RIMS Kokyiroku Bessatsu
B39 (2013), 035-044

A subgroup of 1-cocycles associated with a group
action

By

KAZUHIRO KAWAMURA*

Abstract

For a discrete group I' acting on a compact metric space X, we define a subgroup Wr x
of the 1-cocycles Z'(T'; Map(X,T)) of T', where Map(X,T) is the I'-module consisting of all
continuous maps of X to the 1-dimensional torus T. The group Wr x admits a natural homo-
morphism Wr x : Wr x — Bl(F;I:I1 (X;7)) onto the 1-coboundaries of I' in the first integral
Cech cohomology group H'(X; Z), naturally regarded as a T-module. When the fixed point set
H! (X; Z)F is trivial, the kernel Ker Wr x contains an image of real-valued 1-coboundaries of I"
in the I'-module Map(X,R). Results are applied to canonical actions of torsion-free Gromov
hyperbolic group I" on the boundary JT'.

§1. Introduction and Preliminaries

Throughout the present paper, T := {z € C | |z| = 1} denotes the 1-dimensional
torus with the standard covering projection

e:R—T, 0~ exp(if).

For a continuous surjection 7' : X — X of a compact metric space X and a continuous
function w : X — T, the linear isometry Up,, : C(X) — C(X) on the Banach space
C(X) of all complex-valued continuous functions on X (with the sup norm) defined by

Urwf)(@) =w(z)- f(T(2), feCX), zeX

is called a weighted composition operator with the unimodular weight w. In [6], the
group Wr of all unimodular weights w such that Ur,, has a unimodular eigenfunction
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was studied. It was shown that Wy carries topological and ergodic aspects of the
dynamics when T represents a dynamics of "hyperbolic type.” For such T': X — X, the
group of all real-valued dynamical coboundaries of T" naturally maps onto a subgroup
of WT.

The present paper studies a similar group associated with a discrete group I' acting
on a compact metric space X. It turns out that an appropriate counterpart to Wy
above is a subgroup, denoted by Wr x, of 1-cocycles Z!(T',Map(X,T)) in the right
I-module Map(X,T). The results will be applied to Gromov hyperbolic groups ([4])
acting on their boundaries and the author hopes that the framework presented in this
paper, though elementary, might be applied to study dynamical aspect of various group

actions.

In the rest of this section, we fix notations and give basic definitions. For a group
I, its character group Hom(T',T) is denoted by I'. For a left (resp. right) action of a
group I' on a set S, yox (resp. z o) denotes the element of S obtained from = € S by
the action of the element v € I'. The fixed point set ST of the left (resp. right) action
of I' on S is defined by

ST ={zxe X |yox (resp. oy )=z for each y € T'}.

For a (discrete) group I', a right I'-module M and an element pu € M (referred to as a
0-cochain), we define the coboundary 6%y : I' — M in the standard way:

u(y) =p—pon, yerl.

A function ¢ : T' — M (referred to as a 1-cochain) is a 1-coboundary if there exists a
0-cochain y € M such that ¢ = §°u. A 1-cochain ¢ : I' — M is called a I-cocycle if the
equality

p(1172) = ©(11) ° 72 + ¥(72)
holds for each 71,72 € T'. The groups of all 1-cocycles and all 1-coboundaries of T" in
M are denoted by Z!(T'; M) and B!(T'; M) respectively. Then the first cohomology is
HY(T; M) = Z1(T; M)/BY(T; M) ([1]). Each T'-homomorphism f : M — N induces

homomorphisms
fo: ZY; M) — ZH(T; N), f.:BYT; M) — BYT; N), and
fo :HYT; M) — HYT; N).
Suppose that a discrete group I' admits a left action on a compact metric space X

and let Map(X, G) be the abelian group of all continuous maps of X to a topological
abelian group G, where the group operation of G is multiplicatively denoted by the
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”

symbol “ - The abelian group structure of Map(X,G) is given by the pointwise

multiplication:

(f-9)(x) = f(z) -g(x), veX, [ geMap(X,G).

The group Map(X, G) is naturally a right I'-module by the action:
(feoy)(@)=f(yex), feMap(X,G), vel, zeX.
Also T acts on the first integral Cech cohomology group H(X;Z) by:

poy=7"(¢), € H(X;Z), v€T,

where v* denotes the homomorphism induced by the homeomorphism v : X — X, z —
Yo ux.
There exists a natural isomorphism

(1.1) HY(X:;Z) = [X,T]

between the first integral Cech cohomology group H* (X;7Z) of X and the free homotopy
classes [X, T] of the maps X — T. For a map f € Map(X, T), [f] denotes the homotopy
class of f. Fixing a generator e € ﬂl(S 1.7), the above isomorphism is given by the
correspondence

fr(e) < 1], [f1e[X,T],

where the addition f*(e) + ¢g*(e) corresponds to [f - g] (see [3]). The homotopy classes
[X, T] is naturally a right I'-module by the action

[f]o'y: [f07]7 [f] € [X7T]7 ’761—‘

and it is easy to see that the isomorphism (1.1) is actually an isomorphism as right
I'-modules. This naturally induces a homomorphism

7 : Map(X,T) — HY(X;Z).

Convention: In what follows, the constant map X — T taking value 1 € T is denoted
byl: X —T:

I(z)=1, ze€X.
Its homotopy class [1] € [X,T] is denoted by the same symbol 1 for simplicity. The
1-cochain 1 : T' — Map(X, T) is defined by

1(y)=1, veTl.
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§2. The group Wr x

For a discrete group I' which admits a left action on a compact metric space X,
we define a subgroup Wr x of Z!(I'; Map(X, T)). To simplify notation, for a function
w: I' = Map(X,T), the map w(y) € Map(X,T) is denoted by w, : X — T in the
sequel. We define the group Wr x by

Wr x = {w € Z'(T'; Map(X,T)) |
there exist x € I' and f € Map(X, T) such that

wy - (fovy)=x(v)- ffor each v €T}
= T'-BY(I'; Map(X, T)).

When I' = Z and the action is generated by a homeomorphism 7' : X — X, then the
group Wr x coincides with the group Wy of [6].
The homomorphism 7 : Map(X;T) — H'(X;Z) = [X, T] induces a homomorphism

7, ZYHT; Map(X,T)) — Z(T; HY(X; Z))
which is explicitly written as
r(w)(y) = [w,], 7 €T,
The restriction of 7, above to Wr x is denoted by Wr x:
Wrx : Wrx = ZY(T;HY(X;Z)), Wrx(w)y = [w,].
In what follows, we examine the image Im Wr x and the kernel Ker Wr x.

Example 2.1.  Let ¥, be the free group of rank n and let OF,, be the boundary
of F,, as a hyperbolic group [4]. Since OF,, is homeomorphic to the Cantor set, we see
that HY(0F,,; Z) = 0. Hence Wr, o7, = Ker Wr, or, -

Example 2.2.  As is shown in [2] and [5], there are many hyperbolic groups T
such that OI' is homeomorphic to the Menger curve or the Sierpinski carpet. For such
a group I', the homomorphism Wr sr maps Wr ar to Zl(I‘; Do), where BooZ denotes
the direct sum of countably many copies of Z.

First we examine the image Im Wr x.

Theorem 2.3.  We have the following equality.

Im Wr x = BYT; HY(X;2)).
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Proof. Consider the following commutative diagram:

Map(X,T) —— BL(I';Map(X,T)) —=— Z!(I;Map(X,T))
71 8° 1. 11l C 1. 11l
H'(X;Z) —— B'(I''HY(X;Z2)) —— Z (I';HY(X;2))
By definition, each §° and 7 are surjective. It follows from this that
™ (BY(I; Map(X, T))) = BH(T; HY (X 2)).

Also it is easy to see that ,(I') = {1} ¢ BY(I; H'(X;Z)). Then the desired equality is
obtained as follows:

Ime X —W*(W )

m(I'- BY(I'; Map(X, T))
7. (B! (I'; Map(X, T)))
BY(I;HYX; 7).

O

Corollary 2.4. A I-cocycle v € ZY(T;HY(X;7Z)) belongs to Im(Wr x) if and
only if v represents the trivial element in the cohomology H (T; HY(X; Z)).

In order to examine the kernel Ker Wr x, it is convenient to introduce the following
two subgroups of Map(X,T):

Map(X,T)r ={f € Map(X,T) | fory~ f for each vy €'} and
Map(X,T), ={f € Map(X,T) | f ~1}.

Notice that

(2.1) Map(X, T); = e.(Map(X,R)) € Map(X, T)r = Ker(m.5")
Theorem 2.5.  Under the above notation, we have the following.

(1) Ker(Wr x) =T - 6°(Map(X, T)r).

(2) Assume that for each v € T', the induced homeomorphism v : X — X has a fized
point. Then we have

Ker Wr x =1 ® 6°(Map(X, T)r) (a direct sum decomposition,).
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Proof. (1) For each w € Wr x, there exist y € ' and f € Map(X,T) such that
w = x - 8°(f). Noticing that m.(x) = 1, we see that m,(w) = m.0°(f). Under this
notation, the equality (1) is a consequence of the following sequence of equivalences.

w € Ker Wr x & m,0°(f) =0 € Z'T; HY(X; 7))
& f € Map(X,T)r ( by (2.1))
sw el (Map(X,T)p).

In order to show (2), it suffices to prove
I'N6°(Map(X,T)r) = {1}.

If x € T' belongs to 8°(Map(X,T)r), then there exists f € Map(X,T)r such that
x = 8°(f). This means that, for each v € I' and for each € X, we have

(f - (fon) H(=@) =x(7)

Evaluating the left hand side of the above at the fixed point z, of v : X — X, we see
that x(v) = 1 and hence y = 1 € §°(Map(X, T)r). O

Theorem 2.6.  Assume that the fixed point set of the action of I' on the first
Cech cohomology is trivial: H*(X;Z)" = {0}. Then we have the following.

(1) 8°(Map(X, T)r) = e.(B'(I', Map(X,R))).
(2) Assume further that X is connected. Then

Ker Wr x =T @ e, (BY(I', Map(X,R))) (a direct sum decomposition).

Proof. First we observe the following equivalences:
HY(X;2)" = {0} & [X,T]" = {1}
~ Map(X7 T)F = Map(X7 T)l = €x (Map(X7 R))

The above implies the following equalities which prove (1):
50(Map(X7 T)F) = 50 (Map(X7 T)l)

= 506* (Map(X7 R))

= e.0%(Map(X,R))

= €« (Bl (Fv Ma’p(Xv R)))

In order to show (2), first we notice that

Ker WF’X = f‘ * Ex (Bl(P7 Ma’p(X7]R)))
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which follows from (1) and Theorem 2.5, (1). It remains to be shown that
(2.2) I Ne,(BYT,Map(X,R))) = {1}.

If x € T' belongs to e, (B*(I'; Map(X,R)), then there exists a map ¢ : Map(X,R)
such that x(v) = exp(i(¢p — ¢ o)) for each 7 € I'. Since X is connected, we see that,
for each v € T, the function ¢ — ¢ o v takes a constant value 6.:

QO—SDO’)/EO’)/.

For each nonnegative integer n, we have

n—1
poy  —p=> (poy Tt —pony?)
1=0
n—1
=> (poy—¢p)oy
1=0
n—1
(2.3) = 0, = nby

=0

.

Let || ¢ ||:= max,cx |@(z)]. Then we have |po~y™ —¢| < 2| ¢ ||. By (2.3), we see that
nlfy[ <2 ¢

for each non-negative integer n. The above holds only when 6, = 0 and thus, only when
@ oy = . This implies that x(y) = 1 for each v € T". This proves (2.2) and hence
completes the proof of (2). O

Example 2.7. Let F,, be the free group of rank n of Fxample 2.1. Recalling
HY(OF,;Z) = 0 and noticing that every v : OF,, — OF,, has two fived points in OF,, we
obtain, by Theorem 2.5 and Theorem 2.6, that

Wr, or, = Ker Wg, ar,
~T" @ e, (B (F,; Map(0F,,R))).

Example 2.8. Let I' be a torsion-free hyperbolic group such that OI' is homeo-
morphic to the Sierpinski carpet S. Every non-identity element v of I' acts on OI' ~ S
as a hyperbolic homeomorphism: there exist exactly two fized points x oo and x_ oo Such
that for each point x € OT' \ {x_s} (resp. x € OT' \ {x100}), limy, 00 Y@ = 24 oo (TeSP.
lim,, oo Y"® = T_ ). Noticing that generators of Hl(S; 7) = ®ool are represented by
the "peripheral circles” of S ([5, p.651]), we see that every hyperbolic homeomorphism
of S does not fix any peripheral circle of S. Thus we have Fix(y*) = {0} ¢ HY(S;7Z),
and hence HY(S;Z)T = {0}. By Theorem 2.6, we obtain the following:

Ker Wr or = I' @ e, (BY(T'; Map(dT, R))).
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Now assume that H'(X;Z)T = {0} and suppose further that, either
(1) the induced homeomorphism « : X — X has a fixed point for each v € T', or
(2) X is connected.

Then Theorem 2.5 and Theorem 2.6 reduce the detection of the kernel Ker Wr x to
the detection of BY(T'; Map(X,RR)). When the action is minimal in the sense that the
orbit I' o x is dense in X for each z € X, we may appeal to the following generalization
of the classical Gottschalk-Hedlund theorem. For a map f € Map(X,R), let || f ||=
maxgex |f(x)]. We say that a 1-cochain ¢ : I' — Map(X,R) is uniformly bounded if
there exists a constant M > 0 such that || ¢, ||[< M for each v € T.

Theorem 2.9 ([7], Theorem 2.1).  LetT be a discrete group acting minimally on
a compact Hausdorff space X. Then a 1-cocycle o € Z*(T'; Map(X,R)) is a 1-coboundary
if and only if ¢ is uniformly bounded.

The action of an arbitrary torsion-free hyperbolic group I' on its boundary is min-
imal ([4]) and each element v € I" has two fixed points on OI'. Combining these, our
results are summarized as follows.

Corollary 2.10.  Let I' be a torsion-free hyperbolic group acting on its boundary
Or. Assume that H* (0T, Z)" = {0}. Then we have the following

(1) ITm Wr or = BY(I; HY (0T, Z)),
(2) Ker Wr op =T @ e, (B(T'; Map(dT, R))), and
(3) BY(T; Map(dT',R)) is the group of uniformly bounded 1-cocycles.

These results suggest that dynamical information of the action shall be lost in the
cohomology level. The following result makes this statement explicit. The canonical
projection Z'(T; M) — HY(I; M) is denoted by qnr : Z'(I'; M) — HY(T; M). For

simplicity, let q := quap(x,1) and @1 := QMap(x,T), -

Proposition 2.11.  Under the notation above, we have the following.

A

(1) qOWr x) = q(Ker Wr x) = q(T').
(2) Assume that HY(X,7Z)T = {0}. If, either

(2a) the induced homeomorphism v : X — X has a fized point for each v € T, or
(2b) X is connected,

then the restriction q|T' : T' — q(I') is an isomorphism.
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Proof. (1) is an immediate consequence of Theorem 2.5 and the equality
Wr x =T+ BT, Map(X; T)).
For the proof of (2), consider the following diagram:

r —S 5 ZYI;Map(X,T);) —— ZYT;Map(X,T))

HO(T;H'(X,Z)) —— HYT;Map(X,T);) e HY(T; Map(X; T)),

where the bottom row is a part of the Bockstein exact sequence induced by

0 —— Map(X,T); —— Map(X,T) —2— HYX;Z) — 0

By the hypothesis, we obtain that HO(I'; H(X;Z)) = H*(X;Z)T = 0 and hence i, is a
monomorphism.

In order to prove that q|f‘ is a monomorphism, take Y € I' such that q(x) =
0 € HY(T,Map(X,T)). Since i, is a monomorphism, we see gi(x) = 0 and hence
x € BYT, Map(X, T);). On the other hand, by (2.1), the assumption H* (X, Z)" = {0}
and Theorem 2.6, we obtain

BY(I',Map(X,T);) = 6%, (Map(X,R)) = §°(Map(X, T)r)
= e, (BY(T', Map(X,R)).

By Theorem 2.5 and Theorem 2.6, we see that, under the hypothesis (2a) or (2b), the
equality
I'Ne.(BY(T,Map(X,R))) =I'Né°(Map(X,T)r) = {1}

holds. Hence x = 1 and we obtain the desired conclusion. O
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