i}x_2}{1-x_3}\in \hat{C}$$

により同一視するとき, $\mu_1 = \pi_N(\Phi_R), \mu_2 = \pi_N(\Phi_L)$ となる.

証明. 測地線 $\gamma^{\mu_1,\mu_2}(t)$ を補題 3.2 のように定める. このとき, $\pi(\Phi_R(\gamma^{\mu_1,\mu_2})) = \mu_1$, $\pi(\Phi_L(\gamma^{\mu_1,\mu_2})) = \mu_2$ となるので主張が従う.

定理 5.13 の証明. 誘導計量 F^*G_{tw} の断面曲率を K_{tw} , f の主曲率を λ_1 , λ_2 とする とき, 適当な点 $p_0 \in \Sigma^2$ において, ある 0 でない実数 c_0 を用いて

(5.20)
$$((\lambda_1)_u (\lambda_2)_v - (\lambda_1)_v (\lambda_2)_u) (p_0) = c_0 K_{tw}(p_0)$$

(ただし (u, v) は Σ^2 の局所座標系) となることを示せばよい.

点 p_0 の適当な近傍で定義された fの単位法線ベクトル ν を固定する.式 (5.1)のよう に $\sigma_0, \sigma_1, \sigma_2, \sigma_3 \in SU(2)$ を定める.適当な S^3 の等長変換を考えると、一般性を失わず に $f(p_0) = \sigma_0, \nu(p_0) = \sigma_3$ であったとしてよい、このとき、fの法線叢 $F: \Sigma^2 \to \mathcal{L}(S^3)$ は $F = [\gamma_{f,\nu}(t)]$ と表される.ただし $\gamma_{f,\nu}(t) = (\cos t)f + (\sin t)\nu$ とする (式 (2.3)参照). 立体射影

$$\operatorname{SU}(2) \setminus \{-\sigma_0\} \ni \begin{pmatrix} a_1 - \bar{a}_2 \\ a_2 & \bar{a}_1 \end{pmatrix} \longmapsto \frac{1}{1 + \operatorname{Re} a_1} (\operatorname{Im} a_2, \operatorname{Re} a_2, \operatorname{Im} a_1) \in \mathbf{R}^3$$

の逆を考えると、fは $p_0 \in \Sigma^2$ の近傍上で局所的に定義された関数 $\xi = \xi(u, v), \eta = \eta(u, v), \zeta = \zeta(u, v)$ を用いて

$$f(u,v) = \frac{1}{1+\xi^2+\eta^2+\zeta^2} \begin{pmatrix} 1-\xi^2-\eta^2-\zeta^2+2i\zeta & 2(-\eta+i\xi)\\ 2(\eta+i\xi) & 1-\xi^2-\eta^2-\zeta^2-2i\zeta \end{pmatrix}$$

と表される. 点 p_0 を中心とする Σ^2 の局所座標系 (U; u, v)を $f_u(0, 0) = \sigma_1$, $f_v(0, 0) = \sigma_2$ を満たすようにとると、関数 $\xi = \xi(u, v)$, $\eta = \eta(u, v)$, $\zeta = \zeta(u, v)$ は $p_0 = (0, 0)$ において

$$\xi(0,0) = \eta(0,0) = \zeta(0,0) = \xi_v(0,0) = \eta_u(0,0) = \zeta_u(0,0) = \zeta_v(0,0) = 0,$$

$$\xi_u(0,0) = \eta_v(0,0) = 1/2$$

を満たす. 曲面 f は臍点を持たないので, f の外的曲率を K_{ext} , 平均曲率を H とする とき,

$$\varrho := (H^2 - K_{\text{ext}})(p_0) = (\zeta_{uu}(0,0) - \zeta_{vv}(0,0))^2 + 4(\zeta_{uv}(0,0))^2$$

は0でない. このとき, 式 (5.20)の左辺は

(5.21)
$$((\lambda_1)_u(\lambda_2)_v - (\lambda_1)_v(\lambda_2)_u)(p_0) = \frac{4\delta}{\sqrt{\varrho}}$$

となる.ただし

$$\delta := (\zeta_{uu} - \zeta_{vv})(\zeta_{uuv}\zeta_{uvv} - \zeta_{uuu}\zeta_{vvv}) - 2\zeta_{uv}(\zeta_{uuv}^2 - \zeta_{uvv}^2 - \zeta_{uuu}\zeta_{uvv} + \zeta_{uuv}\zeta_{vvv}) + 4(2C_1 + C_2\zeta_{uu}^2 - C_3\zeta_{vv}^2 - (C_4\zeta_{uu} - C_5\zeta_{vv})\zeta_{uv}^2 + 2C_6\zeta_{uu}\zeta_{uv}\zeta_{vv}) - 2(C_7\zeta_{uuu} - C_8\zeta_{vvv} - C_9\zeta_{uuv} + C_{10}\zeta_{uvv})$$

である (右辺は
$$p_0 = (0,0)$$
 での値). ここで, C_1, \dots, C_{10} は

$$C_1 := -\left((\xi_{uu} + 2\eta_{uv})(\xi_{uu} + 3\xi_{vv} + 2\eta_{uv}) - (\eta_{vv} + 2\xi_{uv})(\eta_{vv} + 3\eta_{uu} + 2\xi_{uv})\right) \zeta_{uv}^3 + \xi_{uv}\xi_{vv}\zeta_{uu}^3 - \eta_{uv}\eta_{uu}\zeta_{vv}^3$$

$$C_{2} := 2 \left(\xi_{vv} (\eta_{uv} + \xi_{vv} - \xi_{uu}) + \xi_{uv} (\eta_{vv} - 2\xi_{uv}) \right) \zeta_{uv} - \left(\xi_{vv} (2\xi_{uv} - \eta_{uu}) - 4\xi_{uv} \eta_{uv} + 9\xi_{uu} \eta_{vv} \right) \zeta_{vv}$$

$$C_{2} := 2 \left(n_{vv} (\xi_{vv} + n_{vv} - n_{vv}) + n_{vv} (\xi_{vv} - 2n_{vv}) \right) \zeta_{vv}$$

$$C_{3} := 2 \left(\eta_{uu} (\zeta_{uv} + \eta_{uu} - \eta_{vv}) + \eta_{uv} (\zeta_{uu} - 2\eta_{uv}) \right) \zeta_{uv} \\ - \left(\eta_{uu} (2\eta_{uv} - \xi_{vv}) - 4\xi_{uv}\eta_{uv} + 9\xi_{uu}\eta_{vv} \right) \zeta_{uu} \\ C_{4} := 3\xi_{vv}\eta_{uu} + 2\xi_{uv} (6\eta_{uv} + 2\xi_{vv} - 3\xi_{uu}) - \eta_{vv} (2\eta_{uv} + 4\xi_{vv} + 7\xi_{uu}) \\ C_{5} := 3\xi_{vv}\eta_{uu} + 2\eta_{uv} (6\xi_{uv} + 2\eta_{uu} - 3\eta_{vv}) - \xi_{uu} (2\xi_{uv} + 4\eta_{uu} + 7\eta_{vv}) \\ C_{6} := 4 (\xi_{uu}\xi_{vv} - \eta_{uu}\eta_{vv}) - 2(\xi_{uv}^{2} - \eta_{uv}^{2}) + 3(\xi_{vv}\eta_{uv} - \xi_{uv}\eta_{uu}) + 7(\xi_{uu}\eta_{uv} - \xi_{uv}\eta_{vv}) \\ C_{7} := \zeta_{vv} (3\eta_{vv}\zeta_{vv} + \zeta_{uv} (4\eta_{uv} + 3\xi_{vv})) - \zeta_{uu} (\xi_{vv}\zeta_{uv} + 3\eta_{vv}\zeta_{vv}) + 2\zeta_{uv}^{2} (\eta_{vv} + 2\xi_{uv}) \\ C_{8} := \zeta_{uu} (3\xi_{uu}\zeta_{uu} + \zeta_{uv} (4\xi_{uv} + 3\eta_{uu})) - \zeta_{vv} (\eta_{uu}\zeta_{uv} + 3\xi_{uu}\zeta_{uu}) + 2\zeta_{uv}^{2} (\xi_{uu} + 2\eta_{uv}) \\ C_{9} := \zeta_{vv} (\zeta_{uu} (\xi_{vv} - 2\eta_{uv}) + \zeta_{uv} (2\xi_{uv} + 4\eta_{uu} + 7\eta_{vv}) + 2\eta_{uv}\zeta_{vv}) \\ - \zeta_{uu} (\zeta_{uv} (\eta_{vv} - 6\xi_{uv}) + \xi_{vv}\zeta_{uu}) + 2\zeta_{uv}^{2} (4\eta_{uv} + 3\xi_{vv} + 2\xi_{uu}) \\ C_{10} := \zeta_{uu} (\zeta_{vv} (\eta_{uu} - 2\xi_{uv}) + \zeta_{uv} (2\eta_{uv} + 4\xi_{vv} + 7\xi_{uu}) + 2\xi_{uv}^{2} (4\xi_{uv} + 3\eta_{uu} + 2\eta_{vv}) \\ - \zeta_{vv} (\zeta_{uv} (\xi_{uu} - 6\eta_{uv}) + \eta_{uu}\zeta_{vv}) + 2\zeta_{uv}^{2} (4\xi_{uv} + 3\eta_{uu} + 2\eta_{vv})$$

としている (右辺はすべて $p_0 = (0,0)$ での値).

一方, fの法線叢 $F: \Sigma^2 \to \mathcal{L}(S^3) = S^2 \times S^2$ を $F = (F_1, F_2)$ とすると, 補題 5.14 から, $F_1 = -\nu f^{-1}, F_2 = -f^{-1}\nu$ となる. 式 (5.18)から, 誘導計量 F^*G_{tw} は

$$F^*G_{tw} = (\det(F_1)_u - \det(F_2)_u) \, du^2 + (\det(F_1)_v - \det(F_2)_v) \, dv^2 - \operatorname{trace} \left((F_1)_u (F_1)_v - (F_2)_u (F_2)_v \right) \, du \, dv$$

と表されるので、 F^*G_{tw} の p_0 での断面曲率 K_{tw} は

(5.22)
$$K_{\rm tw}(p_0) = -\frac{\delta}{4\varrho^2}$$

となる.従って,式(5.21)と式(5.22)より

$$((\lambda_1)_u(\lambda_2)_v - (\lambda_1)_v(\lambda_2)_u)(p_0) = -16\varrho^{\frac{3}{2}}K_{tw}(p_0)$$

となり,式(5.20)が成り立つ.

References

- [A] H. ANCIAUX, Spaces of geodesics of pseudo-Riemannian space forms and normal congruences of hypersurfaces, *preprint* (arXiv:1112.1758), to appear in Transactions of the American Mathematical Society.
- [AGK] D.V. ALEKSEEVSKY, B. GUILFOYLE AND W. KLINGENBERG, On the Geometry of Spaces of Oriented Geodesics, Ann. Global Anal. Geom. 40 (2011), 389–409.
 - [F] H. FUJIMOTO, Value distribution theory of the Gauss map of minimal surfaces in \mathbb{R}^m , Friedr. Vieweg & Sohn, Braunschweig, 1993.
 - [Ge] N. GEORGIOU, On maximal surfaces in the space of oriented geodesics of hyperbolic 3-space, *preprint* (arXiv:1001.2179), to appear in Mathematica Scandinavica.
- [GG1] N. GEORGIOU AND B. GUILFOYLE, On the space of oriented geodesics of Hyperbolic 3-space, Rocky Mountain J. Math. 40 (2010), 1183–1219.
- [GG2] N. GEORGIOU AND B. GUILFOYLE, A characterization of Weingarten surfaces in hyperbolic 3-space, Abh. Math. Semin. Univ. Hambg. **80** (2010), 233–253.
- [GK1] B. GUILFOYLE AND W. KLINGENBERG, On the space of oriented affine lines in \mathbb{R}^3 , Arch. Math. (Basel) 82 (2004), 81–84.
- [GK2] B. GUILFOYLE AND W. KLINGENBERG, An indefinite Käbler metric on the space of oriented lines, J. London Math. Soc. **72** (2005), 497–509.
- [GK3] B. GUILFOYLE AND W. KLINGENBERG, A neutral Kähler surface with applications in geometric optics, Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys. (2008), 149–178.
- [GK4] B. GUILFOYLE AND W. KLINGENBERG, On Weingarten surfaces in Euclidean and Lorentzian 3-space, Differential Geom. Appl. 28 (2010), 454–468.
 - [Hi] T. J. HITCHIN, Monopoles and Geodesics, Commun. Math. Phys. 83 (1982), 579–602.
 - [Ho] A. HONDA, Isometric immersions of the hyperbolic plane into the hyperbolic space, Tohoku Math. J. (2) 64 (2012), 171–193.
 - [K] M. KIMURA, Space of geodesics in hyperbolic spaces and Lorentz numbers, Mem. Faculty of Sci. and Engi. Shimane Univ. **36** (2003), 61–67.
 - [KU] Y. KITAGAWA AND M. UMEHARA, Extrinsic diameter of immersed flat tori in S^3 , Geom. Dedicata **155** (2011), 105–140.
 - [La] H. B. LAWSON, JR., Complete minimal surfaces in S^3 , Ann. of Math. (2) **92** (1970), 335–374.
 - [PR] R. PENROSE AND W. RINDLER, Spinors and Spacetime, vol. 2., Cambridge University Press, Cambridge (1986).
 - [S1] M. SALVAI, On the geometry of the space of oriented lines of Euclidean space, Manuscripta Math. 118 (2005), 181–189.
 - [S2] M. SALVAI, On the geometry of the space of oriented lines of the hyperbolic space, Glasgow Math. J. 49 (2007), 357–366.

187