
RIMS Kôkyûroku Bessatsu
B39 (2013), 063107

A topologist�s introduction to

the motivic homotopy theory
for transformation group theorists‐1

By

Norihiko Minami *

Abstract

An introductory survey of the motivic homotopy theory for topologisits is given, by fo‐

cusing upon the algebraic K‐theory representability and the homotopy purity. The aim is to

provide readers with some background to read the Morel‐Voevodsky IHES paper. In doing so,

some basic properties of algebraic K‐theory are also reviewed following Schlichting.

§1. Introduction

This grew out of a set of slides of my introductory lecture on the (unstable) motovic

homotopy theory presented to transformation group theorists. I assumed some familiar‐

ity with the simplicial model category theory, which plays some vital roles in the motovic

homotopy theory, and basic commutative algebra and algebraic geometry. My aim is

to convey swiftly the basic ideas of the Morel‐Voevodsky IHES paper [28], by focusing

upon the K‐theory representability and the homotopy purity of the \mathrm{A}^{1} ‐homotopy the‐

ory. For both the K‐theory representability and the homotopy purity, I tried to supply
some more backgrounds not touched in the original paper of Morel‐Voevodsky.

This is because they together symbolize the clever choice of the Nisnevich topol‐

ogy, which resides between the Zariski topology and the étale topology: The Nisnivech

topology is (even after imposing the \mathrm{A}^{1} ‐equivalence, under the regular base scheme
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assumption) rich enough to represent the K‐theory, as the Zarisiki topology; the Nis‐

nevich topology, after imposing of the \mathrm{A}^{1} ‐equivalence, is user‐friendly enough to satisfy
the homotopy purity, which is a motivic analogue of the excision theorem of the classical

homotopy theory, just as the étale topology.

Since, this grew out of slides, some concepts are not defined and some expressions
are somewhat umbiguous. However, I hope the brevity and the conciseness of this ex‐

position would allow interested topologists to spendjust a day or two on this exposition
to be motivated and prepared to read the original paper of Morel‐Voevodsky [28]. I am

also indebted to the referee for many invaluable comments on the preliminary version

of this article, which greatly helped to improve the quality of this article. In fact, the

initial version of this paper was stifled with the imposed 20 page limit. However, the

referee kindly pretended he does not believe Lemma 3.10, which was briefly explained
in just 10 lines in the original Morel‐Voevodsky paper [28], and challenged to supply
a detailed proof if it were really true. I recognized this as a secret sign which entitles

me to break the imposed 20 page limit. At the same time, I took an advantage of this

opportunity by supplying more comprehensive information about K‐theory following
the nice paper of Schlichting [38]. I have also supplied some more updated information

about algebraic K‐theory in Remark 2. Here, I would like to express my gratitude to

David Gepner for supplying useful information. I hope the detailed proof of Lemma 3.10

and Remark 2 would provide useful information to interested topologists who are not

so farmiliar with this kind of mathematics.

Finally, I would like to express my highest gratitude to Professor Mikiya Masuda

for patiently waiting for me to write this up.

§2. Summary of unstable \mathrm{A}^{1} ‐homotopy theory

§2.1. Nisnevich topology

2.1.1. \mathrm{A} \backslash local� preview of the Nisnevich topology

Zariski topology \preceq Nisnevich topology \preceq étale topology

In fact, the �local ring�at  x\in X is:

in the Zariski topology case, ordinary local ring \mathcal{O}_{X,x}

in the Nisnevich topology case, the henselization \mathcal{O}_{X,x}^{h} of \mathcal{O}_{X,x}

in the étale topology case, (the) strict henselization \mathcal{O}_{X,x}^{sh} of \mathcal{O}_{X,x}

Here,
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\bullet A local ring (A, \mathfrak{m}) is called Henselian, if

For any P(X)\in A[X] , monic, such that there exists a_{0}\in A, P(a_{0})\in \mathfrak{m}, P'(a_{0})\not\in \mathfrak{m},
there exists a\in A ,

such that P(a)=0

\bullet A Henselian local ring (A, \mathfrak{m}) is called strict Henselian, if the residue field A/\mathfrak{m}
is separably closed.

\bullet henselization is determined, unique up to unique isomorphism.

\bullet strict henselization is determined, unique, but only up to non‐unique isomor‐

phism.

For more on the Henselian rings and henselizations, we refer the reader to Nagata�s
book [31], Raynaud�s book [35], and the fourth volume of EGA IV [15].

2.1.2. Denition of the Nisnevich topology

Throughout the rest of this article, we fix a Noetherian scheme  S of finite dimen‐

sion. The full subcategory of Sch/S consisting of smooth schemes of finite type over S

is denoted by Sm/S.

Proposition 2.1 ([28, p.95, Proposition 1.1]). Let \{U_{i}\}\rightarrow X be a finite family

of étale morphisms in Sm/S . Then the following conditions are equivalent:

1. For any x\in X ,
there exist i and u\in U_{i} ,

such that

\mathcal{O}_{X,x}/\mathfrak{m}_{X,x}\leftarrow\underline{\simeq}\mathcal{O}_{U_{i},u}/\mathfrak{m}_{U_{i},u}

2. For any x\in X ,
the following morphism of S ‐schemes admits a section:

\coprod_{i}(U_{i}\times xSpec\mathcal{O}_{X,x}^{h})\rightarrow Spec\mathcal{O}_{X,x}^{h}
Denition 2.2 ([28, p.95, Definition 1.2]). Such families of étale morphisms

\{U_{i}\}\rightarrow X in Sm/S form a pretopology on the category Sm/S . The correspond‐

ing topology is called the Nisnevich topology, and the corresponding site is denoted

(Sm/S)_{Nis}.

2.1.3. The elementary distinguished square characterization of the Nis‐

nevich sheaf
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Denition 2.3 ([28, p.96, Definition 1.3]). An elementary distinguished square

in (Sm/S)_{Nis} is a cartesian square of the form

U\times xV\rightarrow V

UX\downarrow_{\underline{i}}p\downarrow\'{e} \mathrm{t}\mathrm{a}\mathrm{l}\mathrm{e}\circ \mathrm{p}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{m}\mathrm{b}.
such that p^{-1}((X\backslash U)_{red})\rightarrow(X\backslash U)_{red} is an isomorphism.

This special Nisnevich cover is of great importance because of the following:

Proposition 2.4 ([28, p.96, Proposition 1.4]). A presheaf of sets F on Sm/S is

a Nisnevich sheaf if and only if, for any elementary distinguished square, the following
commutative diagram is cartesian:

F(X)-F(U)

 F(V)\downarrow\rightarrow F(U\times xV)\downarrow
§2.2. Simplicial (Pre)sheaf

2.2.1. Simplicial model caregory structures

For the rest of this article,  T stands for a site, which we shall soon specialize to the

case T=(Sm/S)_{Nis} . As usual, let Preshv (T) :=(Sets)^{T^{op}} stand for the category of

presheaves of sets on T
,

and let Shv(T) stand for the full subcategory of Preshv (T) ,

consisting of sheaves of sets.

Example 2.5. We have the following fully faithful embedding:

Sm/S^{\mathrm{f}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{y}\mathrm{f}\mathrm{a}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{f}\mathrm{u}1}\mapsto Shv(Sm/S)_{Nis}
Actually, any scheme is already a sheaf in the etale topolgy [26, p.54, Remark 1.12].

However, we shall mostly work in their simplicial analogues. So, let \triangle^{op} Preshv (  T)\cong
(\triangle^{op}Sets)^{T^{op}} be the category of simplicial objects of Preshv (T) ,

which can be identified

with the category of presheaves of simplicial sets on T . Similarly, we let \triangle^{op}Shv(T) be

the category of simplicial objects of Shv(T) .

Example 2.6. For any simplicial sheaf of monoids M
,

its classifying space

BM is also a simplicial sheaf [28, p.123]. In fact, BM is defined to be the diagonal

simplicial sheaf of the bisimplicial sheaf:

(2.1) BM(U) : n\mapsto Cat([n], M_{n}(U))=(M_{n}(U))^{n} ,
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where we have regarded the ordered set [n]:=\{0<1< . . . <n-1<n\} as a

category and the monoid M_{n}(U) as a category with a single object, as usual. From this

description (2.1) of BM
,

it would be clear to see BM is once again a simplicial sheaf.

Just like the ordinary homotopy theory, we shall eventually (e.g. Theorem 2.17,
Theorem 2.19, Theorem 2.26, Theorem 3.3, Theorem 3.4, and Theorem 3.12) work in the

ponted analogues \triangle^{op} Preshv.(T) and \triangle^{op}Shv(T) . of \triangle^{op} Preshv (T) and \triangle^{op}Shv(T) ,

respectively. In the pointed setting, the most fundamental object is the simplicial circle

S_{s}^{1} ,
defined by

(2.2) S_{s}^{1}=\triangle^{1}/\partial\triangle^{1},

which is regarded as a constant simplicial presheaf. we would like to stress the subscript
s here; this is because there is another circle S_{t}^{1}=(\mathrm{A}^{1}\backslash \{0\}, 1) ,

called the Tate circle

S_{t}^{1} ,
in our principal case T=(Sm/S)_{Nis}.
Now, let us present a couple of basic constructions of the pointed simplicial sheaves:

Example 2.7. For any pointed simplicial presheaf (, p) ,
define the pointed

simplicial sheaf $\Sigma$_{s}(\mathcal{P}, p) ,
called suspension, by applying the degreewise sheafication

functor a :

(2.3) $\Sigma$_{s}(\mathcal{P},p)=a(S_{s}^{1}\wedge(\mathcal{P},p))

Then, since the functor  S_{s}^{1}\wedge commutes with the direct limit, we easily see the

degreewise sheaficatin fuctor (, p)\rightarrow a (, p) induces an isormorphism of simplicial
sheaves:

(2.4) $\Sigma$_{s}(\mathcal{P},p)=a(S_{s}^{1}\wedge(\mathcal{P}, p))\rightarrow\underline{\simeq}a(S_{s}^{1}\wedge a(\mathcal{P},p))=$\Sigma$_{s}a(\mathcal{P},p)

Next, for a simplicial sheaf (\mathcal{X}, x) ,
define the pointed simplicial sheaf $\Omega$_{s}^{1}(\mathcal{X}, x) ,

called loop space, by using the mapping space pointed simplicial presheaf functor

\underline{Hom}_{\triangle^{op}Preshv.(T)} -)\in\triangle^{op} Preshv.(T) :

(2.5) $\Omega$_{s}^{1}(\mathcal{X}, x)=\underline{Hom}_{\triangle^{op}Preshv.(T)}(S_{s}^{1}, (\mathcal{X}, x))

In fact, $\Omega$_{s}^{1}(\mathcal{X}, x) becomes a pointed simplicial sheaf, because, for any pointed sim‐

plicial presheaf (, p) ,
the degreewise sheaficatin fuctor (, p)\rightarrow a (, p) induces an
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isomorphism

Hom_{\triangle^{op}Preshv.(T)}(a(\mathcal{P},p), $\Omega$_{s}^{1}(\mathcal{X}, x))

\cong Hom_{\triangle^{op}Preshv.(T)}(a(, p), \underline{Hom}_{\triangle^{op}Preshv.(T)}(S_{s}^{1}, (\mathcal{X}, x)))
(\mathcal{X}, x) : sheaf

\cong Hom_{\triangle^{op}Preshv_{\bullet}}(T)(S_{s}^{1}\wedge a(\mathcal{P}, p), (\mathcal{X}, x)) \cong  Hom_{\triangle^{op}Preshv_{\bullet}}(T)(\displaystyle \sum_{s}a(\mathcal{P}, p), (\mathcal{X}, x))

(2.4)\displaystyle \cong Hom_{\triangle^{op}Preshv.(T)}(\sum_{s}(\mathcal{P}, p), (\mathcal{X}, x))(\mathcal{X}, x):\cong
sheaf

 Hom_{\triangle^{op}Preshv.(T)}(S_{s}^{1}\wedge(\mathcal{P}, p), (\mathcal{X}, x))

\cong Hom_{\triangle^{op}Preshv.(T)}((\mathcal{P},p), \underline{Hom}_{\triangle^{op}Preshv.(T)}(S_{s}^{1}, (\mathcal{X}, x)))
\cong Hom_{\triangle^{op}Preshv.(T)}((\mathcal{P}, p), $\Omega$_{s}^{1}(\mathcal{X}, x)) \square 

Just like the case of the classical homotopy theory, the suspension functor $\Sigma$_{s} and the

loop space functor $\Omega$_{s}^{1} are adjoint to each other:

(2.6) $\Sigma$_{s} : \triangle^{op}Shv.(T)\Leftrightarrow\triangle^{op}Shv(T) . : $\Omega$_{s}^{1}

Now, the following special simplicial sheaf will play an important role in the motivic

applications to K‐theory:

Corollary 2.8. The simplicial presheaf B(\displaystyle \prod_{n\geqq 0}BGL_{n}) , dened by

(2.7) B(\coprod_{n\geqq 0}BGL_{n})=(U\mapsto B(\coprod_{n\geqq 0}BGL_{n}(\mathcal{O}(U))))
and its loop space

(2.8) $\Omega$_{s}^{1}B(\coprod_{n\geqq 0}BGL_{n})
are both simplicial sheaves, where the simplicial presheaf \displaystyle \prod_{n\geqq 0}BGL_{n} is regarded as a

simplicial monoid by the concatenation (see e.g. (3.69)).

Proof. In fact, for each n\geqq 0 , algebraic group GL_{n} is a sheaf by Example 2.5,
and so, BGL_{n} is a simplicial sheaf by the constant simplicial monoid case of Exam‐

ple 2.6. So, the simplicial presheaf \displaystyle \prod_{n\geqq 0}BGL_{n} , regarded as a simplicial monoid by the

concatenation, is actully simplicial sheaf of monoid. Then, we see B(\displaystyle \prod_{n\geqq 0}BGL_{n}) is

a simplicial sheaf by Example 2.6. Consequently, $\Omega$_{s}^{1}B(\displaystyle \prod_{n\geqq 0}BGL_{n}) is also a pointed

simplicial sheaf, by Example 2.7. \square 

To deal with simplicial objects, we freely make use of standard techniques of the

(simplicial) model categories and their mapping spaces. Results and proofs on these
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subjects can be found in Hovey�s book [18], Hirschhorn�s book [16] and papers [8, 9, 10]
by Dwyer and Kan.

Now the following theorem was first suggested by Joyal in his letter to Grothendieck:

Theorem 2.9 ((Joyal) [19] [28, p.49, Theorem 1.4]).
\triangle^{op}Shv(T) is a proper closed simplicial model category with:

Weak equivalences: $\pi$_{0} equivalence and the stalkwise weak equivalences of simplicial

sets, which are characterized by the isomorphism of the $\pi$_{n} sheaves for all n\geqq 1.

Cobrations: monomorphisms

Fibrations: morphisms having the right lift ing property with respect to trivial cobra‐
tions

Theorem 2.10 ( (Jardine) [19][20 ,
Theorem 11.6]).

\triangle^{op} Preshv (T) is a proper closed simplicial model category with:

Weak equivalences: $\pi$_{0} equivalence and the stalkwise weak equivalences of simplicial

sets, which are characterized by the isomorphism of the $\pi$_{n} sheaves for all n\geqq 1.

Cobrations: monomorphisms

Fibrations: morphisms having the right lift ing property with respect to trivial cobra‐
tions

Theorem 2.11 ((Jardine) [19][20 ,
Theorem 12.1]).

The above model structures on \triangle^{op}Shv(T) and \triangle^{op} Preshv (T) are Quillen equivalent

by the sheacation and the inclusion:

\triangle^{op} Preshv ( T)\Leftrightarrow\triangle^{op}Shv(T)

Denition 2.12 ([28, p.49]). \mathcal{H}_{s}(Sm/S)_{Nis} is defined to be the homotopy cate‐

gory of \triangle^{op}Shv(Sm/S)_{Nis} with respect to the Joyal model structure, which is, by The‐

orem 2.11, equivalent to the homotopy category of \triangle^{op} PreShv ( Sm/S)_{Nis} with respect

to the Jardine model structure. Here, the subscript s is used in \mathcal{H}_{s}(Sm/S)_{Nis} ,
because

Morel‐Voevodsky [28] called the Joyal model structure the simplicial model structure.

Denition 2.13 ([28, p.82]). The pointed analogue \triangle^{op}Shv.(Sm/S)_{Nis} of

\triangle^{op}Shv(Sm/S)_{Nis} also posseses the model category structure with respect to the Jar‐

dine model structure, by declaring that morphisms in \triangle^{op}Shv.(Sm/S)_{Nis} are cofibra‐

tions, fibrations, or weak equivalences, if they are so after applying the forgetful functor

\triangle^{op}Shv.(Sm/S)_{Nis}\rightarrow\triangle^{op}Shv(Sm/S)_{Nis}.
Its homotopy category is denoted by \mathcal{H}_{s},.(Sm/S)_{Nis}.
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Proposition 2.14. When T=(Sm/S)_{Nis} ,
the adjunction (2.6)

$\Sigma$_{s} : \triangle^{op}Shv.(Sm/S)_{Nis}\Leftrightarrow\triangle^{op}Shv.(Sm/S)_{Nis} : $\Omega$_{s}^{1}

becomes a Quillen adjunction. Consequently, for any fibrant (\mathcal{X}, x)\in\triangle^{op}Shv.(Sm/S)_{Nis},
$\Omega$_{s}^{1}(\mathcal{X}, x)\in\triangle^{op}Shv.(Sm/S)_{Nis} is a fibrant. However, $\Omega$_{s}^{1} preserves not only fibrations
and trivial fibrations, but also weak equivalences.

An outline of the proof of Propositio 2.14. To show the Quillen adjunction prop‐

erty, we check $\Sigma$_{s} preserves the cofibrations and trivial cofibrations. To show $\Omega$_{s}^{1} pre‐

serves weak equivalences, we observe that the weak equivalences are characterized by
the $\pi$_{n} sheaves (see Theorem 2.9), and use $\pi$_{n}$\Omega$_{s}^{1}\cong$\pi$_{n+1}. \square 

2.2.2. Fibrant simplicial (pre)sheaf
In both cases C=\triangle^{op} Preshv (T) , \triangle^{op}Shv(T) , every object is cofibrant, and fibrant

objects, and more generally fibrations, are of particular importance:

Proposition 2.15 (Fibrations are sectionwise Kan fibrations).
In both cases C=\triangle^{op} Preshv (T) , \triangle^{op}Shv(T) , given U\in T,

\bullet every fibration  p:\mathcal{X}\rightarrow \mathcal{Y} induces a Kan fibration

p(U):\mathcal{X}(U)\rightarrow \mathcal{Y}(U)

\bullet every fibrant object \mathcal{X} yields a Kan complex \mathcal{X}(U) .

Proof. In fact, since either one of C=\triangle^{op} Preshv (T) , \triangle^{op}Shv(T) is a simplicial
model category, we have a bifunctor

\mathrm{h}\mathrm{o}\mathrm{m}_{C}:C^{op}\times C\rightarrow\triangle^{op}Sets

s.t.
(p(U):\mathcal{X}(U)\rightarrow \mathcal{Y}(U))\cong \mathrm{h}\mathrm{o}\mathrm{m}_{C}(U,p)

\in \mathrm{h}\mathrm{o}\mathrm{m}_{\mathrm{C}} (cofibrants, fibrations) \subseteqq {Kan fibrations}

\square 

Proposition 2.16 (Stalkwise equiv. between fibrant objects are sectionwise equiv. [20]).
In both cases C=\triangle^{op} Preshv (T) , \triangle^{op}Shv(T) , every equivalence

f:\mathcal{X}\rightarrow \mathcal{Y}

between fibrant objects is a sectionwise equivalence, i.e. \forall_{U}\in T,

f(U):\mathcal{X}(U)\rightarrow \mathcal{Y}(U)

is a weak equivalence of simplicial sets.
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Proof.

\bullet Since every objects in  C is cofibrant, f is a weak equivalence between objects which

are simultaneously cofibrant and fibrant.

\bullet Thus,  f becomes a homotopy equivalence, defined using the cylinder object con‐

structed by \times\triangle^{1}
, by the general theory of simplicial model category.

\bullet This homotopy equivalence induces a weak equivalence of simplicial sets at each

section  U\in T.

\square 

The following result is implicit in [19, p.72‐73]:

Theorem 2.17 (Fibrants are representable).
In both cases C=\triangle^{op} Preshv (T) , \triangle^{op}Shv(T) , suppose a fibrant \overline{\mathcal{X}} is equipped with a

global base point* . Then, for any U\in C and n\in \mathbb{Z}\geqq 0,

(2.9) $\pi$_{n}(\overline{\mathcal{X}}(U))\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}(C.)}(S^{n}\wedge U+, (\overline{\mathcal{X}}, *))
Here, C. is the pointed model category obtained fr om C ,

and \mathcal{H}(C.) is the resulting

homotopy category.

Proof. First, recall some facts about the set of homotopy classes of maps in a

simplicial model category C :

\bullet If \mathcal{F} is fibrant, equipped with a global base point *
,

then (\mathcal{F}, *)^{(\triangle^{n},\partial\triangle^{n})} is also

fibrant.

\bullet Denote by $\pi$_{C} the set of homotopy classes quotiented out by the homotopy relation

given by the cylinder object () \times\triangle^{1} :

\forall_{\mathcal{X}}, \forall_{\mathcal{Y}}\in C, $\pi$_{C}(\mathcal{X}, \mathcal{Y}) :=C(\mathcal{X}, \mathcal{Y})/ \times\triangle^{1} ‐homotopy relation)

\bullet There is a canonical map to the \mathrm{h}\mathrm{o}\mathrm{m} set of the homotopy category \mathcal{H}(C) :

$\pi$_{C}(\mathcal{X}, \mathcal{Y})\rightarrow \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}(C)}(\mathcal{X}, \mathcal{Y}) ,

which is an isomorphism if \mathcal{Y} is fibrant.

Now, the isomorphism (2.9) is obtained by the following composition of isomor‐

phisms, where the above observation is applied to justify the isomorphism \star ,
whereas
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the other isomorphisms are more standard consequences of the simplicial model category
structure:

$\pi$_{n}(\overline{\mathcal{X}}(U), *)\cong$\pi$_{n}(\mathrm{h}\mathrm{o}\mathrm{m}_{C}(U,\overline{\mathcal{X}}), *)\cong$\pi$_{\triangle^{op}Sets}((\triangle^{n}, \partial\triangle^{n}), (\mathrm{h}\mathrm{o}\mathrm{m}_{C}(U,\overline{\mathcal{X}}), *))
\cong$\pi$_{C}((\triangle^{n}, \partial\triangle^{n})\times U, (\overline{\mathcal{X}}, *))\cong$\pi$_{C}(U, (\overline{\mathcal{X}}, *)^{(\triangle^{n},\partial\triangle^{n})})\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}(C)}\star(U, (\overline{\mathcal{X}}, *)^{(\triangle^{n},\partial\triangle^{n})})
\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}(C.)}(U_{+}, (\overline{\mathcal{X}}, *)^{(\triangle^{n},\partial\triangle^{n})})\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}(C.)}((\triangle^{n}, \partial\triangle^{n})\times(U_{+}, +), (\overline{\mathcal{X}}, *))
\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}(C.)}(S^{n}\wedge U_{+}, (\overline{\mathcal{X}}, *))

\square 

2.2.3. Descent

In applications, there are many important non‐fibrants, which are �almost as nice

as� fibrants. So, we slightly enlarge the category of fibrant objects as follows:

Denition 2.18 ([20, p.24]). In both cases C=\triangle^{op} Preshv (T) , \triangle^{op}Shv(T) , \mathcal{X}\in

 C is said to satisfy descent in C ,
if there is a fibrant replacement

j:\mathcal{X}\rightarrow\overline{\mathcal{X}}

which is simultaneously a sectionwise equivalence, i.e. for any U\in C,

j(U):\mathcal{X}(U)\rightarrow\overline{\mathcal{X}}(U)

is a weak equivalence of simplicial sets.

By Prop 2.16, \mathcal{X}\in C satisfies descent if and only if ANY fibrant replacement is

simultaneously a sectionwise equivalence.
Now the following theorem is an immediate consequence of Theorem 2.17:

Theorem 2.19 (descent implies representability).
In both cases C=\triangle^{op} Preshv (T) , \triangle^{op}Shv(T) , if

\bullet \mathcal{X} satises descent in C ,
with a sectionwise equivalent fibrant replacement

j:\mathcal{X}\rightarrow\overline{\mathcal{X}}

\bullet \mathcal{X} is equipped with a global base point* ,
which also serves as a global base point of

\overline{\mathcal{X}} via j : \mathcal{X}\rightarrow\overline{\mathcal{X}}.
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Then, for any U\in C and n\in \mathbb{Z}\geqq 0,

$\pi$_{n}(\mathcal{X}(U))\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}(C.)}(S^{n}\wedge U_{+}, (\overline{\mathcal{X}}, *))
Here, C. is the pointed model category obtained fr om C ,

and \mathcal{H}(C.) is the resulting

homotopy category.

2.2.4. B.G. property
We now restrict to the special case of T=(Sm/S)_{Nis}.
Recalling Proposition 2.4: the characterization of the Nisnevich sheaf in terms of

the elementary distinguished square, we may expect the following concept would be

important in the simplicial setting:

Denition 2.20 ([28, p.100, Definition 1.13]). A simplicial presheaf

\mathcal{X} : (Sm/S)_{Nis}\rightarrow\triangle^{op}Sets

is said to have the B.G. property with respect to \mathcal{A} , if and only if,
for any elementary distinguished square with X\in \mathcal{A},

(2.10) \mathcal{X}(X)\rightarrow \mathcal{X}(U)

\mathcal{X}(V)\downarrow\rightarrow \mathcal{X}(U\times xV)\downarrow
is homotopy cartesian.

As we hoped, we easily obtain the following:

Proposition 2.21 ([28, p.100, Remark 1.15]). Any fibrant Nisnevich simplicial

sheaf has the B.G. property for all smooth  S ‐schemes, i.e . any fibrant object \mathcal{X} of

\triangle^{op}Shv(Sm/S)_{Nis} has the B.G. property for all smooth S ‐schemes.

Proof. In fact, from the levelwise Nisnevich sheaf property, (2.10) is cartesian.

Moreover, since \mathcal{X} is fibrant and the open embedding U\times xV\rightarrow V ,
which is a monomor‐

phism, is a cofibration, \mathcal{X}(V)\rightarrow \mathcal{X}(U\times xV) in (2.10) is a Kan fibration. Thus, (2.10)
is a homotopy cartesian, because the Joyal model category structure is (right) proper

by Theorem 2.9. \square 

Now, the following is of particular importance:

Theorem 2.22 ([28, p.100, Proposition 1.16]). Suppose \mathcal{X}\in\triangle^{op}Shv(Sm/S)_{Nis}
is sectionwise fibrant, i.e. for any U\in(Sm/S)_{Nis}, \mathcal{X}(U) is a Kan complex.
Then the following conditions for \mathcal{X} are equivalent:
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\bullet satises descent in \triangle^{op}Shv(Sm/S)_{Nis} ;

\bullet has the B.G. property for all smooth  S ‐schemes.

We note that the sectionwise fibrant condition does not cause much technical re‐

striction, for we can always apply the sectionwise functorial Kan�s Ex^{\infty} ‐fuctor.

Outline of the proof.

descent \Rightarrow B.G.

This is easy, since any fibrant object \mathcal{X} of \triangle^{op}Shv(Sm/S)_{Nis} has the B.G. property for

all smooth S‐schemes.

B.G. \Rightarrow descent

This is more difficult, and Morel‐Voevodsky reduced it to showing the following result:

Lemma 2.23 ([28, p.101, Lemma 1.18]). In \triangle^{op} Preshv ( Sm/S)_{Nis} , every equiv‐
alence

f:\mathcal{X}\rightarrow \mathcal{Y}

between objects having the B.G. property for all smooth S ‐schemes is a sectionwise

equivalence, i.e. for any U\in C,

f(U):\mathcal{X}(U)\rightarrow \mathcal{Y}(U)

is a weak equivalence of simplicial sets.

Though we shall not reproduce the Morel‐Voevodsky proof here, in view of Propo‐
sition 2.21, we note Lemma 2.23 is a generalization of Proposition 2.16.

\square 

§2.3. Unstable \mathrm{A}^{1} ‐homotopy theory

While \mathcal{H}_{s}(Sm/S)_{Nis} contains rich information, it is still difficult to handle

To make it more accesible, we must invert by the \mathrm{A}^{1} ‐equivalence, which we now define:

Denition 2.24 ([28, p.86, Definition 3.1]).

\bullet \mathcal{Z}\in\triangle^{op}Shv(Sm/S)_{Nis} is called \mathrm{A}^{1} ‐local, if,
for any \mathcal{Y}\in\triangle^{op}Shv(Sm/S)_{Nis} ,

the projection \mathcal{Y}\times \mathrm{A}^{1}\rightarrow \mathcal{Y} induces a bijection:

\mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}_{\mathrm{s}}(Sm/S)_{Ni\mathrm{s}}}(\mathcal{Y}, \mathcal{Z})\rightarrow \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}_{\mathrm{s}}(Sm/S)_{Ni\mathrm{s}}}(\mathcal{Y}\times \mathrm{A}^{1}, \mathcal{Z})
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\bullet (f:\mathcal{X}\rightarrow \mathcal{Y})\in\triangle^{op}Shv(Sm/S)_{Nis} is called an \mathrm{A}^{1} ‐weak equivalence,
if for any \mathrm{A}^{1} ‐local \mathcal{Z}

,
the induced map

\mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}_{\mathrm{s}}(Sm/S)_{Ni\mathrm{s}}}(\mathcal{Y}, \mathcal{Z})\rightarrow \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}_{\mathrm{s}}(Sm/S)_{Ni\mathrm{s}}}(\mathcal{X}, \mathcal{Z})

is a bijection.

What we really want is the following:

Theorem 2.25 ([28, p.86, Theorem 3.2; p.87, Example 4

\triangle^{op}Shv(Sm/S)_{Nis} is a proper model category with:

Weak equivalences: \mathrm{A}^{1} ‐weak equivalence

Cobrations: monomorphisms

Fibrations: morphisms having the right lift ing property with respect to trivial cobra‐
tions

Accordingly, let us fix some notations:

\mathcal{H}(S) : the homotopy category of \triangle^{op}Shv(Sm/S)_{Nis} w.r.t. the above model structure

* : the simplicial sheaf (associated to) \triangle^{0}
,

which is the final object in \triangle^{op}Shv(T) and

is called the point

\mathcal{H}.(S) : the pointed analogue of \mathcal{H}(S) .

Theorem 2.26 ([17, p.671, Theorem 3.1]). Given a simplicial preshaef

P : (Sm/S)_{Nis}\rightarrow\triangle^{op}Sets

(i) Suppose P has the B.G. property with respect to all smooth schemes of finite type,
then X\in(Sm/S)_{Nis},

(2.11) $\pi$_{n}(P(X))\cong Hom_{\mathcal{H}_{\mathrm{s}},.(Sm/S)_{Ni\mathrm{s}}}(S^{n}\wedge X_{+}, (aP)_{f})

Here, X_{+}=X\displaystyle \prod S and (aP)_{f} is the fibrant replacement in the Joyal model structure

of the levelwise sheacation aP of P with respect to the Nisnevich topology.

(ii) Suppose further that P is \mathrm{A}^{1} ‐homotopy invariant, then

(2.12) $\pi$_{n}(P(X))\cong Hom_{\mathcal{H}.(S)}(S^{n}\wedge X_{+}, (aP)_{f})
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Proof. (i) By the assumption and Proposition 2.21, the canonical map P\rightarrow(aP)_{f}
is an equivalence between objects with the B.G. property with respect to all smooth

schemes of finite type. Thus, it is a sectionwise weak equivalence by Lemma 2.23. Now

the claim follows from Theorem 2.19.

(ii) When P is \mathrm{A}^{1} ‐invariant, (aP)_{f} is Al‐fibrant in the sense of the model category
structure in Theorem 2.25 by [28, p.80. Proposition 2.28]. Since every object is cofibrant

in the model category structure in Theorem 2.25, by the standard result of the model

category theory, every object in Hom_{\mathcal{H}.(S)}(S^{n}\wedge X_{+}, (aP)_{f}) is represented by an honest

morphism, and the equivalence relation is given by a cylinder object

\text{∧ \text{∧Cyl \text{∧-------------\rightarrow
‐weak equivalence

However, as (aP)_{f} is \mathrm{A}^{1} ‐local, this equivalence relation is already valied in

Hom_{\mathcal{H}_{\mathrm{s}},.(Sm/S)_{Ni\mathrm{s}}}(S^{n}\wedge X_{+}, (aP)_{f}) ,
and so, the canonical epimorphism

Hom_{\mathcal{H}_{\mathrm{s}},.(Sm/S)_{Ni\mathrm{s}}}(S^{n}\wedge X_{+}, (aP)_{f})\rightarrow Hom_{\mathcal{H}.(S)}(S^{n}\wedge X_{+}, (aP)_{f})

turns out to be an isomorphism in this case. Thus, the claim follows from (i). \square 

Remark 1. Although we have attributed Theorem 2.26 to [17], it was certainly
well‐understood by the authors of [28]. Historically, Brown‐Gersten [5] first considered

the Zariski analogues of the B. G. property and Theorem 2.22, where the Zariski ana‐

logue of the elementary distinguished square, defined in Definition 2.3, is nothing but its

special case when p:V\rightarrow X is also an open embedding. With respect to such Zariski

analogues, the Zariski analogue of Theorem 2.26 can be proven by essentially the same

line as in the Nisnevich case presented above.

§3. Two advantages of unstable \mathrm{A}^{1} ‐homotopy theory

§3.1. K‐theory representability

Before we explain the Morel‐Voevodsky K‐theory representability, we must prepare

some basic facts about the algebraic K‐theory, from �the pre‐Voevodsky era.� The origi‐
nal references here are Quillen [34], Waldhausen [46], and espcially Thomason‐Trobaugh

[44], but we mostly follow the �modern� streamlined presentation by Schlichting [37].
To quickly provide readers with a bird�s‐eye view of what is going on, we first sum‐

marize these basic facts, differing their (rough ideas of) proofs and definitions of some

terminologies:

\bullet For an exact category \mathcal{E} ,
we can canstruct the following three kinds of categories:
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‐we may apply the Quillen construction to obtain the category

(3.1) Q\mathcal{E}

‐we may associate the Waldhausen category (also known as the category with

cofibrations and weak equivalences)

(3.2) (\mathcal{E}, i)

with admissible monomorphisms as cofibrations and isomorphisms as weak

equivalences

‐we may associate the complicial exact category (i.e. an exact category equipped
with a bi‐exact action of the symmetric monoidal category \mathrm{C}\mathrm{h}^{b}() ) with weak

equivalences

(3.3) ( \mathrm{C}\mathrm{h}^{b}\mathcal{E} , quis)

\bullet For a complicial exact category with weak equivalences (, w) ,
we may also associate

the Waldhausen category

(3.4) (C, w)

with admissible monomorphisms as cofibrations and morphisms in w as weak equiv‐
alences. Note that this is in general different from another Waldhausen category

(3.2)
(C, i) ,

obtained by forgetting its complicial structure and weak equivalences,

{Especially, if we specialize to the case (, w)= ( \mathrm{C}\mathrm{h}^{b}\mathcal{E} , quis), we obtain the

Waldhausen category

(3.5) ( \mathrm{C}\mathrm{h}^{b}\mathcal{E} , quis)

with levlelwise split dmissible monomorphisms as cofibrations and quasi‐isomorphisms
as weak equivalences.

\bullet Corresponding to the various categories shown up above, we may define respective
 K‐theory spaces:

‐ the Quillen K ‐theory space K^{Q}(\mathcal{E}) of an exact category \mathcal{E} and the

Quillen K ‐group K_{i}^{Q}(\mathcal{E})(i\in \mathbb{Z}_{\geqq 0}) of an exact category \mathcal{E} are defined from

(3.1) by

(3.6a) K^{Q}(\mathcal{E}) := $\Omega$ B(Q\mathcal{E})= $\Omega$|N.(Q\mathcal{E})|
(3.6b) K_{i}^{Q}(\mathcal{E}) :=$\pi$_{i} $\Omega$ B(Q\mathcal{E})=$\pi$_{i+1}B(Q\mathcal{E})(i\in \mathbb{Z}\geqq 0)
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However, when we wish to work in the category of simplicial sets, we may

simply think of the classifying space functur B in (3.6a) as the nerve functor

N. by omitting the geometric realization functor |-|.

‐the Waldhausen K‐theory space K^{W}(, w) of aWaldhausen category

(\mathcal{W},\overline{w)}and the Waldhausen K ‐group K_{i}^{W}(\mathcal{W}, w)(i\in \mathbb{Z}\geqq 0) of a

Waldhausen category are defined by

(3.7a) K^{W}(\mathcal{W}, w):= $\Omega$|N. (wS.\mathcal{W})|
(3.7b) K_{i}^{W}(\mathcal{W}, w) :=$\pi$_{i} $\Omega$|N. (wS.\mathcal{W})|=$\pi$_{i+1}|N. (wS.\mathcal{W})|(i\in \mathbb{Z}\geqq 0)

where wS.\mathcal{W} is the simplicial category with moriphisms levelwise weak equiv‐
alences in w

,
obtained by the Waldhausen construction S..

|-| is the geometric realization of a bisimplicial set, which is defined to be

the usual geometric realization of the diagonal simplicial set. However, when

we work in the category of simplicial sets, we omit the geometric realization

functor |-| in (3.7a).

‐ the Thomason‐Trobaugh K ‐theory space K^{TT}(, w) of a complicial
exact category with weak equivalences (, w) and the \underline{Thomason-}

Trobaugh K ‐group K_{i}^{TT}(, w) of a complicial exact category with

weak equivalences (, w)(i\in \mathbb{Z}_{\geqq 0}) are defined by the Waldhausen K‐theory

space (3.7a) applied to the associated Waldhausen category (3.4);

(3.8a) K^{TT}(C, w) :=K^{W}(C, w)
(3.8b) K_{i}^{TT}(C, w) :=K^{W}(C, w)(i\in \mathbb{Z}\geqq 0)

Starting with an exact category \mathcal{E} ,
we have three kinds of categories and respective

algebraic K‐theories:

(3.9) \left\{\begin{array}{ll}
Q\mathcal{E} \mapsto K^{Q}(\mathcal{E}) & (3.1)(3.6\mathrm{a})\\
(\mathcal{E}, i) \mapsto K^{W}(\mathcal{E}, i) & (3.2)(3.7\mathrm{a})\\
(\mathrm{C}\mathrm{h}^{b}\mathcal{E}, quis) \mapsto K^{TT}(\mathrm{C}\mathrm{h}^{b}\mathcal{E}, quis) & (3.5)(3.8\mathrm{b})
\end{array}\right.
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Equivalences of the K‐theory spaces originated in a fixed exact category \mathcal{E}

The K‐theory spaces in (3.9) are homotopy equivalenct, natural w.r. \mathrm{t}. \mathcal{E} :

(3.10) K^{Q}() \simeq K^{W} (, i) \simeq K^{TT} ( \mathrm{C}\mathrm{h}^{b}\mathcal{E} , quis)

Consequently, their K‐groups are equivalent

(3.11) K_{i}^{Q}(\mathcal{E})=K_{i}^{W}(\mathcal{E}, i)=K_{i}^{TT} ( \mathrm{C}\mathrm{h}^{b}\mathcal{E} , quis) (i\in \mathbb{Z}\geqq 0)

In fact, the first homotopy equivalence in (3.10) K^{Q}(\mathcal{E})\simeq K^{W} (, i) (obtained
by the Segal subdivision) is shown by Waldhausen [46, 1.9.], and the second

(zig‐zag) homotopy equivalence in (3.10) is shown by Thomason‐Trobaugh [44,
p.279, 1.11.7.].

The reason why we still wish to consider the most complicated looking Thomason‐

Trobaugh K‐theory K_{i}^{TT} ( \mathrm{C}\mathrm{h}^{b}\mathcal{E} , quis) of the complicial exact category with weak

equivalences ( \mathrm{C}\mathrm{h}^{b}\mathcal{E} , quis) is because we may associate a triangulated category for

each complicial exact category with weak equivalences, which allows us to apply
the powerful triangulated category technique [21, 32, 33] to study the Thomason‐

Trobaugh K‐theory K^{TT} . We shall see such applications soon.

On the other hand, because of (3.10), we shall mostly regard K^{Q} as a part of K^{W}

in this review.

\bullet To study  K^{Q} (and K^{W} ) for exact categories, probably the most powerful tool had

been the associated K‐theory (space) fibration sequence for certain class of exact

sequences of exact categories.

‐Quillen localization theorem [34, §5] Let B be a Serre subcategory of a

small abelian category \mathcal{A} , i.e.

\forall M_{0}\mapsto M_{1}\rightarrow M_{2} ,
short exact sequence in \mathcal{A},

(3.12)
M_{1}\in \mathcal{B} \Leftrightarrow  M_{0} and M_{2}\in \mathcal{B}

Then there is a homotopy fibration sequence of K‐theory spaces

(3.13) K^{Q}(B)\rightarrow K^{Q}(\mathcal{A})\rightarrow K^{Q}(\mathcal{A}/B)

[36, p.1097, Theorem 2.1.] Let \mathcal{A} be an idempotent complete right s‐filtering

subcategory (see [36, p.1097, Theorem 2.1.] for the definition of �s‐filtering�)
of an exact category \mathcal{U} . Then there is a homotopy fibration sequence of K‐

theory spaces

(3.14) K^{W}(\mathcal{A})\rightarrow K^{W}(\mathcal{U})\rightarrow K^{W}(\mathcal{U}/\mathcal{A})
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However, (3.14) is sometimes not so applicable, because the assumption is not so

easy to handle. Fortunately, exploiting the triangulated category techniques, user‐

friendly K‐theory (space) fibration sequences are obtained in the context of the

Thomason‐Trobaugh K‐theory, as shall see now.

\bullet For each complicial exact category  C (i.e. an exact category equipped with a bi‐exact

action

(3.15) \otimes:\mathrm{C}\mathrm{h}^{b}(\mathbb{Z})\times C\rightarrow C

of the symmetric monoidal category \mathrm{C}\mathrm{h}^{b}(\mathbb{Z}) ), we may associate a triangulated

category \underline{C} :

‐ the exact category of bounded chain complexes of finitely generated free \mathbb{Z}-

modules \mathrm{C}\mathrm{h}^{b}(\mathbb{Z}) is a symmetric monoidal category with the monoidal unit

(3.16) I :=(\cdots 0\rightarrow d0\rightarrow d0\rightarrow d\mathbb{Z}\langle 1_{\mathbb{Z}}\rangle\rightarrow d0\rightarrow d0\cdots |1_{\mathbb{Z}}|=0, d=0)
which admits an exact sequence, obtained by an embedding in an acyclic com‐

plex C and the resulting quotient on to a complex T

(3.17) 0 \rightarrow I \rightarrow  C \rightarrow  T\rightarrow  0

(3.18) 1_{\mathbb{Z}} \mapsto  1_{C}, ( $\eta$, 1_{C}) \mapsto ($\eta$_{T}, 0)

Here, C, T\in \mathrm{C}\mathrm{h}^{b}() are defined as follows:

 C:=(\cdots 0\rightarrow d0\rightarrow dZ\langle $\eta$\rangle\rightarrow d\mathbb{Z}\langle 1_{C}\rangle\rightarrow d0\rightarrow d0\cdots C:=(\cdots 0\rightarrow d0\rightarrow dZ\langle $\eta$\rangle\rightarrow d\mathbb{Z}\langle 1_{C}\rangle\rightarrow d0\rightarrow d0\cdots C:=(\cdots 0\rightarrow d0\rightarrow dZ\langle $\eta$\rangle\rightarrow d\mathbb{Z}\langle 1_{C}\rangle\rightarrow d0\rightarrow d0\cdots
(3.19b)  T:=(\cdots 0\rightarrow d0\rightarrow dZ\langle$\eta$_{T}\rangle\rightarrow d0\rightarrow d0\rightarrow d0\cdots(3.19b)  T:=(\cdots 0\rightarrow d0\rightarrow dZ\langle$\eta$_{T}\rangle\rightarrow d0\rightarrow d0\rightarrow d0\cdots(3.19b)  T:=(\cdots 0\rightarrow d0\rightarrow dZ\langle$\eta$_{T}\rangle\rightarrow d0\rightarrow d0\rightarrow d0\cdots

(3.19a)

| $\eta$|=-1, |1_{C}|=0, d $\eta$=1_{C})
|$\eta$_{T}|=-1, d=0)

‐ for each object U in a complicial exact category C ,
abbreviate the resulting

functorial conflation of the bi‐exact action (3.15) of (3.17) on U

(3.20) I \otimes U \mapsto  C\otimes U \rightarrow  T\otimes U

as

(3.21) U \mapsto  CU \rightarrow TU,

by setting

(3.22)  CU:=C\otimes U\in C , TU :=T\otimes U \in  C.
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‐ given a morphism f : X\rightarrow Y in C ,
define the cone of fC(f) and the confla‐

tion

(3.23) Y \mapsto C(f) \rightarrow TX,

from the following commutative diagram

(3.24) X=CX\rightarrow TX

 f\downarrow \downarrow \Vert
 Y=C(f)\rightarrow TX

where the upper row is the conflation (3.21) applied to the case U=X ,
and

the left square is a pushout diagram.

‐a conflation X\mapsto Y\rightarrow Z in C is called a Frobenius conation, if for

every U\in C ,
the following dotted arrows always exist, i.e. the corresponding

extension problem and the lifting problem are always solvable:

(3.25) X\rightarrow CU

 Y $\iota$.\cdots\cdots J CU^{\cdot}\cdot\rightarrow Z\prime r^{Y}\Downarrow
{then, as is shown in [38, p.225, Lemma A.2.16], the complicial exact category  C

together with the Frobenius conflations becomes a Frobenius exact category,
i.e. an exact category with enough injectives and enough projectives, and

where injectives and projectives coincide to be the direct factors of objects of

the form CU for some U\in C [38 , p.225, Lemma A.2.16].
‐ for a Frobenius exact category \mathcal{F} , its stable category \underline{\mathcal{F}} is defined by

(3.26) \mathrm{O}\mathrm{b}\underline{\mathcal{F}}=\mathrm{O}\mathrm{b}\mathcal{F} ; \mathrm{H}\mathrm{o}\mathrm{m}_{\underline{\mathcal{F}}}(X, Y)=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{F}}(X, Y)/\sim,

where f, g : X\rightarrow Y are f\sim g if and only if their difference factors through a

projective‐injective object.

‐a stable category \underline{\mathcal{F}} becomes a triangulated category.

*\mathrm{i}\mathrm{f} a Frobenius category \mathcal{F} is a complicial exact category C together with the

Frobenius conflations, then the distinguished triangles of the triangulated

category \underline{C} are of the form

(3.27) X\rightarrow fY\rightarrow C(f)\rightarrow TX,

where the unnamed maps are constructed in (3.24).
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* for a general Frobenius category \mathcal{F} , the distinguished triangles of the tri‐

angulated category \underline{\mathcal{F}} are of the form

(3.28) X\rightarrow fY\rightarrow I(X)\coprod_{X}Y\rightarrow I(X)/X,
where the unnamed maps are constructed in the following commutative

diagram

(3.29) X-I(X)\rightarrow I(X)/X

f\displaystyle \downarrow\downarrow Y=I(X)\prod_{X}Y\rightarrow I(X)/X||,
which is constructed just like (3.24), beginning with an inflation  X\mapsto

 I(X) into an injective object.

\bullet For each complicial exact category with weak equivalence (, w) ,
we may associate

a triangulated category \mathcal{T}(C, w) :

‐ set C^{w}\subseteqq C be the full exact subcategory, consisting of X\in C such that

(0\rightarrow X)\in w . Then, C^{w} is still a complicial exact category, whose resulting
Frobenius exact category structure has the same injective‐projective objects

just as C ,
i.e. objects which are the direct factors of objects of the form CU

for some U\in C [38 , p.191, 3.2.15.; p.225, Lemma A.2.16]. Consequently, we

obtain a full embedding of triangulated stable categories:

(3.30) \underline{C^{w}}\subseteqq\underline{C}

‐ when we have a full triangulated emebedding \mathcal{B}\subseteqq \mathcal{A} , consider the class b of

morphisms whose cones (see [33] for the general construction, but, when the

triangulated category is the stable category of a Frobenius category, they are

given by (3.27)) are isomorphic to objects of \mathcal{B} . Now the ve rdier quotient

[45] [33, p.74, Theorem 2.1.8.] \mathcal{A}/B is defined by the localization with respect

to b :

(3.31) \mathcal{A}/\mathcal{B}=\mathcal{A}[b^{-1}]

‐ let B'\subseteqq \mathcal{A} be the full subtriangulated category consisting of those objects sent

to zero in the Verdier quotient \mathcal{A}/B . Then B' is the idempotent completion of

B in \mathcal{A} , i.e. we have full embeddings of triangulated categories

(3.32) \mathcal{B}\subseteqq \mathcal{B}'\subseteqq \mathcal{A}
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where objects of B' consist of those objects of \mathcal{A} , which are direct summands

of objects in \mathcal{B} [33 , p.91, Lemma 2.1.33.] [38, p.222, A.7.].
‐ for each complicial exact category with weak equivalence (, w) ,

its associated

triangulated category \mathcal{T}(C, w) is defined by the Verdier quotient of (3.30):

(3.33) \mathcal{T}(C, w)=\underline{C}/\underline{C^{w}}

\bullet There is a user‐friendly fiber sequences of the Thomason‐Trobaugh  K‐theory (space)
K^{TT}

,
which exploits the triangulated category technology.

[38, p.184, Definition 3.1.5.] a sequence of triangulated categories

\mathcal{A}\rightarrow B\rightarrow C

is called exact, if the following conditions are satisfied:

* the composition sends \mathcal{A} to 0,

*\mathcal{A}\rightarrow \mathcal{B} is fully faithful and identifies \mathcal{A} , up tp equivalences, with the

subcategory consisting of those objects in \mathcal{B} sent to 0 in C,

* the induced functor from the Verdier quotient (3.31) \mathcal{B}/\mathcal{A} to C is an equiv‐
alence.

‐ Thomason‐Waldhausen Localization, Connective ve rsion

[38, p.193, Theorem 3.2.23.] Given a sequence C_{0}\rightarrow C_{1}\rightarrow C_{2} of complicial
exact categories with weak equivalences. Assume that the associated sequence

\mathcal{T}C_{0}\rightarrow \mathcal{T}C_{1}\rightarrow \mathcal{T}C_{2} of triangulated categories is exact. Then there is a homo‐

topy fibration sequence of \mathrm{K}‐theory spaces

(3.34) K^{TT}(C_{0})\rightarrow K^{TT}(C_{1})\rightarrow K^{TT}(C_{2})

\bullet Both  K^{W} and K^{TT} are parts of appriori non‐connected spectra \mathrm{K}^{W} and \mathrm{K}^{TT} (de‐
noted by K^{B} in [44], but we shall follow more conceptually transparent treatments

of Schlichting [36, 37, 38]):

[36] for an exact category \mathcal{E} , there is a left s‐filtering embedding

\mathcal{E}\subseteqq \mathcal{F}\mathcal{E}

into an exact category \mathcal{F}\mathcal{E} whose K‐theory space K^{W}(\mathcal{F}\mathcal{E}) is contractible.

Then setting

S\mathcal{E}=\mathcal{F}\mathcal{E}/\mathcal{E},

the Schlichting K ‐theory spectrum \mathrm{K}^{W}() is defined so that its n‐th space

of the spectrum is given by K^{W}(S^{n}\mathcal{E}) .
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[37] for a complicial exact category with weak equivalence (, w) ,
there is a

fully exact functor of complicial exact categories with weak equivalences

(C, w)\rightarrow \mathcal{F}(C, w) ,

whose associated functor of triangulated categories \mathcal{T}(C, w)\rightarrow \mathcal{T}(\mathcal{F}(C, w)) is

fully faithful, and the K‐theory space K^{TT}(\mathcal{F}(C, w)) is contractible. Then

setting

S(C, w)

so that its underlying complicial exact category is \mathcal{F}(C, w) and and its weak

equivalences are those which become isomorphisms in the Verdier quotient

\mathcal{T}(\mathcal{F}(C, w))/\mathcal{T}(C, w) ,
the Schlichting K ‐theory spectrum \mathrm{K}^{TT}(, w) is de‐

fined so that its n‐th space of the spectrum is given by K^{TT}(S^{n}(, w)) .

\bullet Then the associated  K‐theory space fibration sequences (3.14) (3.34) can be up‐

graded to the level of spectra, under the weaker (

(\mathrm{u}\mathrm{p} to factors� conditions:

[36, p.1101, Theorem 2.10.] Let \mathcal{A} be an idempotent complete right s‐filtering

subcategory (see [36, p.1097, Theorem 2.1.] for the definition of �s‐filtering�)
of an exact category \mathcal{U} . Then there is a homotopy fibration sequence of K‐

theory spectra

(3.35) \mathrm{K}^{W}(\mathcal{A})\rightarrow \mathrm{K}^{W}(\mathcal{U})\rightarrow \mathrm{K}^{W}(\mathcal{U}/\mathcal{A})

However, just like (3.14), (3.35) is sometimes not so applicable, because the as‐

sumption is not so easy to handle. Fortunately, exploiting the triangulated category

techniques, user‐friendly K‐theory (spectra) fibration sequences (to be recalled in

(3.36)) are obtained in the context of the Thomason‐Trobaugh K‐theory, just as

before.

\bullet [37, p.125, Theorem 9.] [38, p.195, Theorem 3.2.27.].

[38, p.180, 2.4.1.] An inclusion \mathcal{A}\subset \mathcal{B} of exact categories is called conal, or

equivalence up to factors, if the following conditions are satisfied:

* every object of \mathcal{A} is a direct factor of an object of \mathcal{B},
* the inclusion is extension closed,

* preserves and detects conflations.

[38, p.186, Definition 3.1.10.] a sequence of triangulated categories

\mathcal{A}\rightarrow \mathcal{B}\rightarrow C

is called exact up to factors, if the following conditions are satisfied:



A T0P0L0G1ST�S introduction To the motivic homotopy theory 85

* the composition sends \mathcal{A} to 0,

*\mathcal{A}\rightarrow B is fully faithful and identifies \mathcal{A} , up tp equivalences, with the

subcategory consisting of those objects in \mathcal{B} sent to 0 in C,
* the induced functor from the Verdier quotient (3.31) \mathcal{B}/\mathcal{A} to C is an equiv‐

alence up to factors.

‐Thomason‐Waldhausen Localization, Non‐Connective ve rsion

[38, p.195, Theorem 3.2.27.] Given asequence C_{0}\rightarrow C_{1}\rightarrow C_{2} of complicial
exact categories with weak equivalences. Assume that the associated sequence

\mathcal{T}C_{0}\rightarrow \mathcal{T}C_{1}\rightarrow \mathcal{T}C_{2} of triangulated categories is exact up to factors. Then

there is a homotopy fibration sequence of \mathrm{K}‐theory spectra

(3.36) \mathrm{K}^{TT}(C_{0})\rightarrow \mathrm{K}^{TT}(C_{1})\rightarrow \mathrm{K}^{TT}(C_{2})

\bullet [33, p.14, Theorem 1.14., p.143, Theorem 4.4.9.] [37, p.105, Theorem 2, p.106,

Corollary 3, Lemma 3.] [38, p.203, Theorem 3.4.5.] There is a useful way to creat

an exact sequence up to factors of triangulated categories:

[33, p.130.] [38, p.203.] An object  A of a triangulated category \mathcal{A} with all

small coproducts is called compact, if the canonical map

(3.37) \oplus_{i\in I}\mathrm{H}\mathrm{o}\mathrm{m}(A, E_{i})\rightarrow \mathrm{H}\mathrm{o}\mathrm{m}(A, \oplus_{i\in I}E_{i})

is always an isomorphism.

Denote the full subcategory od compact objects of \mathcal{A} by \mathcal{A}^{c} ,
which becomes

an idempotent complete triangulated subcategory of \mathcal{A}.

[33, p.140, p.274.] [38, p.203.] A set S of compact objects is said to generate
\mathcal{A} ,

or \mathcal{A} is compactly generated by S ,
if for every object E\in \mathcal{A} we have

(3.38) \mathrm{H}\mathrm{o}\mathrm{m}(A, E)=0, \forall A\in S \Rightarrow  E=0.

[33, p.14, Theorem 1.14., p.143, Theorem 4.4.9.] [38, p.203, Theorem 3.4.5.]
Given a set S_{0} of compact objects in a compactly generated triangulated cat‐

egory \mathcal{R} , which is closed under taking shifts, let S\subseteqq \mathcal{R} be the smallest full

triangulated subcategory containing the set S_{0} ,
which is closed under forma‐

tion of coproducts in \mathcal{R} . Then the sequence

(3.39) S\rightarrow \mathcal{R}\rightarrow \mathcal{R}/S

induces a sequence of triangulated categories of compact objects

(3.40) S^{c}\rightarrow \mathcal{R}^{c}\rightarrow(\mathcal{R}/S)^{c}

which is exact up to factors.
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\bullet Specializing to the case where the  K‐theory spaces and spectra are originated in a

fixed exact category \mathcal{E} ,
we may summarize as follows:

\mathrm{T}$\Gamma$_{\mathrm{r} $\tau \tau$}\mathrm{i}_{ $\tau$ r\cap}\rceil\leftrightarrow \mathrm{r}\leftrightarrow\leftrightarrow\cap\leftrightarrow \mathrm{f}+$\iota$_{\cap}\leftrightarrow \mathrm{K}+$\iota$_{\cap}\leftrightarrow\leftrightarrow\infty $\tau$ r\cap\mapsto\leftrightarrow\leftrightarrow+_{\infty\cap}\leftrightarrow\infty \mathrm{i}\infty \mathrm{i}_{\mathrm{r}\cap}+\leftrightarrow $\lambda$ \mathrm{i}_{\mathrm{r}} \mathrm{a} \mathrm{f}\mathrm{i}_{\mathrm{Y}7}\leftrightarrow $\lambda$\leftrightarrow \mathrm{Y}7\cap\leftrightarrow+\leftrightarrow\cap+\leftrightarrow m\leftrightarrow\infty $\tau$ rE

(3.41) (,i) (Ch ,quis)

Consequently, their \mathrm{K}‐groups are equivalent

(3.42) (Ch ,quis) (i)

For \mathrm{i} = , there is a natural map

(3.43)

\mathrm{T}\mathrm{T} (Ch , quis) (Ch , quis)

which is

an isomorphism
(3.44)

if \mathrm{i} 1

if \mathrm{i} = 0,

where is an idempotent completion of [38, p.181, 2.4.3.].

We now apply the preceeding general theory to study algebraic geometry.

\bullet [38, p.175, Definition 2.2.6.] For a scheme  X
,

let Vect(X) be the category of

vector bundles, i.e. locally free sheaves of finite rank on X . Then, Vect(X) be‐

comes extension closed in the category of quasi‐coherent \mathcal{O}_{X} ‐modules Qcoh(X)

(3.45) Vect(X) \subset \mathrm{Q}\mathrm{c}\mathrm{o}\mathrm{h}(\mathrm{X}) ,

through which we may regard Vect(X) as an exact category. Now, we define the

Quillen K‐theory space of a scheme X by

(3.46) K^{Q}(X) :=K^{Q} (Vect(X)).

\bullet [38, p.202, 3.4.1.] The preceding discussion using the vector bundles in the frame‐

work of exact categories can be upgraded to the framework of complicial exact
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category with weak equivalences using the perfect complexes:

‐ for a quasi‐compact and separated scheme  X
,
a complex (A, d) of quasi‐coherent

\mathcal{O}_{X} ‐modules is called perfect if there is a covering

(3.47) X=\displaystyle \bigcup_{i\in I}U_{i}

by affine open subschemes U_{i}\subset X such that, for any i\in I,

(3.48) (A, d)|_{U_{i}}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{s}\cong abounded complex of vector bundles

‐ For a closed subset  Z\subset X with quasi‐compact open complement X\backslash Z ,
let

\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}_{Z}(X) be the full subcategory in Ch Qcoh(X)

(3.49) \mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}_{Z}(X)\subset \mathrm{C}\mathrm{h}\mathrm{Q}\mathrm{c}\mathrm{o}\mathrm{h}(X)

of perfect complexes on X which are acyclic over X\backslash Z . The inclusion (3.49) is

extension closed, and makes (\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}_{Z}(X) , quis ) a complicial exact category with

weak equivalences. Let us compare this situation (3.49) with (3.45), but notice

that we are now free to relativize the situation by taking into accout a closed

subset Z\subset X with quasi‐compact open complement X\backslash Z . For a notational

consistency between (3.45) and (3.49), it is set

(3.50) Perf(X) :=\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}_{X}(X) .

[38, p.202, Definition 3.4.2.] Now the

\displaystyle \frac{Thomason-}{\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{t}\mathrm{h}\mathrm{e}}Trobaugh K ‐theory space of X with support in ZK^{TT}(XonZ)

\displaystyle \frac{SchlichtingThomason-TrobaughK-theoryspectrumofXwith\sup portinZ}{\mathrm{K}^{TT}(XonZ)\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}1\mathrm{y}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}\mathrm{b}\mathrm{y}}
(3.51a)

K^{TT} (X on Z ) :=K^{TT}(\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}_{Z}(X) , quis ) (K^{TT}(X) :=K^{TT}(X on X) )
(3.51b)

\mathrm{K}^{TT} (X on Z ) :=\mathrm{K}^{TT}(\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}_{Z}(X) , quis ) ( \mathrm{K}^{TT}(X) :=\mathrm{K}^{TT}(X on X) )
‐ With the precious complicial exact category with weak equivalence

(\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}_{Z}(X) , quis ) at hand, in view of (3.34) (3.36), it is natural for us to pay a

great attention to its associated triangulated category (3.33) \mathcal{T}(\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}_{Z}(X) , quis ) ,

which is usually denoted by

(3.52) D\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}_{Z}(X) :=\mathcal{T}(\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}_{Z}(X) , quis ) .

This becomes idempotent complete.
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\bullet [38, p.204, Proposition 3.4.8.] Suppose  X is a quasi‐compact and separated
scheme which has an ample family of line bundles. Then the inclusion of

bounded complexes of vector bundles into perfect complexes

(3.53) \mathrm{C}\mathrm{h}^{b} Vect(X) \subset \mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}(X)

induces an equivalence of triangulated categories

(3.54) D^{b} Vect ( X)\cong D\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}(X) .

By the Thomason‐Waldhausen Localization, (3.36) (3.36), this equivalence (3.54)
implies (3.53) induces a homotopy equivalence of (Schlichting) Thomason‐Trobaugh
K‐theories:

(3.55a) K^{TT}(\mathrm{C}\mathrm{h}^{b} Vect (X), quis)\rightarrow\simeq K^{TT} (Perf(X), quis)

(3.55b) \mathrm{K}^{TT}(\mathrm{C}\mathrm{h}^{b} Vect (X), quis)\rightarrow\simeq \mathrm{K}^{TT} (Perf(X), quis)

\bullet Combining (3.55) (3.51b) (3.10) (3.41) (3.46), we may summarize as follows:

-\urcorner \mathrm{Y}\cap\cap\dot{ $\tau$}\leftrightarrow\sim \mathrm{m}\mapsto\cap\leftrightarrow+\cap\wedge\wedge\cap\cap+_{\leftrightarrow}$\lambda$_{\cap\leftrightarrow}1_{\cap\wedge \mathrm{m}\leftrightarrow $\tau$\dot{ $\tau$}}\mathrm{Y}\mathrm{T}+$\iota$_{\cap\cap \cap \mathrm{m}\mapsto\rceil_{\wedge}\mathrm{f}_{\cap \mathrm{m}\dot{ $\tau$}}\rceil_{\mathrm{v}r\sim}\mathrm{f}} \mathrm{t}_{\cap $\tau \tau$ \mathrm{r}} $\lambda$\rceil_{\wedge\cap}

Suppose X is a quasi‐compact and separated scheme which has an

ample family of line bundles. Then, we have the following homotopy
equivalence of \mathrm{K}‐theory spaces and \mathrm{K}‐theory spectra:

(310)----\rightarrow \mathrm{T}\mathrm{T}
(Ch Vect( ),quis

(3.56)

(346)----\rightarrow
(Vect( ),

(355)----\rightarrow \mathrm{T}\mathrm{T}
(Perf( ), quis

(3.51a)

(Vect(X), i)
(3.57)

\mathrm{T}\mathrm{T}

(341)----\rightarrow \mathrm{K} (Ch Vect( ), quis

(355)----\rightarrow \mathrm{K} (Perf( ), quis

Furthermore, since Vect(X) is idempotent complete, the natural map (3.43)
induces an isomorphism

(3.58)

by (3.44).

\bullet [38, p.203, Proposition 3.4.6.] Denote by DQcoh(X) the unbounded derived cate‐

gory of Qcoh(X), and for a closed subset  Z\subset X ,
denote by D_{Z}\mathrm{Q}\mathrm{c}\mathrm{o}\mathrm{h}(X) the full
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subcategory of DQcoh(X)

(3.59) D_{Z}\mathrm{Q}\mathrm{c}\mathrm{o}\mathrm{h}(X)\subseteqq D\mathrm{Q}\mathrm{c}\mathrm{o}\mathrm{h}(X)

of those complexes which are acyclic when restricted to X\backslash Z.

Then the triangulated category DZ Qcoh(X) is compactly generated with category
of compact objects the derived category of perfect complexes D\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}_{Z}(X) :

(3.60) (D_{Z}\mathrm{Q}\mathrm{c}\mathrm{o}\mathrm{h}(X))^{c}\cong D\mathrm{P}\mathrm{e}\mathrm{r}\mathrm{f}_{Z}(X)

\bullet We would like to apply (3.60) to study the Schlichting Thomason‐Trobaugh K‐

theory \mathrm{K}^{TT}(3.51\mathrm{b}) , using (3.40) (3.36). We now list a couple of results which are

used for this purpose:

[44, p.307, Theorem 2.6.3.] Let f : X'\rightarrow X be a quasi‐separated map of

quasi‐compact schemes. Let i : Y\rightarrow X be a finitely presented closed im‐

mersion. Suppose that f is an isomorphism infinitely near Y (2.6.2.1). Set

Y'=f^{-1}(Y)=Y\times x^{X'} . Then, we have an equivalence of drived categories

(3.61) Lf^{*}:D_{Y'}\mathrm{Q}\mathrm{c}\mathrm{o}\mathrm{h}(X')\cong D_{Y}\mathrm{Q}\mathrm{c}\mathrm{o}\mathrm{h}(X) : Rf_{*}

[38, p.202, Lemma 3.4.3.] Let Z\subset X be a closed subset of a quasi‐compact
and separated scheme X with quasicompact open complement X\backslash Z\subset X.
Then the following sequence of triangulated categories is exact:

(3.62) D_{Z}\mathrm{Q}\mathrm{c}\mathrm{o}\mathrm{h}(X)\rightarrow D\mathrm{Q}\mathrm{c}\mathrm{o}\mathrm{h}(X)\rightarrow D\mathrm{Q}\mathrm{c}\mathrm{o}\mathrm{h}(X\backslash Z) .

Now, we are ready to provide an outline to prove the following important theorems

of Thomason‐Trobaugh [44]:

Theorem 3.1 ([44, p.322, Proposition 3.19; p.364, Theorem 7.1]). In the com‐

mutative diagram:

(3.63) U\times xV\rightarrow V

 U\downarrow\rightarrow Xopenembi. p\downarrow
suppose the fo llowing conditions (whose precise denitions are not reviewed here, but

are satised if (3.63) is a distinguished square diagram) are satised:

\bullet  p is a map of quasi‐compact and quasi‐separated schemes.
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\bullet  U is quasi‐compact.

\bullet  p is an isomorphism innitely near X\backslash U.

Then, there are homotopy equivalences of spectra:

p^{*}:\mathrm{K}^{TT}(X on X\backslash U)\rightarrow\simeq \mathrm{K}^{TT}(V on V\backslash (U\times xV))

Theorem 3.2 ([44, p.365, Theorem 7.4]). Suppose

\bullet  X is a quasi‐compact and quasi‐separated scheme.

\bullet  i:U\rightarrow X is an open immersion with U quasi‐compact.

Then, there is a homotopy fibre sequence of spectra

\mathrm{K}^{TT}(X on X\backslash U)\rightarrow \mathrm{K}^{TT}(X)\rightarrow \mathrm{K}^{TT}(U)

Proof. In fact, Theorem 3.1 follows from (3.61) (3.60) (3.40) (3.36). Similarly,
Theorem 3.2 follows from (3.62) (3.60) (3.40) (3.36).

\square 

We have now reviewed necessary �after Quillen� techniques to prove the following
K‐theory representability theorems:

Theorem 3.3 ([28, p.139, Proposition 3.9]). For any X\in(Sm/S) and for any

m\in \mathbb{Z}\geqq 0 ,
we have the following representability:

(3.65) K_{m}^{TT}(X)\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}_{\mathrm{s}},.(Sm/S)_{Ni\mathrm{s}}}($\Sigma$_{s}^{m}(x_{+}), (\mathrm{R}$\Omega$_{s}^{1})B(\coprod_{n\geqq 0}BGL_{n}))
Here the mfold simplicial suspension is dened by $\Sigma$_{s}^{m}(X_{+})=(X_{+})\wedge S^{m} ,

and the

derived simplicial loop space \mathrm{R}$\Omega$_{s}^{1}() is the right adjoint to the simplicial suspension

$\Sigma$_{s} : \mathcal{H}_{s},.(Sm/S)_{Nis}\rightarrow \mathcal{H}_{s},.(Sm/S) Nis

Suppose further X is a quasi‐compact and separated scheme which has

an ample family of line bundles. Then, we have from (3.56) (3.65) isomor‐

phisms for any n\in \mathbb{Z}\geqq^{:}
(3.66)

K_{m}^{Q}(X)\rightarrow K_{m}^{TT}(X)(356)\simeq\rightarrow \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}_{\mathrm{s}},.(Sm/S)_{Ni\mathrm{s}}}(365)\simeq($\Sigma$_{s}^{m}(X_{+}), (\mathrm{R}$\Omega$_{s}^{1})B(\coprod_{n\geqq 0}BGL_{n}))
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Theorem 3.4 (a special case of [28, p.140. Theorem 3.13]). Suppose further S

is regular. Then, for any m\in \mathbb{Z}\geqq 0 ,
and for any X\in Sm/S ,

we have the following

representability:

(3.67) K_{m}^{TT}(X)\rightarrow\underline{\simeq}Hom_{\mathcal{H}.(S)}($\Sigma$_{s}^{m}(X_{+}), BGL_{\infty}\times \mathbb{Z})

Suppose further X is a quasi‐compact and separated scheme which has

an ample family of line bundles. Then, we have from (3.56) (3.67) isomor‐

phisms for any m\in \mathbb{Z}\geqq 0 :

(3.68) K_{m}^{Q}(X)\rightarrow K_{m}^{TT}(X)(356)\simeq\rightarrow Hom_{\mathcal{H}.(S)}(367)\simeq($\Sigma$_{s}^{m}(X_{+}), BGL_{\infty}\times \mathbb{Z})
We note that the Zariski analogue of Theorem 3.3 was shown by Gillet‐Soulé [13,

Proposition 5], as may be expected from Remark 1.

The core of the proof of Theorem 3.3 is the Morel‐Voevodsky observation that

\mathrm{a} �friendly� model of (a_{Nis}K^{TT})_{f} is provided by (\mathrm{R}$\Omega$_{s}^{1})B ( \displaystyle \prod_{n\geqq 0} BGL). Since the

referee asked us to supply some details of how this observation of Morel‐Voevodsky
is proven, we shall isolate it as Lemma 3.10, and present a complete proof. For this

purpose, we have already reviewed necessary �after Quillen� techniques, and we now

start reviewing more necessary techniques from �Quillen era�:

\bullet [47, I. Definition 1.1] A ring  R is said to satisfy the (right) invariant basis property
if the based free (right) R‐modules R^{m} and R^{n} are not isomorphic for m\neq n . Any
commutative ring satisfies the invariant basis property.

\bullet [47, IV. Example 4.1.1] For a ring  R satisfying the invariant basis property, let

\mathrm{b}\mathrm{F}(R) be the cagtegory of finitely based free (right) R‐modules, whose objects and

morphisms are respectively the based free R‐modules \{0, R, R^{2}, \cdots, R^{n}, \} and

the (right) R‐module homomorphisms.

\bullet \mathrm{b}\mathrm{F}(R) becomes a symmetric monoidal category by the concatenation of basis:

(3.69) R^{m}\oplus R^{n} :=R^{m+n}, \{
GL_{m}(R)\times GL_{n}(R) \rightarrow GL(R)

(a, b) \mapsto\left(\begin{array}{l}
a0\\
b0
\end{array}\right)
\bullet The symmetric monoidal category structure (3.69) on \mathrm{b}\mathrm{F}(R) ,

when restricted to

the subcategory i\mathrm{b}\mathrm{F}(R) of isomorphisms, not only endow Ob(i\mathrm{b}\mathrm{F}(R)) with the

honest monoid structure, but also endow the nerve N.ibF (R) with a monoid object
structure in the category of simplicial sets. (We shall call such a symmetric monoidal
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category with an honest monoid structure a symmetric strict monoidal category,

though the terminology �permutative category� [24] might be more familiar.)

Thus, with respect to its monoid structure \oplus ,
we may further take its nerve to form

a bisimplicial set

(3.70)  N. (N.i\mathrm{b}\mathrm{F}(R), \oplus)

\bullet Define  i_{m}^{m+n}:R^{m}\rightarrow R^{m+n} and p_{n}^{m+n}:R^{m+n}\rightarrow R^{n} as follows:

0\rightarrow R^{m}\rightarrow^{i_{m}^{m+n}} R^{m+n}\rightarrow R^{n}p_{n}^{7n+n}\rightarrow 0
v\mapsto v\oplus 0, v\oplus w\mapsto w

Then, \mathrm{b}\mathrm{F}(R) becomes an exact category in the sense of Quillen [34, p.92] (see also

[47, II Definition 7.0.]), whose admissible monomorphisms and admissible epimor‐

phisms are respectively of the form

---\rightarrow GL

gi
(3.72)

--------\rightarrow

----\rightarrow --------\rightarrow\mathrm{h}
GL

\bullet [47, II. Example 7.1.1., 7.3., Example 7.3.1.] For a ring  R satisfying the invariant

basis property, we define the category \mathrm{P}(R) of finitely generated projective (right)
modules by the idempotent completion of \mathrm{b}\mathrm{F}(R) . Thus an object of \mathrm{P}(R) consists

of elements of the form (\mathbb{R}^{m}, e) with e\in \mathrm{E}\mathrm{n}\mathrm{d}_{\mathrm{b}\mathrm{F}(R)}(\mathbb{R}^{n}) an idempotent e^{2}=e
,

and

a morphism from (R^{m}, e) to (R^{n}, e') is a morphism f\in \mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{b}\mathrm{F}(R)}(R^{m}, R^{n}) such

that f=e' fe. (We define \mathrm{P}(R) in this way not to worry about set theoretical

problems.)

\bullet The symmetric monoidal category structure (3.69) on \mathrm{b}\mathrm{F}(R) induces a strict monoidal

category structure on the subcategory iP(R) of isomorphisms of \mathrm{P}(R) . Just like the

case of \mathrm{b}\mathrm{F}(R) (see (3.70)), it endows the nerve N.i\mathrm{P}(R) with a monoid object struc‐

ture in the category of simplicial sets, by which, we may further take its nerve to

form a bisimplicial set

(3.73) N. (N.i\mathrm{P}(R), \oplus)

\bullet Then, by the general theory [47, II. Exercise 7.6., Lemma 7.2], \mathrm{P}(R) also becomes

an exact category, and the canonical embedding

(3.74a) c:\mathrm{b}\mathrm{F}(R)\rightarrow \mathrm{P}(R)

(3.74b) R^{n}\mapsto(R^{n}, \mathrm{I}\mathrm{d})
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makes \mathrm{b}\mathrm{F}(R) an exact subcategory of \mathrm{P}(R) [47 , II.7.0.1.]. Also, c is a morphism of

strict monoidal category, and induces a morphism of bisimplicial sets from (3.70)
to (3.73):

\tilde{c}:N. (N.i\mathrm{b}\mathrm{F}(R), \oplus)\rightarrow N. (N.i\mathrm{P}(R), \oplus) ,

which, upon applying the diagonalization fuctor, which intuitively regard as the

geometric realization functor, further induces

(3.75) B\tilde{c}:B(\coprod_{n\geqq 0}BGL_{n}(R))\rightarrow B(B(i\mathrm{P}(R)))
\bullet [14] [41, p.128, p.133] [46, IV Definition 4.2., Definition 4.3.] In general, for a sym‐

metric monoidal category (S, \oplus) ,
its symmetric monoidal K‐theory space K^{\oplus}(S) is

given by

(3.76) K^{\oplus}(S)=B(S^{-1}S) ,

where S^{-1}S is the category such that

(3.77a)
Ob S^{-1}S=\mathrm{O}\mathrm{b}S\times \mathrm{O}\mathrm{b}S

(3.77b)
\mathrm{M}\mathrm{o}\mathrm{r}_{S^{-1}S}((m_{1}, m_{2}), (n_{1}, n_{2}))=\{(s\in Ob  S, f\in \mathrm{M}\mathrm{o}\mathrm{r}_{S}(s\oplus m_{1}, n_{1}), g\in \mathrm{M}\mathrm{o}\mathrm{r}_{S}(s\oplus m_{2}, n_{2})\}/\simeq,
where (s\in Ob  S, f\in \mathrm{M}\mathrm{o}\mathrm{r}_{S}(s\oplus m_{1}, n_{1}), g\in \mathrm{M}\mathrm{o}\mathrm{r}_{S}(s\oplus m_{2}, n_{2}) is interpreted as the

composite

(m_{1}, m_{2})\rightarrow^{s\square }(s\square  m_{1}, s\square  m_{2})\rightarrow^{(f,g)}(n_{1}, n_{2})
To understand (3.75), we start with the following three observations concerning

the symmetric monoidal K‐theory space; first, its delooping in the strict case, second,
a delooped cofinality theorem, and third, its relevance with the Quillen K‐theory:

Theorem 3.5 (delooped symmetric monoidal K‐theory space).
When S is a symmetric strict monoidal such that every morphism is an isomorphism
and the translation is fa ithful, i.e. for any s, t\in S, \mathrm{A}\mathrm{u}\mathrm{t}_{S}(s)\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}_{S}(s\oplus t) is injection.

Then we have a natural zig‐zag homotopy equivalence

(3.78)  $\Omega$ B(BS)\simeq B(S^{-1}S)=K^{\oplus}(S)

Proof. Actually, (3.78) is the composite of the following homotopy equivalences

\leftarrow--
\mathrm{B}(\mathrm{B}\mathrm{S})

----------------\rightarrow

[][ \mathrm{I}\mathrm{V} \mathrm{T} heorem4.8.]

where, (BS)^{+} stands for the group completion of BS. \square 



94 Norihiko Minami

Theorem 3.6 (delooped cofinality theorem for symmetric monoidal \mathrm{K}‐theory).
Suppose S and T are ymmetric strict monoidal categories such that every morphism is

an isomorphism and the translation is fa ithful (in the sense of Theorem 3.5.

Suppose a morphism of symmetric strict monoidal categories f : S\rightarrow T satises

the following conditions:

conality For any t\in T ,
there exist t'\in T, s\in S such that tt'\cong f(s) .

fully faithfulness For any s\in S, \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{s})\cong \mathrm{A}\mathrm{u}\mathrm{t}_{T}(f(s)) .

Then, we have the following natural fibration‐up‐to‐homotopy

B(Bf)
(3.79) B(BS)\rightarrow B(BT)\rightarrow B(K_{0}^{\oplus}(T)/K_{0}^{\oplus}(S)) ,

where K_{0}^{\oplus} stands for the K_{0} group for a symmetric monoidal category (see [47, II

Denition 5.1.2.] foor instance), and the second map is the composite

B(BT)\rightarrow K($\pi$_{1}B(BT), 1)=B(K_{0}^{\oplus}(T))\rightarrow B(K_{0}^{\oplus}(T)/K_{0}^{\oplus}(S))

Proof. In view of Theorem 3.5, the claim follows from the usual cofinality theorem

concerning the map B(S^{-1}S)\rightarrow B(T^{-1}T)[14] [47 , IV Cofinality Theorem 4.11.]. \square 

Theorem 3.7 (  Q=\oplus
� theorem [  14][41 ,

Theorem 7.7.][47 , IV Theorem 7.1.]).
For any split exact category \mathcal{A} , there is a natural homotopy equivalence between the

Quillen K ‐theory space K^{Q}(\mathcal{A}) of the exact category \mathcal{A} and the symmetric monoidal

category K ‐theory space K^{\oplus}(i\mathcal{A}) for the symmetric monoidal category i\mathcal{A} :

(3.80) K^{Q}(\mathcal{A})= $\Omega$ BQ\mathcal{A}\rightarrow\simeq B((i\mathcal{A})^{-1}(i\mathcal{A}))=K^{\oplus}(i\mathcal{A}) \square 

Now the importance of B\tilde{c}(3.75) is revealed by the following delooped +=\oplus

�theorem, which is an immediate consequence of the delooped cofinality theorem for

symmetric monoidal \mathrm{K}‐theory Threorem 3.6:

Theorem 3.8 (delooped +=\oplus �theorem). For a ring  R with the invariant

basis property, there is a fibration‐sequence‐up‐to‐homotopy

(3.81) B(\coprod_{n\geqq 0}BGL_{n}(R))\rightarrow BB\tilde{c}(B(i\mathrm{P}(R)))\rightarrow B(K_{0}(R)/\mathbb{Z}) ,

which is natural with respect to ring homomorphisms between rings with invariant basis

property. \square 

Applying  $\Omega$ to (3.82), together with Theorem 3.5 and Theorem 3.7, we have the

following variant of the famous Quillen
�

+= Q�theorem:
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Theorem 3.9 (variant of +=Q �theorem). For a ring R with the invariant

basis property, we shall write K^{Q}(\mathrm{P}(R)) ,
the Quillen K ‐theory space of the exact cat‐

egory \mathrm{P}(R) (see Theorem 3.7) by K_{ring}^{Q}(R) . Then, there is a fibration‐sequence‐up‐to‐

homotopy

(3.82)  $\Omega$ B(\coprod_{n\geqq 0}BGL_{n}(R))\rightarrow\overline{c}K_{ring}^{Q}(R)\rightarrow K_{0}(R)/\mathbb{Z}
which is natural with respect to ring homomorphisms between rings with invariant basis

property. \square 

Now, we are ready to answer the referee�s request, by finishing our proof, whose

first part is a reminiscence of the proof of [13, Lemma 18.]:

Lemma 3.10. We can take (\displaystyle \mathrm{R}$\Omega$_{s}^{1})B(\prod_{n\geqq 0}BGL) as a
\backslash 

friendly model of

(a_{Nis}K^{Q})_{f}\rightarrow\simeq(a_{Nis}K^{TT})_{f} in \mathcal{H}_{s},.(Sm/S)_{Nis}.

Proof of Lemma 3.10.

We first note the natural equivalence of simplicial sheaves

(3.83) a_{Nis}K^{Q}\rightarrow\simeq a_{Nis}K^{TT}

This is because, when we stufy the behavior of the natural map of simplicial presheaves

(3.84) K^{Q}\rightarrow K^{TT}

at stalks, we may restrict our attention to the affine schemes, which have an ample family
of line bundles. Thus, we may apply the homotopy equivalence (3.56) to conclude (3.83).

Thus, it suffices to show that we can take (\displaystyle \mathrm{R}$\Omega$_{s}^{1})B(\prod_{n\geqq 0}BGL) as a �friendly�
model of (a_{Nis}K^{Q})_{f}.

For this purpose, consider the following diagram in \triangle^{op} Preshv ( Sm/S)_{Nis} :

(3.85)
K^{Q}:= ( U\mapsto $\Omega$ BQ (Vect (\mathrm{U})) )

\downarrow\simeq
$\Omega$_{s}^{1}B(\displaystyle \prod_{n\geqq 0}BGL_{n}) :=(U\displaystyle \mapsto( $\Omega$ B(\prod_{n\geqq 0}BGL_{n}(\mathcal{O}(U)))))\rightarrow K_{\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}}^{Q}\overline{\simeq c}:=(U\mapsto $\Omega$ BQ(\mathrm{P}(\mathcal{O}(U))))

Here, the right vertical map is induced by a morphism of exact categories from

the category of finite rank vector bundles on U to the category of finitely generated

projective \mathcal{O}(U) modules

(3.86) Vect (\mathrm{U})\rightarrow \mathrm{P}(\mathrm{U}) ,
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which is an equivalence of categories when U is affine. Thus, the right vertical map is

a weak equivalence.

Now, the bottom horizontal map is also a weak equivalence, for each stalk in the

Nisnevich site is \mathrm{a} (Hensel) local ring, and any finitely generated module over a local

ring is free, in which case, the last term in (3.82) degenerates to a single point to force

\mathrm{C} to be a homotopy equivalence.

Then, let us apply the sheafication functor a to (3.85), which preserves the weak

equivalences because the sheafication functor a induces stalk isomorphisms:

(3.87) a(K^{Q})

\downarrow\simeq
$\Omega$_{s}^{1}B(\displaystyle \prod_{n\geqq 0}BGL_{n}) c_{orollary2.8 ,\rightarrow a}\cong($\Omega$_{s}^{1}B(\prod_{n\geqq 0}BGL_{n}))\rightarrow aa(\overline{c})\simeq(K_{\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}}^{Q})

Here, we used Corollary 2.8, which claims $\Omega$_{s}^{1}B(\displaystyle \prod_{n\geqq 0}BGL) is a pointed simplicial
sheaf.

Next, we apply the fibrant replacement functor f to (3.88):

(3.88)

$\Omega$_{s}^{1}(B(\displaystyle \prod_{n\geqq 0}BGL_{n})_{f}) (a(K^{Q}))_{f}

\simeq\uparrow \downarrow\simeq
($\Omega$_{s}^{1}B(\displaystyle \prod_{n\geqq 0}BGL_{n}))_{f}\rightarrow^{\cong}(a($\Omega$_{s}^{1}B(\prod_{n\geqq 0}BGL_{n})))_{f}\rightarrow^{\simeq}(a(K_{\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}}^{Q}))_{f}

Here, the left upper map is defined because $\Omega$_{s}^{1} sends a fibrant to a fibrant by Propo‐
sition 2.14. Next, this left upper map is a weak equivalence becuase $\Omega$_{s}^{1} preserves

weak equivalences. From this, we see cofibrant and fibrant objects (a(K^{Q}))_{f} and

$\Omega$_{s}^{1}(B(\displaystyle \prod_{n\geqq 0}BGL_{n})_{f}) are connected by weak equivalnces between cofibrant and fi‐

brant objects.

Thus, we see a model of (a(K^{Q}))_{f} is given by $\Omega$_{s}^{1}(B(\displaystyle \prod_{n\geqq 0}BGL_{n})_{f}) ,
which is

nothing but the right derived functor (\mathrm{R}$\Omega$_{s}^{1})B ( \displaystyle \prod_{n\geqq 0} BGL), in the sense of Quillen
model category. This completes the proof. \square 

Proof of Theorem 3.3.

Now the claim immediately follows from Theorem 2.26 (i), Theorem 3.2 and The‐

orem 3.1.

\square 
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Proof of Theorem 3.4.

By Theorem 2.26 (ii) and the above Proof of Theorem 3.3, we see

K_{n}^{TT}(X)\cong \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{H}.(S)}($\Sigma$_{s}^{n}(X_{+}), (\mathrm{R}$\Omega$_{s}^{1})B(\coprod_{n\geqq 0}BGL_{n}))
Now the claim follows because the natural map

BGL_{\infty}\times \mathbb{Z}\rightarrow(\mathrm{R}$\Omega$_{s}^{1})B(\coprod_{n\geqq 0}BGL)
is an \mathrm{A}^{1} ‐equivalence [28, p.139, Proposition 3.10]. \square 

Remark 2. (i) The reader might had been sick and tired of the complexity of

the proof of the K‐theory representability Theorem 3.3 presented here. In fact, the

essence of the K‐theoretical input in the proof of Theorem 3.3 was the Thomason‐

Trobaugh Excision Theorem 3.1 and Localization Theorem 3.2, both of which are shown

in the framework of (Bass like) Waldhausen K‐theory of perfect complexes, we had to

resort to the original Quillen K‐theory and the symmetric monoidal K‐theory to prove

Lemma 3.10, following the original approach of Morel‐Voevodsky [28].
However, we can completely eliminate the Quillen K‐theory and the symmetric

monoidal K‐theory, and can avoid the delooped +=\oplus
� theorem. In fact, we can

work entirely in the framework of the Waldhausen  K‐theory, by using the delooped
((+=S� theorem (see e.g. [27]), instead.

Although the delooped +=S� theorem is conceptually very simple and can be

proven in a straightforward fashion, we opted to follow the (more complicated) original

approach of Morel‐Voevodsky [28] to prove Theorem 3.3 here. This is because we found

some topologists are used to the Quillen K‐theory much more than the Waldhausen

K‐theory. So, we thought the orignal Morel‐Voevodsky [28] of proving Theorem 3.3

would provide such readers with a smooth transition from the Quillen K‐theory to the

Waldhausen K‐theory.

(ii) However, it is fair to say that Theorem 3.3, which is a statement before inverting
the \mathrm{A}^{1} ‐equivalence, essentially belongs to the �B.V.� (= before Voevodsky) era, and

might be well expected by many experts around the time. This is probably the reason

why Theorem 3.3 was merely a proposition in the Morel‐Voevodsky paper [28, p.139,

Proposition 3.8.].
The deepest part of the K‐theory representability in the Morel‐Voevodsky paper

[28] is Theorem 3.4, and especially their [28, p.139, Proposition 3.10], which claims he

natural map

BGL_{\infty}\times \mathbb{Z}\rightarrow(\mathrm{R}$\Omega$_{s}^{1})B(\coprod_{n\geqq 0}BGL)
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is an \mathrm{A}^{1} ‐equivalence. It is very unfortunate that, in this exposition, we failed to say

even a word about the proof of this \mathrm{A}^{1} ‐equivalence, though many topologists would find

this \mathrm{A}^{1} ‐equivalence claim very convincing

(iii) Nowadays, the Thomason‐Trobaugh Excision Theorem 3.1 and Localization

Theorem 3.2, both of which were the core of the proof of Theorem 3.3, can be shown

in much shorter and conceptual ways. In fact, this development was already foreseen

by Thomason and Trobaugh by themselves. Actually, in [44, \mathrm{p}.302, 2.4.4.]^{} ,
Thomason‐

Trobaugh writes as follows:

To summarize, 2.4.3 roughly characterizes perfe ct complexes on schemes with

ample families of line bundles as the finitely presented objects (in the sense of
Grothendieck [EGA] IV 8.14 that Mor out of them preserves direct colimits)
in the derived category D(\mathcal{O}_{X}-Mod)_{qc} of complexes with quasi‐coherent co‐

homology. On a general scheme, the prefe ct complexes are the locally finitely

presented objects in the �homotopy stack� of derived categories. (We must

say �roughly characterizes� as we always take our direct systems in the category
C ( \mathcal{O}_{X} ‐Mod) of chain complexes, and have not examined the question of lift ing
a direct system if D ( \mathcal{O}_{X} —Mod) to C ( \mathcal{O}_{X} —Mod) up to conality.)

What was not availabe at the time [44] was written was an appropriate theoretical

foundation which makes their above point of view rigorous. Now, the first breakthrough
for achieving this goal was provided by Neeman [32], who used the Bousfield localization

technique. Then, Schilichting [37] gave a more general conceptual definition of the

negative K‐theory, which generalizes the Thomason‐Trobaugh Bass K‐theory K^{B} . In

[38, p.205, Theorem 3.4.12.], Schlichting oultlined a proof of Mayer‐Vietoris for open

covers. Finally, in [3], necessary theoretical foundation was provided in the framework

of Lurie�s (stable) infinite category theory [22, 23].

§3.2. Homotopy Purity

Denition 3.11 ([28, p.111, Definition 2.16]). Let X be a smooth scheme over

S and \mathcal{E} be a vector bundle over X . The Thom space of \mathcal{E} is the pointed sheaf

Th (\mathcal{E})=Th(\mathcal{E}/X) :=\mathcal{E}/(\mathcal{E}\backslash i(X))

where i:X\rightarrow \mathcal{E} is the zero section of \mathcal{E}.

Now the following theorem is the homotopy purity:

1We would like to thank David Gepner for this information.
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Theorem 3.12 ([28, p.115, Theorem 2.23]). Let i:Z\rightarrow X be a closed embed‐

ding of smooth schemes over S. Denote by \mathcal{N}_{X,Z}\rightarrow Z the normal vector bundle to

i . Then there is a canonical isomorphism in \mathcal{H}.(S) of the form

X/(X\backslash i(Z))\cong Th(\mathcal{N}_{X,Z}) .

Proof.
This is proven as follows:

\bullet If the embedding of  Z in X is a regular embedding, i.e. local equations for the

ideal of Z in X form a regular sequence in local rings of X
,
then the sheaf theoreti‐

cally defined normal cone C_{Z}X becomes a vector bundle, called the normal bundle

to Z in X
,

denoted \mathcal{N}_{X,Z}.

\bullet [15, §17] For a closed embedding  i:Z\rightarrow X of smooth schemes over S ,
there exists

a finite affine Zariski open

| \{\mathrm{z} \}étale morphism q_{ $\alpha$} : U_{ $\alpha$}\rightarrow A

for some n_{ $\alpha$} and c_{ $\alpha$} . In this case, we have a distinguished diagram

open

étale

open

which presents

| \{\mathrm{z} \}

| \{\mathrm{z} \}
as a Nisnevich covering of \mathrm{A}^{n_{ $\alpha$}} . Thus, we may interpret the induced closed embed‐

� of the closed embedding

(3.89) closed

étale

| \{\mathrm{z} \}
closed
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This fact conversely allows us to interpret that any closed embedding i:Z\mapsto X of

smooth schemes over S is Nisnevich locally isomorphic to the closed embedding

| \{\mathrm{z} \}
In particular, when we consider a closed embedding i : Z\mapsto X of smooth schemes

over S in Nisnevich topology, we may regard the normal cone C_{Z}X as the normal

bundle \mathcal{N}_{X,Z}.

\bullet As is slightly more evident in the exposition of [29] than in [28] (though their model

structures are different), the proof essentially makes use of the deformation to

the normal cone (which was discovered by MacPherson, and used extensively in

[11] for instance) of a closed embedding of smooth schemes  i:Z\mapsto X over S :

Z\times \mathrm{A}^{1}=(Z\times \mathrm{A}^{1})_{Z}\rightarrow^{j(i)}(X\times \mathrm{A}^{1})_{Z}\backslash X_{Z}

Here (Z\times \mathrm{A}^{1})_{Z}, (X \times \mathrm{A}^{1})_{Z} and X_{Z} are respectively blow‐ups of the closed em‐

beddings Z\times\{0\}\mapsto Z\times \mathrm{A}^{1}, Z\times\{0\}\mapsto X\times \mathrm{A}^{1} and Z\mapsto X
, respectively, and

j(i) : Z\times \mathrm{A}^{1}=(Z\times \mathrm{A}^{1})_{Z}\rightarrow(X\times \mathrm{A}^{1})_{Z}\backslash X_{Z} is the resulting morphism of schemes

over \mathrm{A}^{1} such that

(3.90) j(i)|_{p(t)}-1\cong\left\{\begin{array}{ll}
\mathrm{t}\mathrm{h}\mathrm{e} \mathrm{g}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n} \mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g} Z\mapsto X & \mathrm{i}\mathrm{f} t\neq 0\\
\mathrm{t}\mathrm{h}\mathrm{e} \mathrm{z}\mathrm{e}\mathrm{r}\mathrm{o} \mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l} \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{e} C_{Z}X & \mathrm{i}\mathrm{f} t=0
\end{array}\right.
Since we work in the Nisnevich topology, we may interpret C_{Z}X as the normal

bundle \mathcal{N}_{X,Z} ,
as above.

\bullet To prove the homotopy purity, we restrict (3.90) to cartesian diagrams which cor‐

respond to the cases  t=0 ,
1:

zero section
\mathrm{X},\mathrm{Z}

closed closed

closed closed

These diagrams respectively induce
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(3.91)
 $\eta$(i) : T(i) :=X/(X\backslash i(Z))\rightarrow T(j(i)) :=((X\times \mathrm{A}^{1})_{Z}\backslash X_{Z})/(((X\times \mathrm{A}^{1})_{Z}\backslash X_{Z})\backslash j(i)(Z\times \mathrm{A}^{1}))

(3.92)
 $\kappa$(i) : Th (\mathcal{N}_{X,Z})\rightarrow T(j(i)):=((X\times \mathrm{A}^{1})_{Z}\backslash X_{Z})/(((X\times \mathrm{A}^{1})_{Z}\backslash X_{Z})\backslash j(i)(Z\times \mathrm{A}^{1}))

Thus, it suffices to show both  $\eta$(i) and  $\kappa$(i) are \mathrm{A}^{1} ‐weak equivalences.

\bullet To show both  $\eta$(i) and  $\kappa$(i) are \mathrm{A}^{1} ‐weak equivalences, we cover X=\cup U_{ $\alpha$} with

(3.89)

(3.93) closed

étale

| \{\mathrm{z} \}
closed

as above [15, §17].

\bullet By some Meyer‐Vietoris property, it is reduced to showing that, for each  $\alpha$
,

both

(3.94)  $\eta$(i_{ $\alpha$}):T(i_{ $\alpha$})\rightarrow T(j(i))

(cf. (3.91)) and

(3.95)  $\kappa$(i_{ $\alpha$}):Th(\mathcal{N}_{U_{ $\alpha$},Z\cap U_{ $\alpha$}})\rightarrow T(j(i))

(cf. (3.92)) are \mathrm{A}^{1} ‐weak equivalences.

\bullet From (3.93), we see

| \{\mathrm{z} \}\mathrm{T}\mathrm{h}\mathrm{T}\mathrm{h}(\mathrm{Z}^{\cap})(3.96)
-----\rightarrow

\mathrm{w}.\mathrm{e}.

By some Nisnevich property applied to (3.93), we see

\mathrm{T} (i)(3.97)
-----\rightarrow

\mathrm{w}.\mathrm{e}.

The Nisnevich neighborhood diagram (3.93) also induces another Nisnevich neigh‐
borhood diagram
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(3.98)
closed

etale

| \{\mathrm{z} \}\mathrm{g} \mathrm{A} | \{\mathrm{z} \} $\alpha  \alpha$ 0;:::;0
closed

Applying some Nisnevich property again, this time to (3.98), we see

\mathrm{T} (\mathrm{j}(\mathrm{i}))(3.99)
-----\rightarrow

\mathrm{w}.\mathrm{e}.

\bullet From (3.96), (3.97), (3.99), the \mathrm{A}^{1} ‐equivalence properties of  $\eta$(i_{ $\alpha$})(3.94) and  $\kappa$(i)
(3.95) are equivalent to the \mathrm{A}^{1} ‐equivalence properties of

(3.100)  $\eta$(\overline{i_{ $\alpha$}}):T(\overline{i_{ $\alpha$}})\rightarrow T(j(\overline{i_{ $\alpha$}}))
and

(3.101) \rightarrow T(j(\overline{i_{ $\alpha$}}))

respectively, corresponding to the canonical closed embedding

| \{\mathrm{z} \}
| \{\mathrm{z} \}(3.102)

However, in this case, we have a canonical equivalence

Thus, the proof of the homotopy purity is now reduced to showing the \mathrm{A}^{1} ‐equivalence
of

(3.103) $\lambda$_{t}(\overline{i_{ $\alpha$}}) : T(\overline{i_{ $\alpha$}})\rightarrow T(j(\overline{i_{ $\alpha$}})) (t=0,1)

induced by the cartesian diagram

| \{\mathrm{z} \}(3.104)
closed

| \{\mathrm{z} \}\mathrm{g} \mathrm{A} | \{\mathrm{z} \} $\alpha$  $\alpha$ 0;:::;0
closed

where  t=0 ,
1 and $\lambda$_{0}(\overline{i_{ $\alpha$}})= $\kappa$(\overline{i_{ $\alpha$}}) , $\lambda$_{1}(\overline{i_{ $\alpha$}})= $\eta$(\overline{i_{ $\alpha$}}) .
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\bullet To prove the \mathrm{A}^{1} ‐equivalence of (3.103), we set

(3.105)

and observe that

d:=c_{ $\alpha$}, s_{\vec{0}}:=\overline{i_{ $\alpha$}}

(3.106) $\lambda$_{t}(s_{\vec{0}}) : T(s_{\vec{0}})\rightarrow T(j(s_{\vec{0}})) (t=0,1)

is induced by the cartesian diagram

closed

| \{\mathrm{z} \} | \{\mathrm{z} \}closed

(3.107)

=Z\times pt
closed

| \{\mathrm{z} \} | \{\mathrm{z} \}closed

Thus, to prove the \mathrm{A}^{1} ‐equivalence of (3.106) to finish the proof of the homotopy

purity, we may suppose Z=pt

\bullet The critical obervation is the following identifications of the relevant spaces as the

total spaces of appropritate line bundles:

(3.108)

(\mathrm{A}^{d}\times \mathrm{A}^{1})_{\{0,0\} ,\sim}-(\mathrm{A}^{d})_{\{0,0\} ,\sim}\mathrm{A}^{1}\rightarrow

\Vert \Vert d+1 \downarrow^{d}
((\{0, ..\sim^{0\}\times \mathrm{A}^{1})\backslash \{0}\sim^{0\})\times}d.,,d+\cdot 1'(\mathrm{A}^{1}\backslash \{0\})^{\mathrm{A}^{1}}\rightarrow((\mathrm{A}^{d}\times \mathrm{A}^{1})\backslash \{0_{d+1}\sim 0\})\times(\mathrm{A}^{1}\backslash \{0\}^{\mathrm{A}^{1}}\leftarrow(\mathrm{A}^{d}\times\{0\}\backslash \{0_{d+1}\sim 0\})\times(\mathrm{A}^{1}\backslash \{0\}^{\mathrm{A}^{1}}

pt\downarrow\rightarrow \mathrm{p}^{d}\mathrm{p}^{d1}pt\mapsto[0, ..\sim_{d}0,1]\overline{[_{\frac{v_{1},\ldots,v_{d}}{d}},0]\leftarrow|[_{\frac{v_{1},\ldots,v_{d}}{d}}]}\downarrow\underline{\downarrow}
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This restricts to the following identification:

\{\mathrm{z} \{\mathrm{z}(3.109)
closed

1),\mathrm{t}(0, . . . , 0\{\mathrm{z}
\{\mathrm{z} closed

((\mathrm{v}, $\lambda$),\mathrm{t})( $\lambda$ \mathrm{v}, $\lambda$ \mathrm{t})

pt

\{\mathrm{z}pt

From this, we may identify

(3.110) closed

with

pt
closed

Thus, we see the induced map

\rightarrow \mathrm{P}^{d}\backslash \mathrm{P}^{d-1}[_{\frac{v_{1},\ldots,v_{d}}{d}}\overline{\overline{},1]\leftarrow|(_{\frac{v_{1},\ldots,v_{d}}{d}})}^{\mathrm{A}^{d}}

pt (t=0,1)

| \{\mathrm{z} \} | \{\mathrm{z} \}closed

(t=0,1)

closed

(3.111) $\lambda$_{t}(s_{\vec{0}}) : T(s_{\vec{0}})\rightarrow T(j(s_{\vec{0}})) (t=0,1)

of (3.110) is induced by the following relative morphism

\mathrm{v}(\mathrm{v},\mathrm{t})-----\rightarrow
(t=0,1)

from which, we see easily that $\lambda$_{t}(S) (3.111) is an \mathrm{A}^{1} ‐weak equivalence. This

completes the proof of the homotopy purity.

\square 
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