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The Borsuk‐Ulam Theorem and Combinatorics

By

Yasuhiro Hara *

Abstract

The Borsuk‐Ulam antipodal theorem is studied by many mathematicians and generalized
in many ways. On the other hand, the Borsuk‐Ulam theorem has applications in many math‐

ematical fields. In this paper, we will see some generalization and combinatorial applications
of the Borsuk‐Ulam theorem.

§1. The Borsuk‐Ulam Theorem

Let S^{n} be the unit sphere in R^{n+1} . The (Borsuk‐Ulam type) antipodal theorem

can be stated in several different, but equivalent ways.

1.1. If f:S^{m}\rightarrow S^{n} satisfies f(-x)=-f(x) ,
then m\leqq n.

1.2. If f:S^{n}\rightarrow R^{n} satisfies f(-x)=-f(x) ,
then f^{-1}(0)\neq\emptyset.

1.3. For every f:S^{n}\rightarrow R^{n} there exists an x\in S^{n} with f(-x)=f(x) .

1.4. For every closed covering \{M_{1}, . . . , M_{n+1}\} of S^{n} ,
there exists an  i\in

\{1, . ::, n+1\} with M_{i}\cap(-M_{i})\neq\emptyset.

1.5. catRP^{n}=n+1 ,
where catRP^{} denotes the Ljusternik‐Schnirelmann category

of the n‐dimensional real projective space RP^{n}.

For a topological space X
,

the Ljusternik‐Schnirelmann category catX of X is

defined by

catX =\displaystyle \min\{k\in N| there esists a closed cover \{A_{1}, . . : A_{k}\} of X

such that all A_{i} are contractible in X}.
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There are many way to prove the Borsuk‐Ulam theorem. For example, we can

prove it by using the cohomology algebra of RP^{n} (see [22]).
The Borsuk‐Ulam theorem is also related with the degree theory of maps between

manifolds. Let M and N be closed connected oriented manifolds of dimension n . Then

for a continuous map f:M\rightarrow N ,
we have the induced homomolophism  f_{*}:H_{n}(M)\rightarrow

 H_{n}(N) . Let [M] and [N] be the fundamental homology classes of M and N respectively.
We define the degree \deg f of f by f_{*}[M]=(\deg f)[N] . Then the following theorem is

known.

1.6. If a continuous map f:S^{n}\rightarrow S^{n} satisfies f(-x)=-f(x) ,
then \deg f is odd.

We can also prove the Borsuk‐Ulam theorem by using this theorem. By considering
the antipodal Z_{2} ‐action on S^{n} , 1.6 is considered as a theorem of equivariant maps. We

can prove 1.6 by using the Gysin‐Smith (Thom‐Gysin) exact sequence([22], [18]).
The Borsuk‐Ulam theorem has been generalized and extended in many ways from

the view point of transformation group theory (see [5], [7], [12], [23], [24]). Fadell‐

Husseini and Jaworowski introduced ideal‐valued index theory and generalized the

Borsuk‐Ulam theorem (see [7], [12]). Let G be a compact Lie group and X a G‐

space. Let EG\rightarrow BG be a universal principal G‐bundle. We denote by \overline{H} K ) the

Alexander‐Spanier cohomology theory with coefficients in a field K . We set \overline{H}_{G}^{*}(X;K)=
\overline{H}^{*}(EG\times GX;K) . The G‐index \mathrm{I}\mathrm{n}\mathrm{d}^{G}(X;K) of X is defined to be the kernel of the

G‐cohomology homomorphism induced by the constant map c_{X} : X\rightarrow pt ;

\mathrm{I}\mathrm{n}\mathrm{d}^{G}(X;K)=\mathrm{K}\mathrm{e}\mathrm{r}(c_{X}^{*} : \overline{H}_{G}^{*}(pt; K)\rightarrow\overline{H}_{G}^{*}(X;K)) ,

where pt is a one‐point space. Since \overline{H}_{G}^{*} (pt; K ) =\overline{H}^{*}(BG;K) , \mathrm{I}\mathrm{n}\mathrm{d}^{G}(X;K) is an ideal

of \overline{H}^{*}(BG;K) . The following proposition was proved in [7] and [12].

Proposition([7], [12]). If f : X\rightarrow Y is a G‐map, then \mathrm{I}\mathrm{n}\mathrm{d}^{G}(X;K)\supset \mathrm{I}\mathrm{n}\mathrm{d}^{G}(Y;K)
in \overline{H}^{*}(BG) .

Proposition([7], [12]). Let X and Y be G ‐spaces, and W a G ‐invariant closed

subspace of Y. If f : X\rightarrow Y is a G ‐map, then \mathrm{I}\mathrm{n}\mathrm{d}^{G}f^{-1}(W) \mathrm{I}\mathrm{n}\mathrm{d}^{G}(Y-W;K)\subset
\mathrm{I}\mathrm{n}\mathrm{d}^{G}(X;K) in \overline{H}^{*}(BG;K) ,

where. represents the product of ideals.

By using these propositions, we have generalized Borsuk‐Ulam theorems (see [7],
[9], [12], [14]).

§2. Applications of the Borsuk‐Ulam Theorem in Combinatorics

In this section, we introduce combinatorial applications of the Borsuk‐Ulam theo‐

rem.
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§2.1. Tucker�s Lemma

Let T be some triangulation of the n‐dimensional ball B^{n} . We call T antipodally

symmetric on the boundary if the set of simplices of T contained in S^{n-1}=\partial B^{n} is a

triangulation of S^{n-1} and it is antipodally symmetric; that is, if  $\sigma$\subset S^{n-1} is a simplex
of T

,
then - $\sigma$ is also a simplex of  T.

Tucker�s lemma. Let T be a triangulation of B^{n} that is antipodally symmetric
on the boundary. Let

 $\lambda$:V(T)\rightarrow\{+1, -1, +2, -2, . . :; +n, -n\}

be a labelling of the vertices of T such that  $\lambda$(-v)=- $\lambda$(v) for every vertex v\in\partial B^{n}.

Then there exists a 1‐simplex \{v_{1}, v_{2}\} in T such that  $\lambda$(v_{1})=- $\lambda$(v_{2}) .

Let \text{◇^{}n}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\{\pm e_{1}, . . . , \pm e_{n}\} be the n‐dimensional cross‐polytope and @(◇n) \cong

 S^{n-1} its boundaty with Z_{2} ‐invariant triangulation.
It is easily seen that the following theorem is equivalent to Tucker�s lemma.

Theorem. Let T be a triangulation of B^{n} that is antipodally symmetric on the

boundary. Then there is no map  $\lambda$:V(T)\rightarrow V(\partial(\text{◇^{}n})) that is a simplitial map of T

into @(◇n) and is antipodal on the boundary.

This theorem follows from the fact that the degree of any antipodal map  f:S^{n}\rightarrow
 S^{n} is odd(1.6). Ky Fan generalized this fact from the combinatorial viewpoint.

Ky Fan�s theorem([8]). Let T be a Z_{2} ‐invariant triangulation of S^{n} . If  f:T\rightarrow

\partial(\text{◇^{}m}) is a simplitial Z_{2} ‐map, then n<m and

\displaystyle \sum_{1\leqq k_{1}<k_{2}<\cdots<k_{n+1}\leqq m} $\alpha$(k_{1}, -k_{2}, k_{3}, -k_{4}, \ldots, (-1)^{n}k_{n+1})\equiv 1 (\mathrm{m}\mathrm{o}\mathrm{d} 2) ,

where  $\alpha$(j_{1}, j_{2}, \ldots; j_{n+1}) is the number of n ‐simplices in T mapped to the simplex spanned

by vectors e_{j_{1}}, e_{j_{2}} , :::; e_{j_{n+1}} and by definition e_{-j}=-e_{j}.

§2.2. Lovász‐Kneser Theorem

First we prepare basic definitions and notations. A graph is a pair (V;, E) ,
where

V is a set (the vertex set) and E\subset\left(\begin{array}{l}
V\\
2
\end{array}\right) is the edge set, where \left(\begin{array}{l}
V\\
2
\end{array}\right) denotes the set of all

subsets of V of cardinality exactly 2. We denote by [n] the finite set \{ 1, 2, . .

:; n\}. \mathrm{A}

k‐coloring of a graph G=(V, E) is a map c:V\rightarrow[k] such that c(u)\neq c(v) whenever

\{u, v\}\in E . The chromatic number of G ,
denote by  $\chi$(G) ,

is the smallest k such that G

has a k‐coloring.
Let X be a finite set and let \mathcal{F}\subset 2^{X} be a set system. The Kneser graph of \mathcal{F},

denoted by \mathrm{K}\mathrm{G}(\mathcal{F}) ,
has \mathcal{F} as the vertex set, and two sets F_{1}, F_{2}\in \mathcal{F} are adjacent if and
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only if  F_{1}\cap F_{2}=\emptyset . Let \mathrm{K}\mathrm{G}_{n,k} denote the Kneser graph of the system \mathcal{F}=(_{k}^{[n]} ) (all
k‐element subsets of [n] ). The following theorem was expected by Kneser and proved

by Lovász ([15]).

Lovász‐Kneser theorem. For all k>0 and n\geqq 2k-1 ,
the chromatic number

of the Kneser graph \mathrm{K}\mathrm{G}_{n,k} is n-2k+2.

It is easy to prove  $\chi$(\mathrm{K}\mathrm{G}_{n,k})\leqq n-2k+2 . We define a coloring c:(_{k}^{[n]} ) \rightarrow[n-2k+2]
of the Kneser graph \mathrm{K}\mathrm{G}_{n,k}=\mathrm{K}\mathrm{G}((_{k}^{[n]})) by

c(F)=\displaystyle \min\{\min(F), n-2k+2\}.

If two sets F_{1}, F_{2} get the same color c(F_{1})=c(F_{2})=i<n-2k+2 ,
then they

cannnot be disjoint, since they both contain the element i . If the two sets both get
color n-2k+2 ,

then they are both contained in the set \{n-2k+2, n-2k+3, . . :, n\}.
Since |\{n-2k+2, n-2k+3, . . . ; n\}|=2k-1 , they can not be disjoint either.

Lovász used the neighborhood complex of a graph to prove the Lovász‐Kneser

theorem. The neighborhood complex \mathcal{N}(G) of a graph G is the simplicial complex
whose vertices are the vertices of G and whose simplices are those subsets of V(G)
which have a common neighbor. Denote by \overline{\mathcal{N}}(G) the polyhedron determined by \mathcal{N}(G) .

Lovász proved that if \overline{\mathcal{N}}(G) is i‐connected, then  $\chi$(G)>i+2 by using the Borsuk‐Ulam

theorem (1.4). Moreover he proved \overline{\mathcal{N}}(\mathrm{K}\mathrm{G}_{n,k}) is (n-2k-1) ‐connected and therefore

he proved the Lovász‐Kneser theorem. The Lovász‐Kneser theorem was proved in other

ways after Lovász proved it (see [3], [17], [20]).
A hypergraph is a pair (X, \mathcal{F}) ,

where X is a finite set and \mathcal{F}\subset 2^{X} is a system of

subsets of X . The element of \mathcal{F} are called the edges or hyperedges. A hypergraph H is

m‐colorable if its vertices can be colored by m colors such that no hyperedge becomes

monochromatic. We define the m‐colorability defect \mathrm{c}\mathrm{d}() of a set system \emptyset\not\in \mathcal{F} by

\displaystyle \mathrm{c}\mathrm{d}_{m}(\mathcal{F})=\min { |Y| : (X-Y, \{F\in \mathcal{F}|F\cap Y=\emptyset\}) is m‐colorable}.

Dol�nikov prove the following theorem in [6].

Dol�nikov�s theorem. For any set system \emptyset\not\in \mathcal{F} , the inequality

\mathrm{c}\mathrm{d}_{2}(\mathcal{F})\leqq $\chi$(\mathrm{K}\mathrm{G}())

holds.

This theorem generalizes the Lovász‐Kneser theorem. Because it is easy to prove

that if \mathcal{F} consists of all the k‐subsets of an n‐set with k\leqq n/2 ,
then \mathrm{c}\mathrm{d}_{2}(\mathcal{F})=n-2k+2.
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We say that a graph is completely multicolored in a coloring if all its vertices receive

different colors. For x\in R ,
let \displaystyle \lfloor x\rfloor=\max\{n\in Z|n\leqq x\} and \displaystyle \lceil x\rceil=\min\{n\in Z|n\geqq

 x\} . Symonyi and Tardos prove the following theorem.

Theorem([21]). Let \mathcal{F} be a finite fa mily of sets, \emptyset\not\in \mathcal{F} and \mathrm{K}\mathrm{G}() its gen‐

eral Kneser graph. Let r=\mathrm{c}\mathrm{d}_{2}(\mathcal{F}) . Then any proper coloring of \mathrm{K}\mathrm{G}() with colors

1;:::; m (m arbitary) must contain a completely multicolored complete bipartite graph

K_{\lceil\rceil\lfloor\rfloor} such that the r different colors occur alternating on the two sides of the

bipartite graph with respect to their natural order.

This theorem generalizes Dol�nikov�s theorem, because it implies that any proper

coloring must use at least \mathrm{c}\mathrm{d}() different colors. In the proof of the above theorem,

Ky Fan�s theorem is used.

S\in(_{k}^{[n]}) is said to be stable if it does not contain any two adjacent elemens modulo

n . In other words, S corresponds to an independent set in the cycle C_{n} . We denote by

(_{k}^{[n]})_{\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}} the family of stable k‐subsets of [] . We define the Schrijver graph by

\mathrm{S}\mathrm{G}_{n,k}=\mathrm{K}\mathrm{G}(\left(\begin{array}{l}
[n]\\
k
\end{array}\right)) .

It is an induced subgraph of the Kneser graph \mathrm{K}\mathrm{G}_{n,k} . In [19], Schrijver defined the

Schrijver graph and proved  $\chi$(SG_{n,k})= $\chi$(KG_{n,k})=n-2k+2 for all n\geqq 2k\geqq 0.

§2.3. Necklace Theorem

Two thieves have stolen a precious necklace, which has n beads. These beads belong
to t different types. Assume that there is an even number of beads of each type, say 2a_{i}

beads of type i
,

for each i\in\{1, 2, . :. ; t\} ,
where a_{i} is a nonzero integer. Remark that

we have 2 \displaystyle \sum_{i=1}^{t}a_{i}=n . The beads are fixed on an open chain made of gold.
As we do not know the exact value of each type of bead, a fair division of the

necklace consists of giving the same number of beads of each type to each thief. The

number of beads of each type is even, hence such a division is always possible: cut the

chain at the n-1 possible positions. But we want to do the division with fewer cuts.

The following theorem was proved by Goldberg and West.

Theorem. A fair division of the necklace with t types of beads between two thieves

can be done with no more than t cuts.

Alon and West gave a simpler proof by using the Borsuk‐Ulam theorem in [2].
In 1987, Alon proved the following generalization, for a necklace having qa_{i} beads

for each type i, a_{i} integer, using a generalized Borsuk‐Ulam theorem:

Theorem([1]). A fair division of the necklace with t types of beads between q

thieves can be done with no more than t(q-1) cuts.
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The following theorem is considered as a continuous version of the necklace theorem.

Hobby‐Rice theorem([11]). Let $\mu$_{1}, $\mu$_{2} ,
. . .

, $\mu$_{d} be continuous probability mea‐

sures on the unit interval. Then there is a partition of [0 ,
1 ] into d+1 intervals

I_{0}, I_{1} ,
. . .

, I_{d} and signs $\epsilon$_{0}, $\epsilon$_{1} ,
. . .

, $\epsilon$_{d}\in\{-1, +1\} with

\displaystyle \sum_{j=0}^{d}$\epsilon$_{j}$\mu$_{i}(I_{j})=0 fori=1 , 2, . . .

,
d.

Alon generalized Hobby‐Rice theorem as follows.

Theorem([1]). Let $\mu$_{1}, $\mu$_{2} ,
::.

; $\mu$_{t} be t continuous probability measures on the unit

interval. Then it is possible to cut the interval in (k-1)\cdot t places and partition the

(k-1)\cdot t+1 resulting intervals into k families F_{1}, F_{2} ,
. . .

, F_{k} such that $\mu$_{i}(\cup F_{j})=l/k
for all l\leqq i\leqq t, l\leqq j\leqq k . The number (k-l)\cdot t is best possible.

Recently de Longueville and Živaljeič generalize the theorem above and got a

higher‐dimensional necklace theorem in [16].

§2.4. Tverberg�s Theorem

H. Tverberg showed the following theorem in [25]

Theorem([25]). Consider a finite set X\subset R^{d} with |X|=(d+1)(r-1)+1 . Then

X can be partitioned into r subset X_{1} ,
. :.

; X_{r} so that

\displaystyle \bigcap_{i=1}^{r}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}X_{i}\neq\emptyset.
The following theorem is a topological generalization of Tverberg�s theorem.

Theorem([4], [26]). Let q=p^{r} be a prime power and d\geqq 1 . Put N=(d+1)(q-1) .

For every continuous map f:\Vert$\sigma$^{N}\Vert\rightarrow R^{d} there are q disjyoint faces F_{1}, F_{2} ,
.

::, F_{q} of
the standard N ‐simplex $\sigma$^{N} whose images under f intersect: \displaystyle \bigcap_{i=1}^{q}f(\Vert F_{i}\Vert)\neq\emptyset.

This theorem was proved by using a Borsuk‐Ulam type theorem. It is still unknown

whether such a theorem holds for q not equal to a prime power.

§3. A Generalization of Tucker�s Lemma

Tucker�s lemma is equivalent to the Borsuk‐Ulam theorem (see [17]) We shall con‐

sider a generalization of Tucker�s lemma as analogous as generalizations of the Borsuk‐

Ulam theorem.
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Let K be a simplicial complex and A a subcomplex of K . Suppose that A has

a simplicial Z_{2} ‐action and Z_{2} ‐action on |A| is free, where |A| denotes the polyhedron
determined by A . Then we can consider the first Stiefel‐Whitney class w_{1}(|A|/Z_{2}) of

the double covering  $\pi$:|A|\rightarrow|A|/Z_{2} . Let $\pi$^{!}:H^{*}(|A|;Z_{2})\rightarrow H^{*}(|A|/Z_{2};Z_{2}) be the

transfer. We denotes by i:|A|\rightarrow|K| the inculusion. Then we have the following.

Theorem. Suppose that w_{1}(|A|/Z_{2})^{n-1}\not\in$\pi$^{!}\circ i^{*}(H^{n-1}(|K|;Z2)) . If

 $\lambda$:V(K)\rightarrow\{\pm 1, \pm 2, . . . , \pm n\}

satisfies  $\lambda$(-v)=- $\lambda$(v) for v\in V(A) ,
then there exisits a 1‐simplex \{v_{1}, v_{2}\} in K such

that  $\lambda$(v_{1})=- $\lambda$(v_{2}) .

Proof. Suppose that there is no 1‐simplex \{v_{1}, v_{2}\} in K such that  $\lambda$(v_{1})=- $\lambda$(v_{2}) .

Then we have a simplicial map f_{ $\lambda$}:K\rightarrow\partial(\text{◇^{}n}) ,
where @(◇n) denotes a triangulation

of S^{n-1} in section 2.1. Since f_{ $\lambda$}\circ i:A\rightarrow\partial(\text{◇^{}n}) is a Z_{2}-\mathrm{m}\mathrm{a}\mathrm{p} ,
we have a continuous map

f:|A|/Z_{2}\rightarrow|\partial(\text{◇^{}n})|/Z_{2} such that f\circ $\pi$=$\pi$_{S}\circ f_{ $\lambda$}\circ i ,
where  $\pi$ s:|\partial(\text{◇^{}n})|\rightarrow|\partial(\text{◇^{}n})|/Z_{2}

is a projection. Let  $\alpha$ be the generator of  H^{n-1} (@(◇n); Z_{2} ). Since $\pi$^{!}\circ(f_{ $\lambda$}\circ i)^{*}( $\alpha$)=
f^{*}\circ$\pi$_{S}^{!}( $\alpha$)=f^{*}(w_{1}(S^{n-1}/Z_{2})^{n-1})=w_{1}(|A|/Z_{2})^{n-1}, $\pi$^{!}\circ i^{*}\circ f_{ $\lambda$}^{*}( $\alpha$)=w_{1}(|A|/Z_{2})^{n-1}.
This contradicts w_{1}(|A|/Z_{2})^{n-1}\not\in$\pi$^{!}\circ i^{*}(H^{n-1} (|K|; Z2)) . \square 

Remark. In the above theorem, if w_{1}(|A|/Z_{2})^{n}\neq 0 ,
then there exisits a 1‐simplex

\{v_{1}, v_{2}\} in A such that  $\lambda$(v_{1})=- $\lambda$(v_{2}) . Because if there is no 1‐simplex \{v_{1}, v_{2}\} in

A such that  $\lambda$(v_{1})=- $\lambda$(v_{2}) ,
then we have an equivariant map  f_{ $\lambda$}:|A|\rightarrow | @(◇n) |

from  $\lambda$ . Since |@(\text{◇^{}n})/Z_{2}\cong RP^{n-1}, w_{1}(|A|/Z_{2})^{n}=\overline{f}_{ $\lambda$}^{*}(w_{1}(RP^{n-1})^{n})=0 ,
where

\overline{f}_{ $\lambda$}:|A|/Z_{2}\rightarrow RP^{n-1} is a map determined by f_{ $\lambda$}.

In the above theorem we consider S^{n-1} and its triangulation \partial(\text{◇^{}n}) . In [7], [12]
and [14], we see Borsuk‐Ulam type theorems on Stiefel manilolds.

Problem. Consider a generalization of Tucker�s lemma on Stiefel manifolds.
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