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Rigidity of pseudo‐free group actions

on contractible manifolds

By

Qayum Khan *

In this article, we announcejoint work with Frank Connolly and Jim Davis [6]. This

follows an earlier case study of pseudo‐free involutions on the n‐torus carried out in [5].
The author is grateful to the organizers of the RIMS conferences where these results were

disseminated in Asia: Trransformation Groups and Surgery Theory (Masayuki Yamasaki,

August 2010), Trransformation Groups and Combinatorics (Mikiya Masuda, June 2011).

§1. The Main Theorem

Denition. Let \mathcal{F}\subset \mathrm{S} be families of subgroups of a group  $\Gamma$ . We say that  $\Gamma$

satisfies Property  C_{\mathcal{F}\subset \mathrm{G}} if every element H\in g-\mathcal{F} has its centralizer C(H) in g . One

says that  $\Gamma$ satisfies Property  M_{\mathcal{F}\subset \mathrm{G}} if every element H\in \mathrm{S}-\mathcal{F} is contained in a unique
maximal element H_{\max} of G . Furthermore, one says that  $\Gamma$ satisfies Property  NM_{\mathcal{F}\subset \mathrm{G}}
if  $\Gamma$ satisfies  M_{\mathcal{F}\subset \mathrm{G}} and each H_{\max} is self‐normalizing in  $\Gamma$.

Below we consider the increasing chain \{1\}\subset fin \subset fbc \subset vc of families, where

{1} consists of the trivial subgroup, fin consists of the finite subgroups, fbc consists of

the finite‐by‐cyclic subgroups, and vc consists of the virtually cyclic subgroups.

Denition. Let  $\Gamma$ be a group. We define \mathscr{S}( $\Gamma$) as the set of  $\Gamma$‐homeomorphism
classes of contractible manifolds equipped with an effective cocompact proper  $\Gamma$‐action.

For any  $\Gamma$‐space  X
,

consider the free part of the action:

X_{free} := {x\in X| gx=x implies  g=1\in $\Gamma$ }.

Our Main Theorem parameterizes \mathscr{S}( $\Gamma$) ,
and determines when it is one element.
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Theorem 1.1 (Main Theorem). Let  $\Gamma$ be a group. Assume:

1.  $\Gamma$ satises Property  C_{\{\}\subset fin},

2.  $\Gamma$ satises Property \mathrm{M}_{\mathrm{f}\mathrm{b}\mathrm{c}\subset \mathrm{v}\mathrm{c}},

3.  $\Gamma$ is virtually torsion‐free with  n:=\mathrm{v}\mathrm{c}\mathrm{d}( $\Gamma$)>4,

4. there exists [X,  $\Gamma$]\in \mathscr{S}( $\Gamma$) where  X_{free}/ $\Gamma$ has the homotopy type of a finite complex,

5.  $\Gamma$ satises the Farrell‐Jones Conjecture in lower  K ‐theory and in L ‐theory.

Write  $\epsilon$:=(-1)^{n} . There is a bijection of sets, with 0\mapsto[X,  $\Gamma$] , given by Wall realization:

(1.1) \oplus UNil (; \mathbb{Z}, \mathbb{Z})\rightarrow^{\approx}\mathscr{S}( $\Gamma$) .

(\mathrm{m}i\mathrm{d})( $\Gamma$)

Here (\mathfrak{m}i\mathrm{d})( $\Gamma$) is the set of conjugacy classes of maximal innite dihedral subgroups of  $\Gamma$.

Furthermore, each element of \mathscr{S}( $\Gamma$) has a locally conelike representative with the same

 $\Gamma$ ‐homeomorphism type of links of singularities.
In particular, if  n\equiv 0 ,

1 (mod4), or if  $\Gamma$ has no element of order two, then \mathscr{S}( $\Gamma$)
has only one element. In this case, for any cocompact  $\Gamma$ ‐manifold  M

, every  $\Gamma$ ‐homotopy

equivalence  f:M\rightarrow X is  $\Gamma$ ‐homotopic to a  $\Gamma$ ‐homeomorphism.

For the proof, see the full article [6]. Notably, for the topological actions  $\Gamma$ \mathrm{c}\mathrm{y}M,
Smith theory was used to get isolated fixed points from Hypothesis (1), and Siebenmann

theory was used to conclude the action must be locally conelike from Hypothesis (4).
The vanishing result of the last paragraph of Theorem 1.1 is immediate from the

following calculation [7, 4] of the Cappell groups that occur as the summands in (1.1).

Theorem 1.2 (ConnollyDavisRanicki). Let n be an integer. Set  $\epsilon$:=(-1)^{n}.
Then there is an isomorphism of abelian groups:

\mathrm{U}\mathrm{N}\mathrm{i}1_{n+ $\epsilon$}(\mathbb{Z};\mathbb{Z}, \mathbb{Z})\cong \left\{\begin{array}{ll}
0 & if n\equiv 0 (\mathrm{m}\mathrm{o}\mathrm{d}4)\\
0 & if n\equiv 1 (\mathrm{m}\mathrm{o}\mathrm{d}4)\\
(\mathbb{Z}/2)^{\infty}\oplus(\mathbb{Z}/4)^{\infty} & if n\equiv 2 (\mathrm{m}\mathrm{o}\mathrm{d}4)\\
(\mathbb{Z}/2)^{\infty} & if n\equiv 3 (\mathrm{m}\mathrm{o}\mathrm{d}4).
\end{array}\right.
The parameterization of (1.1) is achieved away from the singularities by a smooth

handle construction, where gluing instructions are given by generalized Arf invariants.

In Section 2, we show that the above five properties are satisfied by certain actions

on CAT(0) manifolds. In Section 3, we provide a family of exotic CAT(0) examples
which cannot come from a Riemannian manifold of nonpositive sectional curvatures.
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§2. Geometric consequences

Denition. A proper action  $\Gamma$ \mathrm{c}\mathrm{y}X is pseudo‐fr ee if the singular set is discrete:

X_{sing}:= {x\in X| gx=x for some  g\neq 1\in $\Gamma$ }.

Theorem 1.1 was originally established in [5] for the special case of the family of

crystallographic groups  $\Gamma$=\mathbb{Z}^{n}\rangle\triangleleft {}_{-1}C_{2} for all n>3 . More generally, we conclude:

Corollary 2.1. Let  $\Gamma$ be a pseudo‐fr ee, cocompact, discrete group of isometries

of Euclidean space \mathrm{E}^{n} or hyperbolic space \mathbb{H}^{n} with n>4 . The bijection (1.1) holds.

Proof. This will be immediate from Corollary 2.2 below and Selberg�s lemma. \square 

Euclidean and hyperbolic spaces fit into a broader class, CAT(0) spaces (see [3]):

Corollary 2.2. Let X be a CAT(0) topological manifold of dimension n>4.

Suppose  $\Gamma$ is a virtually torsion‐fr ee, locally conelike, pseudo‐free, cocompact discrete

proper group of isometries of X. Then the bijection (1.1) holds.

This can be viewed as a generalization of [2, Theorem \mathrm{A}]. Both rigidity results rely
on the truth of the FarrellJones Conjecture for these groups, [2, Theorem \mathrm{B} ].

Proof. By assumption, Hypothesis (3) holds. Since any two points in X arejoined

by a unique geodesic segment, X is contractible. Also, since  $\Gamma$(\mathrm{y}X is locally cone‐

like, the quotient  X_{free}/ $\Gamma$ is the interior of a compact topological \partial‐manifold. Hence

Hypothesis (4) holds. By a recent theorem of BartelsLück [2], Hypothesis (5) holds.

Let  H be a nontrivial finite subgroup of  $\Gamma$ . Since the action  $\Gamma$ \mathrm{c}\mathrm{y}X is pseudo‐free,
the fixed set X^{H} is a single point. Note the proper action  $\Gamma$ \mathrm{c}\mathrm{y}X restricts to a proper

action C_{ $\Gamma$}(H)(\mathrm{y}X^{H} . So C(H) is finite. Therefore Hypothesis (1) holds.

Let D\in $\nu$ \mathrm{c}( $\Gamma$)-\mathrm{f}\mathrm{b}\mathrm{c}( $\Gamma$) . There is a unique D‐invariant geodesic line \ell_{D}\subset X,
as follows. It follows from Hypothesis (1), see [6], that D is isomorphic to the infinite

dihedral group, D_{\infty}=C_{2}*C_{2} . Write D=\langle a,  b|a^{2}=b^{2}=1\rangle . Let  x and y be the

unique fixed points in X of a and b . Since ab has infinite order, x and y are distinct,

joined by a unique geodesic segment  $\sigma$\subset X . Note that  D $\sigma$ is homeomorphic to \mathbb{R} and

is a closed subset of X . Suppose \ell\subset X is a D‐invariant geodesic line. Then D $\sigma$\approx \mathbb{R} is

a closed subset of \ell\approx \mathbb{R} . Hence  D $\sigma$=\ell . Therefore, any such \ell is unique.
It remains to prove such an \ell exists, that is, the  D‐invariant embedded line D $\sigma$\subset X

is geodesic. It suffices to show that the segment  $\sigma$\cup b $\sigma$\subset X joining x and bx is geodesic.
Let  $\tau$\subset X be the unique geodesic segment joining x and bx. Since b^{2}=1 and the

action of b is isometric,  $\tau$ is  b‐invariant and its midpoint m
,
with respect to the arclength
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parameterization, is fixed by b . Hence y=m and so  $\sigma$\cup b $\sigma$= $\tau$ is geodesic. Therefore

\ell_{D}:=D $\sigma$ is the unique  D‐invariant geodesic line in X.

If D'\in $\nu$ \mathrm{c}( $\Gamma$)-\mathrm{f}\mathrm{b}\mathrm{c}( $\Gamma$) satisfies D\subseteq D' ,
then \ell_{D'} is D‐invariant, hence \ell_{D'}=\ell_{D} ,

so

D'\subseteq \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{ $\Gamma$}(\ell_{D}) . Therefore, since \mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{ $\Gamma$}(\ell_{D}) has a proper isometric action on \ell_{D}\approx \mathbb{R} ,
it

is the unique maximal virtually cyclic subgroup of  $\Gamma$ containing  D . Thus Hypothesis (2)
holds. Now apply Theorem 1.1 in order to obtain the bijection (1.1). \square 

§3. Geometric examples

Indeed, such CAT(0) examples of (X,  $\Gamma$) exist which cannot be Riemannian. \mathrm{A}

natural source for such infinite  $\Gamma$ with 2‐torsion are reflection groups of convex polytopes.
Thanks go to Mike Davis for feedback on this exposition and a guide to define  $\Gamma$ below.

Let  K be an abstract simplicial complex with finite vertex set S . In [8, Section 1.2],
Davis constructs a cubical cell complex P_{K} and right‐angled Coxeter system (W_{K}, S) :

(3.1) P_{K} := \displaystyle \bigcup_{ $\sigma$\in K}[-1, 1]^{  $\sigma$}\times\{-1, 1\}^{S- $\sigma$}\subset[-1, 1]^{ S}
(3.2) W_{K} = \langle S \{s^{2}=1\}_{s\in S}, \{[s, t]=1\}_{\{s,t\}\in K}\rangle.

Herein, we use the set‐theoretic notation B^{A}:= {functions f : A\rightarrow B }.
The link of each vertex of P_{K} ,

hence of each vertex of the universal cover \overline{P_{K}} ,
is

isomorphic to the geometric realization |K|\subset[0 ,
1 ]^{S} . There is a cocompact, proper,

isometric action W_{K}(\mathrm{y}\overline{P_{K}} covering the natural reflection action W_{K}(\mathrm{y} [1, 1] S.

\dot{L} From these actions, Davis obtains an identification and an exact sequence of groups:

(3.3) 1 \rightarrow$\pi$_{1}(P_{K})=[W_{K}, W_{K}]\rightarrow W_{K}\rightarrow^{ $\varphi$}\{-1, 1\}^{S}\rightarrow 1.

The barycentric subdivision bK is the abstract simplicial complex whose n‐simplices
are all linearly ordered subsets of K of cardinality n+1 . A simplicial complex is flag if,
whenever a finite subset of vertices are pairwise joined by edges, they span a simplex.
Since bK is flag, by [8, Proposition 1.2.3], the induced metric on X:=P_{bK} is CAT(0).
Then, since Pb_{bK} is aspherical, (3.3) implies that W:=W_{bK} is virtually torsion‐free.

Lemma 3.1. Let K be an abstract simplicial complex with finite vertex set. Re‐

call the right‐angled Coxeter group W and the cubical complex X dened above. There

is a virtually torsion‐free subgroup  $\Gamma$\underline{\triangleleft}W with torsion such that  $\Gamma$ \mathrm{c}\mathrm{y}X is pseudo‐fr ee.

Proof. Note bK has vertex set K . Write n:=\dim K . Consider the epimorphism

 $\theta$:\{-1, 1\}^{K}\rightarrow\{-1, 1\}^{n+1} ; f\displaystyle \mapsto(\prod_{\dim $\sigma$=i}f( $\sigma$))_{i=0}^{n}
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Define a normal subgroup

 $\Gamma$:=( $\theta$\circ $\varphi$)^{-1}\langle(-1, \ldots, -1)\rangle\underline{\triangleleft}W.

Note  $\Gamma$ is virtually torsion‐free: in fact, (3.3) restricts to an exact sequence

 1 \rightarrow[W, W]\rightarrow $\Gamma$\rightarrow^{ $\varphi$}$\theta$^{-1}\langle(-1, \ldots, -1)\rangle\rightarrow 1.

Observe the reflection action W_{\triangle^{n}}=\{-1, 1\}^{n+1}\mathrm{c}\sim[-1, 1]^{n+1}=P_{\triangle^{n}} restricts to a

pseudo‐free action \langle(-1, \ldots, -1)\rangle(\mathrm{y}P_{\triangle^{n}} . There is a cubical map Pb_{bK}\rightarrow P_{\triangle^{K}}\rightarrow P_{\triangle^{n}},
induced on P‐constructions by an inclusion and a projection, that is equivariant with

respect to the homomorphism  $\theta$\circ $\varphi$ :  W\rightarrow W_{\triangle^{n}} and is injective on each cube [ 1, 1 ]^{ $\sigma$}.
Then W\mathrm{c}\mathrm{y}P_{bK} restricts to a pseudo‐free action  $\Gamma$ \mathrm{c}\mathrm{y}P_{bK} . So, since the map X\rightarrow P_{bK}
is W‐equivariant and is injective on each cube, the action  $\Gamma$ \mathrm{c}\mathrm{y}X is pseudo‐free. \square 

Example 3.2. Now we proceed to specify the exotic CAT(0) examples W\mathrm{c}\mathrm{y}X

of DavisJanuskiewicz, recounted in [8, Example 10.5.3]. The key feature is that X is

a topological manifold of any given dimension n\geq 7 ,
but it not simply connected at

infinity. Hence X is a contractible n‐dimensional manifold, not homeomorphic to \mathbb{R}^{n}.

Let 3\leq m\leq n-4 . Start with a triangulated homology m‐sphere M with fun‐

damental group  $\pi$\neq 1 . (Recall a homology m ‐sphere is a closed manifold with the

same integral homology groups as S^{m}. ) For example, M can be the Poincaré homology

3‐sphere. Write C for the complement of the open star of a vertex in M . Then C is a

compact, triangulated \partial‐manifold of dimension  m
,

with the fundamental group  $\pi$
,

and

\partial C\approx S^{m-1} . Thicken C into a compact, triangulated \partial‐manifold

 A :=C\times D^{n-m-1} with \displaystyle \partial A\approx(C\times S^{n-m-2})\bigcup_{(S^{m-1}\times S^{n-m-2})}(S^{m-1}\times D^{n-m-1}) .

Note the induced map  $\pi$_{1}(\partial A)\rightarrow$\pi$_{1}(A)= $\pi$ of fundamental groups is an isomorphism.

Furthermore, \partial A is a homology (n-2) ‐sphere, since M is a homology m‐sphere.
Define a simply connected homology‐manifold L of dimension n-1 by

L :=A\displaystyle \bigcup_{\partial A} Cone (\partial A) .

Observe that L is not a manifold since the link of the cone point c is not a sphere.

Nonetheless, by a theorem of Edwards, the suspension of L is a topological manifold.

More generally, this is true for any triangulated homology‐manifold with simply con‐

nected links. Write K for the abstract simplicial complex of L . Consider the cubical

Davis complex X
, right‐angled Coxeter system (W, S) ,

and subgroup  $\Gamma$ from Lemma 3.1.

Each vertex link is |bK|\approx|K|=L . Thus X is a topological manifold. Therefore, Corol‐

lary 2.2 calculates \mathscr{S}( $\Gamma$) . But, by [8, Theorem 9.2.2], $\pi$_{1}(L-c)\neq 1 implies $\pi$_{1}^{\infty}(X)\neq 1.
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Finally, the axiomatic formulation of Theorem 1.1 is worthwhile; it removes the

reliance on convex geometry in the proof. Here is a non‐convex example to illustrate the

axioms; thanks go to David Speyer for pointing it out on http://mathoverflow.net.

Example 3.3. For any commutative ring R ,
recall the R‐Heisenberg group

\mathrm{H}\mathrm{e}\mathrm{i}(R) := \{\left(\begin{array}{ll}
1x & z\\
01 & y\\
001 & 
\end{array}\right) x, y, z\in R\} \subset GL(3, R) .

Consider the Eisenstein integers \mathbb{Z}[ $\omega$] ,
where  $\omega$:=\exp(2 $\pi$ i/3)\in \mathbb{C} is a primitive

third root of unity. Also consider the diagonal matrix D:= diag ( 1,  $\omega,\ \omega$^{2})\in GL(3, \mathbb{C}) .

Define a semidirect product  $\Gamma$=\mathrm{H}\mathrm{e}\mathrm{i}(\mathbb{Z}[ $\omega$])\rangle\triangleleft C_{3} ,
where the C_{3}‐action is given by conju‐

gation by D in GL(3, \mathbb{C}) . Take X=\mathrm{H}\mathrm{e}\mathrm{i}(\mathbb{C}) . Then  $\Gamma$ satisfies Hypotheses (15), using
a theorem of BartelsFarrellLück [1]. Therefore: \mathscr{S}( $\Gamma$)=\{[X,  $\Gamma$]\} , by Theorem 1.1.

Recall the Solvable Subgroup Theorem [3, II.7.8]: if a virtually solvable group  $\Gamma$

admits a cocompact proper action by isometries on a CAT(0) space, then  $\Gamma$ must be

virtually abelian. However, our group  $\Gamma$ is virtually solvable but not virtually abelian.

Therefore our  $\Gamma$ cannot act cocompactly and properly by isometries on a CAT(0) space.
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