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Geometrical formality of solvmanifolds and solvable

Lie type geometries

By

Hisashi Kasuya *

Abstract

We show that for a Lie group G=\mathbb{R}^{n}\ltimes $\phi$ \mathbb{R}^{m} with a semisimple action  $\phi$ which has

a cocompact discrete subgroup  $\Gamma$
,

the solvmanifold  G/ $\Gamma$ admits a canonical invariant formal

(i.e. all products of harmonic forms are again harmonic) metric. We show that a compact
oriented aspherical manifold of dimension less than or equal to 4 with the virtually solvable

fundamental group admits a formal metric if and only if it is diffeomorphic to a torus or an

infra‐solvmanifold which is not a nilmanifold.

§1. Introduction

Let (M, g) be a compact oriented Riemannian n‐manifold. We call g formal if all

products of harmonic forms are again harmonic. If a compact oriented manifold admits a

formal Riemaniann metric, we call it geometrically formal. If g is formal, then the space

of the harmonic forms is a subalgebra of the de Rham complex of M and isomorphic to

the real cohomology of M . By this, a geometrically formal manifold is a formal space (in
the sense of Sullivan [22]). But the converse is not true (see [15] [16]). For very simple

examples, closed surfaces with genus \geq 2 are formal but not geometrically formal. Thus

we have one problem of geometrical formality of formal spaces. Kotschick�s nice work

in [15] stimulates us to consider this problem.
In this paper we prove the following theorem by using computations of the de Rham

cohomology of general solvmanifolds given in [14].

Theorem 1.1. Let G=\mathbb{R}^{n}\ltimes $\phi$ \mathbb{R}^{m} with a semisimple action  $\phi$ . Suppose  G has

a lattice  $\Gamma$ . Then  G/ $\Gamma$ admits an invariant formal metric.
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We also study geometrical formality of low‐dimensional aspherical manifolds with

the virtually solvable fundamental groups. We consider infra‐solvmanifolds which are

quotient spaces of simply connected solvable Lie groups by subgroups of the groups of the

affine transformations of G satisfying some conditions (see Section 7 for the definition).
We classify geometrically formal compact aspherical manifolds of dimension less than

or equal to 4 with the virtually solvable fundamental groups.

Theorem 1.2. Let M be a compact oriented aspherical manifold of dimension

less than or equal to 4 with the virtually solvable fundamental group. Then M is geo‐

metrically formal if and only if M is diffeomorphic to a torus or an infra‐solvmanifO ld

which is not a nilmanifO ld.

§2. Notation and conventions

Let k be a subfield of \mathbb{C} . A group \mathrm{G} is called a k‐algebraic group if \mathrm{G} is a Zariski‐

closed subgroup of GL_{n}() which is defined by polynomials with coefficients in k . Let

\mathrm{G}(k) denote the set of k‐points of \mathrm{G} and \mathrm{U}(\mathrm{G}) the maximal Zariski‐closed unipotent
normal k‐subgroup of \mathrm{G} called the unipotent radical of G. Denote U(k) the group of

k‐valued upper triangular unipotent matrices of size n.

§3. Unipotent hull of solvable Lie group

Theorem 3.1. ([19]) Let G be a simply connected solvable Lie group. Then there

exists a unique \mathbb{R} ‐algebraic group \mathrm{H}_{G} with an injective group homomorphism  $\psi$ :  G\rightarrow

\mathrm{H}() so that:

(1)  $\psi$(G) is Zariski‐dense in \mathrm{H}_{G}.

(2) The centralizer Z_{\mathrm{H}_{G}}(\mathrm{U}(\mathrm{H})) of \mathrm{U}(\mathrm{H}) is contained in \mathrm{U}(\mathrm{H}_{G}) .

(3) \dim \mathrm{U}(\mathrm{H}_{G})=\dim G (resp. rank G).

We denote \mathrm{U}_{G}=\mathrm{U}(\mathrm{H}_{G}) .

Theorem 3.2. ([13]) Let G be a simply connected solvable Lie group. Then \mathrm{U}_{G}
is abelian if and only if G=\mathbb{R}^{n}\ltimes $\phi$ \mathbb{R}^{m} such that the action  $\phi$ : \mathbb{R}^{n}\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(\mathbb{R}^{m}) is

semisimple.

§4. Hodge theory

\text{∧ \text{∧Let (V, g) be a \mathbb{R} or \mathbb{C}‐vector space of dimension n with an inner product g . Let

\wedge V=\oplus_{p=0}\wedge^{p}V be the exterior algebra of V . We extend g to the inner product on
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\text{∧
\wedge V . Take vol\in\wedge^{n}V such that g(vol ,

vol)=1 . We define the linear \mathrm{m}\mathrm{a}\mathrm{p}*_{g} : \wedge^{p}V\rightarrow
\wedge^{n-p}V as:

v\wedge*_{g}\overline{u}=g(v, u)vol

Let \{$\theta$_{1}, . . . $\theta$_{n}\} be an orthonormal basis of (V, g) . Then we have

*_{g}($\theta$_{i_{1}}\wedge\ldots$\theta$_{i_{p}})=(\mathrm{s}\mathrm{g}\mathrm{n}$\sigma$_{IJ})$\theta$_{j_{1}}\wedge\ldots$\theta$_{j_{n-p}}

where J=\{j_{1}, \cdots, j_{n-p}\} is the complement of I=\{i_{1}, . . . , i_{p}\} in \{ 1, . . .

, n\} and $\sigma$_{IJ} is

the permutation (_{i_{1}\cdots i_{p}j_{1}\cdot\cdot j_{n-p}}1\cdots pp+.1\cdots n) .

Let (M, g) be a compact oriented Riemannian n‐manifold. Let (A^{*}(M), d) be the

de Rham complex of M with the exterior derivation d . For x\in M by the inner product

g_{x} on T_{x}M we define the linear map *_{g}:A^{p}(M)\rightarrow A^{n-p}(M) by

(*_{g}( $\omega$))_{x}=*_{g_{x}}$\omega$_{x}

for  $\omega$\in A^{p}(M) . Define  $\delta$ :  A^{p}(M)\rightarrow A^{p-1}(M) by  $\delta$=(-1)^{np+n+1}*_{g}d*_{g} . We call

 $\omega$\in A^{p}(M) harmonic if d $\omega$=0 and  $\delta \omega$=0 . Let \mathcal{H}^{p}(M) be the subspace of A^{p}(M)
which consists of harmonic p‐forms. Let \mathcal{H}(M)=\oplus \mathcal{H}^{p}(M) . It is known that the

inclusion \mathcal{H}(M)\subset A^{*}(M) induces an isomorphism

\mathcal{H}^{p}(M)\cong H^{p}(M, \mathbb{R}) .

In general a wedge product of harmonic forms is not harmonic and so \mathcal{H}^{p}(M) is not a

subalgebra of A^{*}(M) .

Denition 4.1. We call a Riemannian metric g formal if all products of har‐

monic forms are again harmonic. We call an oriented compact manifold M geometrical
formal if M admits a formal metric.

§5. Invariant forms on solvmanifolds (proof of Theorem 1.1)

\text{∧Let G be a simply connected solvable Lie group and \mathfrak{g} the Lie algebra which is

the space of the left invariant vector fields on G . Consider the exterior algebra \wedge \mathfrak{g}^{*}
of the dual space of \mathfrak{g} . Denote d : \wedge^{1}\mathfrak{g}^{*}\rightarrow\wedge^{2}\mathfrak{g}^{*} the dual map of the Lie bracket of

\mathfrak{g} and d : \wedge^{p}\mathfrak{g}^{*}\rightarrow\wedge^{p+1}\mathfrak{g}^{*} the extension of this map. We can identify (\wedge \mathfrak{g}^{*}, d) with

the left invariant forms on G with the exterior derivation. Let Ad: G\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{g}) be the

adjoint representation. Let \mathrm{A}\mathrm{d}_{sg} be the semi‐simple part of \mathrm{A}\mathrm{d}_{g}\in Aut(g) for  g\in G.
Since representations of G are trigonalizable in \mathbb{C} by Lie�s theorem, \mathrm{A}\mathrm{d}_{s} : G\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{g}_{\mathrm{C}})
is a diagonalizable representation. Let X_{1}, \cdots, X_{n} be a basis of \mathfrak{g}_{\mathbb{C}} such that \mathrm{A}\mathrm{d}_{s} is
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represented by diagonal matrices. Then we have \mathrm{A}\mathrm{d}_{sg}X_{i}=$\alpha$_{i}(g)X_{i} for characters $\alpha$_{i} of

G . Let x_{1} ,
. . .

, x_{n} be tha dual basis of X_{1} ,
. . .

, X_{n} . We assume that G has a lattice  $\Gamma$.

Define the sub‐DGA A^{*} of the de Rham complex A_{\mathbb{C}}^{*}(G/ $\Gamma$) as

A^{p} = \{$\alpha$_{i_{1}\ldots i_{p}}x_{i_{1}}\wedge\cdots\wedge x_{i_{p}}|_{\mathrm{t}\mathrm{h}\mathrm{e}} resltr\leq i_{1}<i_{2}<\cdots<i_{p}\leq
nictiono  f$\alpha$_{i_{1}\ldots i_{p}}\mathrm{o}\mathrm{n} $\Gamma$ \mathrm{i}\mathrm{s}' trivial }

where $\alpha$_{i_{1}\ldots i_{p}}=$\alpha$_{i_{1}}\ldots$\alpha$_{i_{p}}.

Theorem 5.1. ([14, v4. Corollary 7.6]) The inclusion

A^{*}\subset A_{\mathbb{C}}^{*}(G/ $\Gamma$)

induces a cohomology isomorphism and A^{*} can be considered as a sub‐DGA of\wedge \mathrm{u}^{*}
where \mathrm{u} is the Lie algebra of \mathrm{U}_{G} as in Section 3.

Define g the Hermittian inner product as

g(X_{i}, X_{j})=$\delta$_{ij}.

Since \mathrm{A}\mathrm{d}_{s} is an \mathbb{R}‐valued representation, the restriction of g on \mathfrak{g} is an inner product
on \mathfrak{g} . We consider g as an invariant Riemannian metric on G/ $\Gamma$.

Theorem 5.2. If \mathrm{U}_{G} is abelian, then g is a formal metric on G/ $\Gamma$.

Proof. By the assumption, the differential on \wedge \mathrm{u}^{*} is 0 . By Theorem 5.1, the

derivation on A^{*} is 0 and we have an isomorphism

A^{*}\cong H^{*}(G/ $\Gamma$) .

Thus it is sufficient to show that all elements of A^{*} are harmonic. Let *_{g} be the star

operator. Then for $\alpha$_{i_{1}\ldots i_{p}}x_{i_{1}}\wedge\cdots\wedge x_{i_{p}}\in A^{p} we have

*_{g}($\alpha$_{i_{1}\ldots i_{p}}x_{i_{1}}\wedge\cdots\wedge x_{i_{p}})=(\mathrm{s}\mathrm{g}\mathrm{n}$\sigma$_{IJ})\overline{ $\alpha$}_{i_{1}\ldots i_{p}}x_{j_{1}}\wedge\cdots\wedge x_{j_{n-p}}.

Since the restriction of $\alpha$_{i_{1}\ldots i_{p}} on  $\Gamma$ is trivial, the image  $\alpha$_{i_{1}\ldots i_{p}}(G)=$\alpha$_{i_{1}\ldots i_{p}}(G/ $\Gamma$) is

compact and hence $\alpha$_{i_{1}\ldots i_{p}} is unitary. Since G has a lattice  $\Gamma$, G is unimodular (see [19,
Remark 1.9]) and hence we have

\overline{ $\alpha$}_{i_{1}\ldots i_{p}}=$\alpha$_{i_{1}\ldots i_{p}}^{-1}=$\alpha$_{j_{1}\ldots j_{n-p}}.
Hence we have

\overline{ $\alpha$}_{i_{1}\ldots i_{p}}x_{j_{1}}\wedge\cdots\wedge x_{j_{n-p}}=$\alpha$_{j_{1}\ldots j_{n-p}}x_{j_{1}}\wedge\cdots\wedge x_{j_{n-p}}\in A^{n-p}
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and thus we have *_{g}(A^{*})\subset A^{*} . Since the derivation on A^{*} is 0 ,
we have  $\delta$(A^{*})=0.

Hence the theorem follows.

\square 

By this theorem and Theorem 3.2, we have Theorem 1.1.

Remark. Not every invariant metric on  G/ $\Gamma$ in Theorem 1.1 is formal. See the

following example.

Example 5.3. Let  H=\mathbb{R}\ltimes $\phi$ \mathbb{R}^{2} such that  $\phi$(z)(x, y)= (ezx, e^{-z}y). Consider

G=H\times \mathbb{R} . Then for some non‐zero number a\in \mathbb{R},  $\phi$(a) is conjugate to an element of

SL_{2}() ,
and hence G has a lattice  $\Gamma$=a\mathbb{Z}\ltimes $\phi \Gamma$'\times \mathbb{Z} for a lattice $\Gamma$' of \mathbb{R}^{2} . Let \mathfrak{g} be the

Lie algebra of G and \mathfrak{g}^{*} the dual of \mathfrak{g} . The cochain complex (\wedge \mathfrak{g}^{*}, d) is generated by a

basis \{x, y, z, w\} such that

dx=-z\wedge x, dy=z\wedge y, dz=0, dw=-z\wedge x.

Consider the invariant metric g=x^{2}+y^{2}+z^{2}+w^{2} . Then z and w-x are harmonic

for g . But z\wedge(w-x) is not harmonic. Thus g is not formal.

Example 5.4. Let G=\mathbb{C}\ltimes $\phi$ \mathbb{C}^{2} with  $\phi$(z)(x, y)=(e^{z}x, e^{-z}y) . For some p,  q\in

\mathbb{R},  $\phi$(p\mathbb{Z}+\sqrt{-1}q\mathbb{Z}) is conjugate to a subgroup of SL() and hence we have a lattice

 $\Gamma$=(p\mathbb{Z}+\sqrt{-1}q\mathbb{Z})\ltimes$\Gamma$'' for a lattice $\Gamma$'' of \mathbb{C}^{2} (see [17] and [9]). For any lattice  $\Gamma$,  G/ $\Gamma$
is geometrically formal by Theorem 1.1.

Remark. In [2] for some lattice of  G in Example 5.4, it is proved that  G/ $\Gamma$ is

geometrically formal. But the de Rham cohomology of  G/ $\Gamma$ varies according to a choice

of a lattice  $\Gamma$.

Example 5.5. Let K be a finite extension field of \mathbb{Q} with the degree r for

positive integers. We assume K admits embeddings $\sigma$_{1} ,
. . . $\sigma$_{s}, $\sigma$_{s+1} ,

. . .

, $\sigma$_{s+2t} into \mathbb{C}

such that s+2t=r, $\sigma$_{1} ,
. . .

, $\sigma$_{s} are real embeddings and $\sigma$_{s+1} ,
. . .

, $\sigma$_{s+2t} are complex
ones satisfying $\sigma$_{s+i}=\overline{ $\sigma$}_{s+i+t} for 1\leq i\leq t . We suppose s>0 . Denote \mathcal{O}_{K} the ring of

algebraic integers of K, \mathcal{O}_{K}^{*} the group of units in \mathcal{O}_{K} and

\mathcal{O}_{K}^{*+}= { a\in \mathcal{O}_{K}^{*} : $\sigma$_{i}(a)>0 for all 1\leq i\leq s }.

Define  $\sigma$ : \mathcal{O}_{K}\rightarrow \mathbb{R}^{s}\times \mathbb{C}^{t} by

 $\sigma$(a)=($\sigma$_{1}(a), \ldots, $\sigma$_{s}(a), $\sigma$_{s+1}(a), \ldots, $\sigma$_{s+t}(a))

for a\in \mathcal{O}_{K} . We denote

 $\sigma$(a)\cdot $\sigma$(b)=($\sigma$_{1}(a)$\sigma$_{1}(b), \ldots, $\sigma$_{s}(a)$\sigma$_{s}(b), $\sigma$_{s+1}(a)$\sigma$_{s+1}(b), \ldots, $\sigma$_{s+t}(a)$\sigma$_{s+t}(b))
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for a, b\in \mathcal{O}_{K} . Then the image  $\sigma$(\mathcal{O}_{K}) is a lattice in \mathbb{R}^{s}\times \mathbb{C}^{t} . Define l : \mathcal{O}_{K}^{*+}\rightarrow \mathbb{R}^{s+t} by

l(a)=(\log|$\sigma$_{1}(a)|, \ldots, \log|$\sigma$_{s}(a)|, 2\log|$\sigma$_{s+1}(a)|, \ldots, 2\log|$\sigma$_{s+t}(a))

for a\in \mathcal{O}_{K}^{*+} . Then by Dirichlet�s units theorem, the image l(\mathcal{O}_{K}^{*+}) is a lattice in the

vector space L=\displaystyle \{x\in \mathbb{R}^{s+t}|\sum_{i=1}^{s+t}x_{i}=0\} . By this we have a geometrical representation
of the semi‐direct product \mathcal{O}_{K}^{*+}\ltimes \mathcal{O}_{K} as l(\mathcal{O}_{K}^{*+})\ltimes $\phi \sigma$(\mathcal{O}_{K}) with

 $\phi$(t_{1}, \ldots, t_{s+t})( $\sigma$(a))= $\sigma$ (  l^{-1} ( t\mathrm{l} ,
. . .

, t_{s+t}) ) \cdot $\sigma$(a)

for (tl, . . .

, t_{s+t} ) \in l(\mathcal{O}_{K}^{*+}) . Since l(\mathcal{O}_{K}^{*+}) and  $\sigma$(\mathcal{O}_{K}) are lattices of L and \mathbb{R}^{s}\times \mathbb{C}^{t}

respectively, we have an extension \overline{ $\phi$}:L\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(\mathbb{R}^{s}\times \mathbb{C}^{t}) of  $\phi$ and  l(\mathcal{O}_{K}^{*+})\ltimes $\phi \sigma$(\mathcal{O}_{K})
can be seen as a lattice of L\ltimes\overline{ $\phi$}(\mathbb{R}^{s}\times \mathbb{C}^{t}) . By Theorem 1.1, the solvmanifold L\ltimes\overline{ $\phi$}
(\mathbb{R}^{s}\times \mathbb{C}^{t})/l(\mathcal{O}_{K}^{*+})\ltimes $\phi \sigma$(\mathcal{O}_{K}) is geometrically formal by Theorem 5.4. For a subgroup

U\subset \mathcal{O}_{K}^{*+} ,
we have a Lie group L'\ltimes\overline{ $\phi$}(\mathbb{R}^{s}\times \mathbb{C}^{t}) which contains l(U)\ltimes $\phi \sigma$(\mathcal{O}_{K}) as a

lattice. The solvmanifold L'\ltimes\overline{ $\phi$}(\mathbb{R}^{s}\times \mathbb{C}^{t})/l(U)\ltimes $\phi \sigma$(\mathcal{O}_{K}) is also geometrically formal

by Theorem 1.1.

Example 5.6. Let G=\mathbb{R}\ltimes U(\mathbb{R}) such that

 $\phi$(t)\left(\begin{array}{ll}
1x & z\\
01 & y\\
001 & 
\end{array}\right)=\left(\begin{array}{ll}
1e^{t}x & z\\
01 & e^{-t}y\\
00 & 1
\end{array}\right)
The left‐invariant forms \wedge \mathfrak{g}^{*} on G is generated by \{e^{-t}dx , etdy, dz —xdy, dt\} . It is

known that G has a lattice  $\Gamma$ (see [20]). By simple computations, we have  H^{1}(\mathfrak{g}^{*})=
\langle dt\rangle, \dim H^{2}(\mathfrak{g}^{*})=0 and \dim H^{3}(\mathfrak{g}^{*})=1 . Since G is completely solvable, we have

H^{*}(G/ $\Gamma$, \mathbb{R})\cong H^{*}(\mathfrak{g}^{*}) (see [10]) and hence \mathcal{H}(\mathfrak{g})=\mathcal{H}(G/ $\Gamma$) where \mathcal{H}^{*}(\mathrm{g}) is the set of

left‐invarinat harmonic forms. By d(\wedge^{3}\mathfrak{g}^{*})=0 ,
for any invariant metric g on G ,

we

have:

\mathcal{H}^{1}(\mathfrak{g})=\langle dt\rangle,

\mathcal{H}^{2}(\mathfrak{g})=0,

\mathcal{H}^{3}(\mathfrak{g})=\langle(*_{g}dt)\rangle.
Thus any invariant metric on  G/ $\Gamma$ is formal. Otherwise we have \mathrm{U}_{G}=U_{3}() \times \mathbb{C} and

hence this solvmanifold is different from examples of geometrically formal solvmanifold

given in Theorem 1.1.

§6. The extension of Theorem 1.1

Let G be a simply connected solvable Lie group and g an invariant metric which

we construct in Section 5. Denote C_{g} the group of the isometrical automorphisms of

(G, g) . Consider C_{g}\ltimes G and the projection p:C_{g}\ltimes G\rightarrow C_{g}.
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Corollary 6.1. Suppose G=\mathbb{R}^{n}\ltimes $\phi$ \mathbb{R}^{m} with a semi‐simple action  $\phi$ . Let  $\Gamma$\subset

 C_{g}\ltimes G be a torsion‐free discrete subgroup such that  G/ $\Gamma$ is compact. Suppose  p( $\Gamma$) is

finite.
Then the metric g given in the last section is a formal metric on G/ $\Gamma$.

Proof. Let \triangle= $\Gamma$\cap G . Since  $\Gamma$/\triangle\cong p( $\Gamma$) ,
\triangle is a finite index normal subgroup

of  $\Gamma$ and  G/\triangle is compact and hence \triangle\subset G is a lattice. Denote \mathcal{H}(G/ $\Gamma$) and \mathcal{H}(G/\triangle)
the sets of the harmonic forms on  G/ $\Gamma$ and  G/\triangle for the metric  g . Since we have

A^{*}(G/ $\Gamma$)=A^{*}(G/\triangle)^{ $\Gamma$/\triangle} ,
we have

\mathcal{H}(G/ $\Gamma$)=\mathcal{H}(G/\triangle)^{ $\Gamma$/\triangle}

By Theorem 1.1, \mathcal{H}(G/\triangle) is closed under the wedge product, so is \mathcal{H}(G/\triangle)^{ $\Gamma$/\triangle} . Hence

the corollary follows. \square 

Remark. Not all cocompact discrete subgroup  $\Gamma$ satisfies the assumption of the

finiteness of  p( $\Gamma$) . See the following example.

Example 6.2. Let G=\mathbb{R}\ltimes $\phi$ \mathbb{R}^{3} such that  $\phi$(t)=\left(\begin{array}{lll}
e^{t} & 0 & 0\\
0 & e^{t} & 0\\
0 & 0 & e^{-2t}
\end{array}\right) . Then G has no

lattice (see [11, Chapter 7]). Consider the metric g=e^{-2t}dx^{2}+e^{-2t}dy^{2}+e^{4t}dz^{2}+dt^{2}.
Then we have C_{g}=O(2)\times O(1) acting as rotations and reflections on the (x, y)-
coordinates and reflection on the z‐coordinate. C_{g}\ltimes G admits a torsion‐free cocompact

discrete subgroup  $\Gamma$ . Since  G\cap $\Gamma$ is not a lattice of  G, p( $\Gamma$) is not finite. In [11, Chapter

8] it is proved that  $\Gamma$\cong \mathbb{Z}\ltimes $\phi$ \mathbb{Z}^{3} and for t\neq 0 $\phi$(t)\in SL_{3}(\mathbb{Z}) has a pair of complex

conjugate eigenvalues (see [11, Chapter 7]). Hence  $\Gamma$ can be a lattice of a Lie group

 H=\mathbb{R}\ltimes $\phi$ \mathbb{R}^{3} with  $\phi$(t)=\left(\begin{array}{ll}
e^{t}\mathrm{c}\mathrm{o}\mathrm{s}ct-e^{t}\mathrm{s}\mathrm{i}\mathrm{n}ct & 0\\
e^{t}\mathrm{s}\mathrm{i}\mathrm{n}cte^{t}\mathrm{c}\mathrm{o}\mathrm{s}ct & 0\\
00 & e^{-2t}
\end{array}\right) ,
and  G/ $\Gamma$=H/ $\Gamma$ is geometrically

formal by Theorem 1.1.

§7. Thurston�s Geometries and infrasolvmanifold

We say that a compact oriented manifold  M admits a geometry (X, g) if  M=X/ $\Gamma$
where  X is a simply connected manifold with a complete Riemaniann metric g and  $\Gamma$

is a cocompact discrete subgroup of the group Isomg(X) of isometries. If (X, g) is a

solvable Lie group with an invariant metric  g ,
we call it a solvable Lie type geometry.

We consider the following 3‐dimensional solvable Lie type geometries.

(3‐A) X=E^{3}=\mathbb{R}^{3}, g_{E^{3}}=dx^{2}+dy^{2}+dz^{2}.
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(3‐B) X=Nil^{3}=U_{3}(\mathbb{R})=\{\left(\begin{array}{ll}
1x & z\\
01 & y\\
001 & 
\end{array}\right) : x, y, z\in \mathbb{R}\}, g_{Nil^{3}}=dx^{2}+dy^{2}+ (dz —xdy)2.

(3‐C) X=Sol^{3}=\mathbb{R}\ltimes $\phi$ \mathbb{R}^{2} with  $\phi$(z)=\left(\begin{array}{ll}
e^{t} & 0\\
0 & e^{-t}
\end{array}\right), g_{Sol^{3}}=e^{2z}dx^{2}+e^{-2z}dy^{2}+dz^{2}.

By the theory of geometry and topology of 3‐dimensional manifolds we have the

following theorem (see [21]).

Theorem 7.1. A compact aspherical 3‐dimensional manifold with the virtually
solvable fundamental group admits one of the geometries (3‐A \sim C).

We also consider the following 4‐dimensional solvable Lie type geometries (listed
in [24]).
(4‐A)  X=E^{4}=\mathbb{R}^{4}, g_{E^{4}}=dx^{2}+dy^{2}+dz^{2}+dt^{2}.
(4‐B) X=Nil^{3}\times E=U_{3}()\times \mathbb{R}, g_{Nil^{3}\times E}=dx^{2}+dy^{2}+(dz-xdy)^{2}+dt^{2}.

(4‐C) X=Nil^{4}=\{\left(\begin{array}{ll}
1t\frac{1}{2}t^{2} & z\\
01t & y\\
001 & x\\
000 & 1
\end{array}\right) : x, y, z, t\in \mathbb{R}\},
g_{Nil^{4}}=dx^{2}+(dy-tdz)^{2}+(dz-tdy+\displaystyle \frac{1}{2}t^{2}dx)^{2}+dt^{2}
(4‐D) X=Sol^{3}\times E, g_{Sol^{3}\times E}=e^{2z}dx^{2}+e^{-2z}dy^{2}+dz^{2}+dt^{2}.

(4‐E) X=Sol_{m,n}^{4}=\mathbb{R}\ltimes $\phi$ \mathbb{R}^{3} such that  $\phi$(t)= \left(\begin{array}{lll}
e^{at} & 0 & 0\\
0 & e^{bt} & 0\\
0 & 0 & e^{ct}
\end{array}\right) ,
where e^{a}, e^{b}, e^{c} are

distinct roots of X^{3}-mX^{2}+nX-1 for real numbers a<b<c and integers m<n,

g_{Sol_{m,n}^{4}}=e -2atdx^{2}+e^{-2bt}dy^{2}+e^{-2ct}dz^{2}+dt^{2}.

(4‐F) X=Sol_{0}^{4}=\mathbb{R}\ltimes $\phi$ \mathbb{R}^{3} such that  $\phi$(t)=\left(\begin{array}{lll}
e^{t} & 0 & 0\\
0 & e^{t} & 0\\
0 & 0 & e^{-2t}
\end{array}\right),
g_{Sol_{0}^{4}}=e^{-2t}dx^{2}+e^{-2t}dy^{2}+e^{4t}dz^{2}+dt^{2}.

(4‐G) X=Sol_{1}^{4}=\mathbb{R}\ltimes U(\mathbb{R}) such that  $\phi$(t)\left(\begin{array}{ll}
1x & z\\
01 & y\\
001 & 
\end{array}\right)=\left(\begin{array}{ll}
1e^{t}x & z\\
01 & e^{-t}y\\
00 & 1
\end{array}\right),
g_{Sol_{1}^{4}}=e^{-2t}dx^{2}+e^{2t}dy^{2}+(dz-xdy)^{2}+dt^{2}.

Let G be a simply connected solvable Lie group and g an invariant metric on

G . We consider the affine transformation group \mathrm{A}\mathrm{u}\mathrm{t}(G)\ltimes G and the projection p :

\mathrm{A}\mathrm{u}\mathrm{t}(G)\ltimes G\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(G) . Let  $\Gamma$\subset \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{G})\mathrm{G} be a torsion‐free discrete subgroup such that

p( $\Gamma$) is contained in a compact subgroup of \mathrm{A}\mathrm{u}\mathrm{t}(G) and the quotient  G/ $\Gamma$ is compact.

We call  G/ $\Gamma$ an infra‐solvmanifold. If  G is nilpotent,  G/ $\Gamma$ is called an infra‐nilmanifold.

Since  $\Gamma$\subset Isom_{g}(G) does not satisfies  $\Gamma$\subset \mathrm{A}\mathrm{u}\mathrm{t}(G)\ltimes G ,
a compact manifold with a
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solvable Lie type geometry is not an infra‐solvmanifold in general. Suppose  Isom_{g}(G)\subset
Aut(G) \ltimes G . Then for an isometry transformation ( $\phi$, x)\in Aut(G) \ltimes G,  $\phi$ is an also

isometry transformation. By this, for the group  C_{g} of the isometrical automorphisms
of G ,

we have Isom_{g}(G)=C_{g}\ltimes G . Thus in the assumption Isom_{g}(G)\subset \mathrm{A}\mathrm{u}\mathrm{t}(G)\ltimes G,
a compact manifold with a solvable Lie type geometry is an infra‐solvmanifold. It is

known that for the Euclidian geometry (E^{n}, g_{E^{n}}=dx_{1}^{2}+\cdots+dx_{n}^{2}) we have Isom_{g_{E^{n}}}=
O(n)\ltimes \mathbb{R}^{n} and the geometries (3‐AC) satisfies Isom_{g}(G)\subset \mathrm{A}\mathrm{u}\mathrm{t}(G)\ltimes G(\mathrm{s}\mathrm{e}\mathrm{e}[21]) . In

[11], Hillman studied the structures of Isom_{g}(G) of the geometries (4‐AH) and proved

Isom_{g}(G)\subset \mathrm{A}\mathrm{u}\mathrm{t}(G)\ltimes G . In [12], Hillman proved the following theorem.

Theorem 7.2. ([12, Theorem 8]) A 4‐dimensional infra‐solvmanifO ld is diffeo‐

morphic to a manifold which admits one of the geometries (4‐A \sim G).

Remark. By Baues�s result in [3], any compact aspherical manifold with the vir‐

tually solvable fundamental group is homotopy equivalent to an infra‐solvmanifold  G/ $\Gamma$.
But for dimension \geq 4 ,

there may exist a compact aspherical manifold with virtually
solvable fundamental group which is not diffeomorphic to an infra‐solvmanifold.

§8. Geometrical formality of 3‐manifolds

Theorem 8.1. Let M be a compact oriented aspherical 3‐manifold with the vir‐

tually solvable fundamental group. If M is a torus or not a nilmanifO ld, then M is

geometrically formal.

Proof. By Theorem 7.1, it is sufficient to consider the geometries (3‐AC). In the

case (3‐A), by Corollary 6.1 and the first Bieberbach theorem g_{E^{3}} is a formal metric on

G/ $\Gamma$.
In the case (3‐C), it is known that C_{g} is isomorphic to the finite dihedral group

D(8) (see [21]) and hence by Corollary 6.1 g_{Sol^{3}} is a formal metric on G/ $\Gamma$.
Suppose (G, g) is in the case (3‐B). Then C_{g} has two components and the iden‐

tity component of C_{g} is isomorphic to a circle S^{1} . Let \triangle= $\Gamma$\cap G . By Generalized

Bieberbach�s theorem (see [1]), \triangle is a finite index normal subgroup of  $\Gamma$ . Consider the

projection  p:C_{g}\ltimes G\rightarrow C_{g} . If p( $\Gamma$) is trivial, then  $\Gamma$\subset G is a lattice and  G/ $\Gamma$ is a

non‐toral nilmanifold and hence not formal (see [8]). Suppose  p( $\Gamma$) is non‐trivial. By
Nomizu�s theorem ([18]) we have

H^{*}(G/\triangle, \mathbb{R})\cong H^{*}(\mathfrak{g})

where \mathfrak{g} is the Lie algebra of G . By this we have

H^{*}(G/ $\Gamma$, \mathbb{R})\cong H^{*}(G/\triangle, \mathbb{R})^{ $\Gamma$/\triangle}\cong H^{*}(\mathfrak{g})^{ $\Gamma$/\triangle}



30 Hisashi Kasuya

In [4, Lemma 13.1], it is shown that a non‐trivial semisimple automorphism of a nilpotent
Lie algebra \mathfrak{g} acts non‐trivially on H^{1}(\mathfrak{g}) . Since  $\Gamma$/\triangle\cong p( $\Gamma$) is a nontrivial finite group,

H^{1}(\mathfrak{g})^{ $\Gamma$/\triangle}\neq H^{1}(\mathfrak{g}) .

Since \dim H^{1}(\mathfrak{g})=2, \dim H^{1}(\mathfrak{g})^{ $\Gamma$/\triangle}=0 or 1. If \dim H^{1}(\mathfrak{g})^{ $\Gamma$/\triangle}=0 ,
then  G/ $\Gamma$ is a

rational homology sphere and any metric on  G/ $\Gamma$ is formal. Suppose \dim H^{1}(\mathfrak{g})^{ $\Gamma$/\triangle}=1.
Then b_{i}=1 for any 1\leq i\leq 3 . For any 1\leq i\leq 3 ,

we have

 H^{*}(G/ $\Gamma$, \displaystyle \mathbb{R})\cong H^{*}(\mathfrak{g})^{ $\Gamma$/\triangle}=\bigoplus_{i=1}^{3}\langle[$\alpha$_{i}]\rangle
for non‐zero cohomology classes [$\alpha$_{i}]\in H^{i}(\mathfrak{g}) . We can choose invariant harmonic forms

$\alpha$_{i}, i=1
, 2, 3 for the invariant metric g . Then we have \mathcal{H}(G/ $\Gamma$)=\oplus_{i=1}^{3}\langle$\alpha$_{i}\rangle , Since all

elements \mathrm{o}\mathrm{f}\wedge^{3}\mathfrak{g}^{*} are harmonic, $\alpha$_{1}\wedge$\alpha$_{2} is harmonic. For i<j with (i, j)\neq(1,2) ,
we

have $\alpha$_{i}\wedge$\alpha$_{j}=0 . Thus g is a formal metric on  G/ $\Gamma$ . This completes the proof of the

theorem. \square 

Remark. There exists a closed 3‐dimensional infra‐nilmanifold which is not a

nilmanifold. By this theorem such a manifold is geometrically formal.

Example 8.2. Consider  $\Gamma$=\mathbb{Z}\ltimes $\phi$ \mathbb{Z}^{2} such that  $\phi$(t)=\left(\begin{array}{l}
(-1)^{t}(-1)^{t}t\\
(0-1)^{t}
\end{array}\right) . Then

we can embed  $\Gamma$ in  Isom_{g_{Nil^{3}}} (Nil) (see [13]). By the direct computation of the lower

central series,  $\Gamma$ is non‐nilpotent and hence  Nil^{3}/ $\Gamma$ is not a nilmanifold.

§9. Aspherical manifolds with the virtually solvable fundamental groups

Theorem 9.1. Let  M be an oriented 4‐dimensional infra‐solvmanifO ld. If M is

a torus or not a nilmanifO ld, then M is geometrically formal.

Proof. In the case (4‐A), by Corollary 6.1 and the first Bieberbach theorem g_{E^{4}}

is a formal metric on G/ $\Gamma$.
In the case (4‐D) (resp (4‐E)), C_{g} is isomorphic to the finite group D(8)\times(\mathbb{Z}/2\mathbb{Z})

(resp. (\mathbb{Z}/2) ) (see [11, Chapter 7]) and hence g_{Sol^{3}\times E} (resp. g_{Sol_{m,n}^{4}} ) is a formal

metric on  G/ $\Gamma$ by Corollary 6.1.

As we showed in Example 6.2, in the case (4‐F)  G/ $\Gamma$ is geometrically formal.

In the case (4‐B), the group of all the orientation preserving isomorphisms is

 Isom_{g_{Nil^{3}}}Nil^{3}\times \mathbb{R} (see [23], [24], or [25]). Thus as the proof of Theorem 8.1 for the case

(3‐B), if  G/ $\Gamma$ is a nilmanifold then  G/ $\Gamma$ is not formal, and if  G/ $\Gamma$ is an infra‐nilmanifold

but not a nilmanifold then  g_{Nil^{3}\times \mathbb{R}} is formal.
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In the case (4‐C), the group of all the orientation preserving isomorphisms is Nil4

itself (see [23], [24], or [25]). Thus oriented Nil4 manifolds are only nilmanifolds and so

all oriented Nil4 manifolds are not formal.

In the case (4‐G) we have Isom_{g_{Sol_{1}^{4}}}(Sol_{1}^{4})\cong D(4)\ltimes Sol_{1}^{4} . For any cocompact

discrete subgroup  $\Gamma$\subset Isom_{g_{Sol_{1}^{4}}}(Sol_{1}^{4}) ,
since for the projection p: AutG \ltimes G\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(G) ,

p( $\Gamma$)\subset D(4) is finite, we have a subgroup \triangle\subset $\Gamma$ which is a lattice of  Sol_{1}^{4} and we have

\mathcal{H}(Sol_{1}^{4}/ $\Gamma$)=\mathcal{H}(Sol_{1}^{4}/\triangle)^{ $\Gamma$/\triangle} . In Example 5.6, we showed that the metric g_{Sol_{1}^{4}} on the

solvmanifold  Sol_{1}^{4}/\triangle is formal. Thus the metric  g_{Sol_{1}^{4}} on every Sol_{1}^{4} manifold is formal.

Hence the theorem follows.

\square 

Finally we prove:

Theorem 9.2. Let M be a compact oriented aspherical manifold of dimension

less than or equal to 4 with the virtually solvable fundamental group. Then M is geo‐

metrically formal if and only if M is diffeomorphic to a torus or an infra‐solvmanifO ld

which is not a nilmanifO ld.

Proof. It is sufficient to show that M is an infra‐solvmanifold if M is geometrically
formal. If \dim M\leq 2 ,

it is obvious. If \dim M=3 ,
it follows from Theorem 7.1. We

consider \dim M=4 . As Remark 7, M is homotopy equivalent to an infra‐solvmanifold

 G/ $\Gamma$ . It is known that the Euler characteristic  $\chi$(G/ $\Gamma$) of an infra‐solvamanifold is

0 (see [11, Cahpter 8 Since  G/ $\Gamma$ is an oriented 4‐manifold,  $\chi$(G/ $\Gamma$)=0 implies

b_{1}(G/ $\Gamma$)\neq 0 . Thus we have b_{1}(M)\neq 0 . If M is geometrically formal, we have a

submersion M\rightarrow T^{b_{1}(M)} (see [15, Theorem 7]) and hence M is a fiber bundle over a torus

T^{b_{1}(M)} . Now we suppose that M is a compact oriented aspherical manifold of dimension

4 with the virtually solvable fundamental group. By the exact sequence of homotopy

groups associated by the fiber bundle, the fiber of M\rightarrow T^{b_{1}(M)} is a compact aspherical
manifold of dimension less than or equal 3 with the virtually solvable fundamental

group, and hence it is an infra‐solvmanifold. Thus M is a fiber bundle whose fiber is an

infra‐solvmanifold and base space is a torus. By [12, Theorem 7], M is diffeomorphic
to an infra‐solvmanifold with the fundamental group $\pi$_{1}(M) . \square 
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