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New examples of the Borsuk‐Ulam groups

By

Ikumitsu Nagasaki * and Fumihiro Ushitaki **

Abstract

A Borsuk‐Ulam group (BUG) G is a group which satisfies the inequality \dim V-\dim V^{G}\leqq
\dim W-\dim W^{G} if whenever we have an isovariant map  $\varphi$ :  V\rightarrow W ,

where V and W are

G‐representations. Except some cases, it is still unknown what kind of groups are Borsuk‐Ulam

groups. In this paper, we introduce a new sufficient condition for Borsuk‐Ulam groups called

the Möbius condition. It yields that PSL(2, p^{r}),SL(2,p^{r}) and GL(2, p^{r}),which are unknown

to be Borsuk‐Ulam groups, are Borsuk‐Ulam groups for any prime p.

§1. Introduction

Let G be a group. Suppose X and Y are G‐spaces. A G‐equivariant map  $\varphi$ :  X\rightarrow Y

is called a G ‐isovariant map, if it preserves the isotropy groups, that is, G_{x}=G_{ $\varphi$(x)}
holds for all x\in X . As is well known, the Borsuk‐Ulam theorem ([1]) is stated as

follows:

Proposition 1.1. Let C_{2} be a cyclic group of order 2. Assume that C_{2} acts on

both S^{m} and S^{n} antipodally. If there exists a continuous C_{2} ‐map f : S^{m}\rightarrow S^{n} ,
then

m\leqq n holds.

The Borsuk‐Ulam theorem is regarded to be a theorem for isovariant maps, since

the actions on both spheres are free. Using the concept of isovariant maps, Wasserman
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defined the Borsuk‐Ulam groups ([4]). Let G be a compact Lie group. Let V and W be

G‐representations with the G‐fixed point sets V^{G} and W^{G} respectively. We say that G

is a Borsuk‐Ulam group (BUG) if whenever we have a G‐isovariant map  $\varphi$ :  V\rightarrow W,

\dim V/V^{G}\leqq\dim W/W^{G} ,
that is,

\dim V-\dim V^{G}\leqq\dim W-\dim W^{G}

holds. As we will see in the next section, Wasserman gave some sufficient conditions

that a group is a BUG in [4], that is, he proved that a group G is a BUG if G is

solvable or satisfies the prime condition. However, it has been unknown whether his

criterions are necessary or not. The purpose of this paper is to present a new sufficient

condition for being a BUG and construct new examples of BUGs which does not satisfy
Wasserman�s conditions. Our new condition is called the Möbius condition because it

is expressed with the Möbius function. Our main result is as follows:

Main Theorem. Let \mathrm{F}_{q} be a finite field with q=p^{r} elements, where p is a

prime number, and r is a positive integer. Then,

GL(2, q)=\{\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right)|a, b, c, d\in \mathrm{F}_{q} ,
ad—bc \neq 0\},

SL(2, q)=\{\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right)|a, b, c, d\in \mathrm{F}_{q} ,
ad—bc =1\} ,

and

PSL ( 2, q)=SL(2, q)/\{\pm I\}

are B UGs.

Remark. The groups in our Main Theorem are not solvable if q>3 . Moreover,
there are infinitely many such kinds of finite groups which do not satisfy the prime
condition.

This paper is organized as follows. In section 2, we review some properties of

BUGs from [4]. In section 3, we present our new sufficient condition that a finite group

becomes a BUG. Section 4 is devoted to the proof of our main result. In the last section,

by constructing examples which do not satisfy the prime condition, we show that our

results truly give new examples of BUGs.

Acknowledgment: We would like to express our gratitude to the referee. He/She
carefully read our early manuscript and gave us useful suggestions. In particular, we

owe to the referee for the maximality condition and its property (Definition 3.3 and

Proposition 3.4).
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§2. The Borsuk‐Ulam groups

In this section, we review the Borsuk‐Ulam groups and the prime conditions from

[4]. Let G be a compact Lie group. Let V and W be G‐representations with the G‐fixed

point sets V^{G} and W^{G} respectively. Then, there exists a G‐isovariant map  $\varphi$ :  V\rightarrow W

if and only if there exists a G‐isovariant map $\varphi$' : V/V^{G}\rightarrow W/W^{G} . As mentioned in

the first section, the Borsuk‐Ulam group (BUG) is defined as follows.

Denition 2.1. Let G, V and W be as above. We say that G is a Borsuk‐

Ul am group (BUG) if whenever we have a G‐isovariant map  $\varphi$ :  V\rightarrow W, \dim V/V^{G}\leqq
\dim W/W^{G} ,

that is,

\dim V-\dim V^{G}\leqq\dim W-\dim W^{G}

holds.

For example, any cyclic group of prime order is a BUG. In fact, let C_{p} be a finite

cyclic group of prime order p . Then, V/V^{C_{p}} and W/W^{C_{p}} are free C_{p}‐representations.

Hence, if p=2, \dim V/V^{C_{2}}\leqq\dim W/W^{C_{2}} holds by the Borsuk‐Ulam theorem. Since

the Borsuk‐Ulam theorem also holds between the spheres with free C_{p}‐actions for any

odd prime p ([2]), the inequality \dim V/V^{C_{p}}\leqq\dim W/W^{C_{p}} also holds.

Wasserman conjectured that all compact Lie groups are BUGs. However, only few

things are known about BUGs. For example, it is unknown whether a subgroup of a

BUG is also a BUG or not. For the study of the BUGs, the following two properties
are useful.

Lemma 2.2 ([4]). Let G be a BUG. If H is a closed normal subgroup of G ,
then

G/H is a BUG.

Lemma 2.3 ([4]). Let H and K be BUGs. If 1\rightarrow H\rightarrow G\rightarrow K\rightarrow 1 is an exact

sequence of compact Lie groups, then G is a BUG.

By Lemma 2.3, we see that if there exists a finite group which is not a BUG, then

there exists a finite simple group which is not a BUG. Since any cyclic group of prime
order is a BUG, Lemma 2.3 yields the following proposition.

Proposition 2.4 ([4]). Any solvable compact Lie group is a BUG.

Wasserman introduced the prime condition for positive integers and finite groups

as follows:
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Denition 2.5 ([4]).

(1) An integer n is said to satisfy the prime condition if \displaystyle \sum_{i=1}^{s}\frac{1}{p_{i}}\leqq 1 holds, where n=

p_{1}^{r_{1}}p_{2}^{r_{2}}\cdots p_{s}^{r_{\mathrm{s}}} is the prime factorization of n.

(2) A finite simple group G is said to satisfy the prime condition if, for each g\in G, |g|
satisfies the prime condition.

(3) Let G be a finite group, and \{e\}=G_{0}\triangleleft G_{1}\triangleleft\cdots\triangleleft G_{r}=G a composition series of

G . A finite group G is said to satisfy the prime condition if each component factor

G_{i+1}/G_{i} of G satisfies the prime condition.

This condition gives a sufficient condition for being a BUG. In fact the following
holds.

Proposition 2.6 ([4]). If a finite group G satises the prime condition, then G

is a BUG.

§3. New criterion for BUGs

In this section, we will state and prove our new sufficient condition that a finite

group becomes a BUG.

Let  $\mu$ : \mathbb{N}\rightarrow\{-1, 0, 1\} be the Möbius function, that is,  $\mu$(1)=1,  $\mu$(n)=0 if n is

divisible by the square of an integer >1,  $\mu$(n)=(-1)^{r} if n is the product of r distinct

prime numbers. Let (P, \leqq) be a poset. As is well known, the Möbius function  $\mu$ of  P is

defined inductively for a, b\in P with a\leqq b by

 $\mu$(a, a)=1 and

 $\mu$(a, b)=-\displaystyle \sum_{a\leqq z<b} $\mu$(a, z)=-\sum_{a<z\leqq b} $\mu$(z, b)
.

Let S(G) denote the set of all subgroups of G . It is made into a poset by defining
H\leqq K in S(G) if H\subset K . Let Cyc1 (G) be the full subposet of S(G) which contains

all cyclic subgroups of G . It is well known that  $\mu$(H, K)= $\mu$(|K/H|) for H,  K\in

\mathrm{C}\mathrm{y}\mathrm{c}1(G) with H\leqq K . For proving our main theorem, the following proposition plays
an important role.

Proposition 3.1. Let G be a finite group. If for any cyclic subgroup D(\neq\{1\})
of G

\displaystyle \sum_{D\leqq C\in \mathrm{C}\mathrm{y}\mathrm{c}1(C_{G}(D))} $\mu$(D, C)\geqq 0
holds, then G is a BUG, where C(D) is the centralizer of D in G.
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Proof. Suppose that there is a G‐isovariant map V\rightarrow W between G‐representations
V and W . It is sufficient to prove

\displaystyle \sum  $\mu$(D, C)\geqq 0
D\leqq C\in \mathrm{C}\mathrm{y}\mathrm{c}1(\mathrm{G})

since \{C\in \mathrm{C}\mathrm{y}\mathrm{c}1(G)|D\leqq C\leqq \mathrm{C}\mathrm{y}\mathrm{c}1(C_{G}(D))\}=\{C\in \mathrm{C}\mathrm{y}\mathrm{c}1(G)|D\leqq C\} . For g\in G,

put

 $\alpha$(g)=$\chi$_{W}(1)-$\chi$_{W}(g)-$\chi$_{V}(1)+$\chi$_{V}(g) .

Since \displaystyle \dim W=\frac{1}{|G|}\sum_{g\in G}$\chi$_{W}(1) ,
we have

\displaystyle \dim W-\dim W^{G}-(\dim V-\dim V^{G})=\frac{1}{|G|}\sum_{g\in G} $\alpha$(g) .

For H\in S(G) , put h(H)=\displaystyle \sum_{g\in H} $\alpha$(g) . For C\in \mathrm{C}\mathrm{y}\mathrm{c}1(G) , put k(C)= \displaystyle \sum  $\alpha$(g) ,

g\in gen(C)
where gen (C) is the set of all generators of C . Let D be a cyclic subgroup of G . If

D\neq\{1\} ,
we see that

h(D)=\displaystyle \sum_{g\in D} $\alpha$(g)=\sum_{C\in \mathrm{C}\mathrm{y}\mathrm{c}1(D)}k(C)
.

If D=\{1\} ,
we have

h(D)= $\alpha$(1)=$\chi$_{W}(1)-$\chi$_{W}(1)-$\chi$_{V}(1)+$\chi$_{V}(1)=0.

Then, for C\in \mathrm{C}\mathrm{y}\mathrm{c}1(G) it follows from the Möbius inversion formula that

k(C)=\displaystyle \sum_{D\in \mathrm{C}\mathrm{y}\mathrm{c}1(C)} $\mu$(D, C)h(D)
.

Hence,

h(G)=\displaystyle \sum $\alpha$(g)= \displaystyle \sum \displaystyle \sum  $\alpha$(g)= \displaystyle \sum  k(C)
g\in G CCycl(G) ggen (C) CCycl(G)

= \displaystyle \sum \sum  $\mu$(D, C)h(D)= \sum (\sum  $\mu$(D, C))h(D) .

CCycl(G) DCycl(C) DCycl(G) D\leqq C\in \mathrm{C}\mathrm{y}\mathrm{c}1(\mathrm{G})

Since D is cyclic, D is a BUG, which means h(D)\geqq 0 . Thus, by assumption  h(G)\geqq
 0. \square 

Denition 3.2. We say that a cyclic subgoup D(\neq\{1\}) of a finite group G

satisfies the Möbius condition if D satisfies the inequality stated in Proposition 3.1. We

say that a finite group G satisfies the Möbius condition if each cyclic subgroup D(\neq\{1\})
satisfies the Möbius condition.
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There is an equivalent condition to the Möbius condition as follows.

Denition 3.3. Let G be a finite group. If for any element g\in G of prime

order, there exists a cyclic subgroup C of G such that C contains any D\in \mathrm{C}\mathrm{y}\mathrm{c}1(G) with

g\in D ,
we say that G satisfies the maximality condition.

Proposition 3.4. Finite group G satises the Möbius condition if and only if
G satises the maximality condition.

Proof. Suppose G satisfies the maximality condition. Let D\in \mathrm{C}\mathrm{y}\mathrm{c}1(G) with

D\neq\{1\} . Applying the maximality condition for a generator g of D
,

we can find

\hat{D}\in \mathrm{C}\mathrm{y}\mathrm{c}1(G) such that \hat{D} contains any C\in \mathrm{C}\mathrm{y}\mathrm{c}1(G) with D\leqq C . If D=\hat{D}
,

then we

have

\displaystyle \sum_{D\leqq C\in \mathrm{C}\mathrm{y}\mathrm{c}1(G)} $\mu$(D, C)= $\mu$(D, D)=1
and otherwise

\displaystyle \sum_{D\leqq C\in \mathrm{C}\mathrm{y}\mathrm{c}1(G)} $\mu$(D, C)=\sum_{D\leqq C\in \mathrm{C}\mathrm{y}\mathrm{c}1(\hat{D})} $\mu$(D, C)=0
because \{C\in \mathrm{C}\mathrm{y}\mathrm{c}1(G)|D\leqq C\}=\{C\in \mathrm{C}\mathrm{y}\mathrm{c}1(G)|D\leqq C\leqq\hat{D}\} holds.

Conversely, suppose the maximality condition does not hold. There are a cyclic

subgroup D\neq\{1\} and maximal cyclic subgroups \hat{D}_{1} and \hat{D}_{2} of G such that D<

\hat{D}_{1}, D<\hat{D}_{2} and \hat{D}_{1}\neq\hat{D}_{2} . Here a cyclic subgroup \hat{D} is called maximal if there is no

cyclic subgroup C of G with \hat{D}<C . By considering the maximality of such D
,

we

may suppose that for any D'\in \mathrm{C}\mathrm{y}\mathrm{c}1(G) with D<D' there exists a unique maximal

cyclic subgroup \hat{D}' such that D'\leqq\hat{D}' . Let \hat{D}_{1} ,
. .

:; \hat{D}_{m} be all distinct maximal cyclic

sugroups of G containing D . Then, we have

\displaystyle \sum  $\mu$(D, C)= \sum \sum  $\mu$(D, C)-(m-1) $\mu$(D, D)=-(m-1)<0.
DCCycl(G) 1\leqq j\leqq m D\leqq C\in \mathrm{C}\mathrm{y}\mathrm{c}1(\hat{D}_{j})

\square 

§4. Proof of Main Thoerem

Let p be a prime number, and q=p^{r}(r\in \mathbb{N}) . For simplicity, put SL=SL(2, q) ,

PSL=PSL(2, q) and GL=GL(2, q) . For proving our main result, we review the

conjugacy classes of SL . First, we prepare the following lemma for introducing an

element B of GL which is necessary to describe the conjugacy classes of SL.

Lemma 4.1 ([3]). For each q=p^{r}(r\in \mathbb{N}) , GL has an element B of order

(q^{2}-1) which satises the following conditions:
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(1) \langle B\rangle\supset Z(GL)=\{\left(\begin{array}{ll}
a & 0\\
0 & a
\end{array}\right)|a\in \mathrm{F}_{q}^{*}\} ,
the center of GL.

(2) If YXY^{-1}=X^{r} for X\in\langle B\rangle-Z(GL) and Y\in GL ,
then X^{r}=X or X^{q}.

(3) For any X\in\langle B\rangle-Z(GL) , C_{GL}(X)=\langle B\rangle.

(4) |N_{GL}(\langle B\rangle)|=2(q^{2}-1) .

The structure of the conjugacy classes of SL are different between the cases p=2
and odd p . For presenting its conjugacy classes, we introduce some elements of SL

which are used in the both cases. Let B be the element in Lemma 4.1. Put,

I=\left(\begin{array}{ll}
1 & 0\\
0 & 1
\end{array}\right), P=\left(\begin{array}{ll}
1 & 1\\
0 & 1
\end{array}\right), D=\left(\begin{array}{ll}
 $\delta$ & 0\\
0 & $\delta$^{-1}
\end{array}\right), C=B^{q-1},
where  $\delta$ is a generator of \mathrm{F}_{q}^{*}.

When p=2 ,
the conjugacy classes of SL are as follows:

Proposition 4.2 ([3]). Let q=2^{r}(r\in \mathbb{N}) . Then, SL(2, q) has the conjugacy
classes whose representatives are

I, P, D^{i}(1\displaystyle \leqq i\leqq\frac{q-2}{2}) , C^{j}(1\leqq j\leqq\frac{q}{2}) .

When p is an odd prime, the conjugacy classes of SL are as follows:

Proposition 4.3 ([3]). Let p be an odd prime, and q=p^{r}(r\in \mathbb{N}) . Pick a

non‐square element v\in \mathrm{F}_{q}^{*}\backslash (\mathrm{F}_{q}^{*})^{2} , and fix it. Put

Z_{0}=\left(\begin{array}{ll}
-1 & 0\\
0 & -1
\end{array}\right), P'=\left(\begin{array}{ll}
1 & v\\
0 & 1
\end{array}\right)
Then, SL(2, q) has the conjugacy classes whose representatives are

I, Z_{0}, P, PZ_{0}, P', P'Z_{0}, D^{i}(1\displaystyle \leqq i\leqq\frac{q-3}{2}) , C^{j}(1\displaystyle \leqq j\leqq\frac{q-1}{2}) .

We will prove our main result by checking that the cyclic subgroups generated by
each element presented in Propositions 4.2 and 4.3 satisfies the Möbius condition. At

first, we show that SL:=SL(2,2^{r}) is a BUG.

(i) The case of \langle P\rangle By considering the elements of  SL which is commutative to

\overline{\left(\begin{array}{ll}
1 & 1\\
0 & 1
\end{array}\right),}we see that

C_{SL}(\langle P\rangle)=\{\left(\begin{array}{ll}
1 & b\\
0 & 1
\end{array}\right)|b\in \mathrm{F}_{q}\}\cong(C_{2})^{r},
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where C_{2} is a cyclic group of order 2. Since \langle P\rangle\cong C_{2} ,
the only cyclic subgroup between

\langle P\rangle and  c_{SL}(P) is \langle P\rangle . Thus, \langle P\rangle satisfies the Möbius condition.

(ii) The case of \langle D\rangle First, we note that such a cyclic subgroup  D exists when r\geqq 2

and in this case |\langle D\rangle|=q-1 . Let X=\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right) be an element C_{SL}(\langle D\rangle) . By

DX=XD
,

we have c $\delta$=c$\delta$^{-1} and b $\delta$=b$\delta$^{-1} . Since  $\delta$ is a generator of \mathrm{F}_{q}^{*}\cong C_{q-1},
b=c=0 holds. Hence,

C_{SL}(\langle D\rangle)=\{\left(\begin{array}{ll}
a & 0\\
0 & a^{-1}
\end{array}\right)|a\in \mathrm{F}_{q}^{*}\}=\langle D\rangle.
Thus, \langle D\rangle satisfies the Möbius condition.

(iii) The case of \langle D^{i}\rangle As similar as the case of \langle D\rangle,  C_{SL}(\langle D^{i}\rangle)=\langle D\rangle . If \langle D^{i}\rangle=
\langle D\rangle ,

then

\displaystyle \sum_{\langle D^{i}\rangle\leqq H\in \mathrm{C}\mathrm{y}\mathrm{c}1(\langle D\rangle)} $\mu$(\langle D^{i}\rangle, H)= $\mu$(\langle D\rangle, \langle D\rangle)=1.
If \langle D^{i}\rangle< \langle D,the definition of the Möbius function

 $\mu$(\displaystyle \langle D^{i}\rangle, \langle D\rangle)=-\sum_{\langle D^{i}\rangle\leqq H:\mathrm{c}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{i}\mathrm{c}<\langle D\rangle} $\mu$(\langle D^{i}\rangle, H)
yields

\displaystyle \sum_{\langle D^{i}\rangle\leqq H\in \mathrm{C}\mathrm{y}\mathrm{c}1(\langle D\rangle)} $\mu$(\langle D^{i}\rangle, H)=0.
Thus, \langle D^{i}\rangle satisfies the Möbius condition.

\underline{(\mathrm{i}\mathrm{v})\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{o}\mathrm{f}\langle C^{j}\rangle} Assume that C^{j}=B^{j(q-1)} belongs to Z(GL) for 1\displaystyle \leqq j\leqq\frac{q}{2}.
Then, since C is an element of SL(2, q) , C must be equal to I

,
which contradicts to

the order of B . Thus, C^{j}\in\langle B\rangle-Z(GL) . Hence, it follows from Lemma 4.1 that

 C_{GL}(\langle C^{j}\rangle)=\langle B\rangle for  1\displaystyle \leqq j\leqq\frac{q}{2} . Therefore,

C_{SL}(\displaystyle \langle C^{j}\rangle)=\langle B\rangle\cap SL=\langle C\rangle (1\leqq j\leqq\frac{q}{2}) .

By a similar discussion as the previous case, we obtain

\displaystyle \sum_{\langle C^{j}\rangle\leqq H\in \mathrm{C}\mathrm{y}\mathrm{c}1(\langle C\rangle)} $\mu$(\langle C^{j}\rangle, H)=\left\{\begin{array}{ll}
0 & \mathrm{i}\mathrm{f} \langle C^{j}\rangle<\langle C\rangle\\
 1 & \mathrm{i}\mathrm{f} \langle C^{j}\rangle=\langle C\rangle.
\end{array}\right.
Thus, \langle C^{j}\rangle satisfies the Möbius condition.
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Next, we present outline of the proof that PSL :=SL(2, p^{r})/\{\pm I\} is a BUG for

any odd prime p and r\in \mathbb{N} . Let \overline{X} denote the element of PSL represented by X\in SL.

(i) The case of \langle\overline{P}\rangle
By a similar discussion as  SL(2,2^{r}) case, we see that

C_{PSL}(\langle\overline{P}\rangle)=\{\overline{\left(\begin{array}{ll}
1 & b\\
0 & 1
\end{array}\right)} b\in \mathrm{F}_{q}\}\cong(C_{p})^{r}
Since \langle\overline{P}\rangle\cong C_{p} ,

the only cyclic subgroup between \langle\overline{P}\rangle and  c_{PSL}(P) is \langle\overline{P}\rangle . Thus,

\langle\overline{P}\rangle satisfies the Möbius condition.

(ii) The case of \langle\overline{P'}\rangle
We can check that \langle\overline{P'}\rangle satisfies the Möbius condition as similar as case (i).

(iii) The case of \langle\overline{D^{i}}\rangle

Suppose that  q\equiv 1 mod4. If i\displaystyle \neq\frac{q-1}{4} ,
then we have

C_{PSL}(\langle\overline{D^{i}}\rangle)=\{\overline{\left(\begin{array}{ll}
a & 0\\
0 & a^{-1}
\end{array}\right)}|a\in \mathrm{F}_{q}^{*}\}=\langle\overline{D}\rangle\cong C_{\frac{q-1}{2}},
hence

\displaystyle \sum_{\langle\overline{D^{i}}\rangle\leqq H\in \mathrm{C}\mathrm{y}\mathrm{c}1(\langle\overline{D}\rangle)} $\mu$(\langle\overline{D^{i}}\rangle, H)=0
holds. On the other hand, if i=\displaystyle \frac{q-1}{4} ,

then we have

C_{PSL}(\langle\overline{D^{i}}\rangle)=\{\overline{\left(\begin{array}{ll}
a & 0\\
0 & a^{-1}
\end{array}\right)}, \overline{\left(\begin{array}{ll}
0 & b\\
-b^{-1} & 0
\end{array}\right)}|a, b\in \mathrm{F}_{q}^{*}\}\cong D_{q-1},
hence

\displaystyle \sum_{\langle\overline{D^{i}}\rangle\leqq H\in \mathrm{C}\mathrm{y}\mathrm{c}1(c_{PsL(\langle\overline{D^{i}}\rangle))}} $\mu$(\langle\overline{D^{i}}\rangle, H)=0.
holds, where D_{q-1} is a dihedral group of order q-1 . Suppose that q\equiv 3 mod4. Then,
we have

C_{PSL}(\langle\overline{D^{i}}\rangle)=\{\overline{\left(\begin{array}{ll}
a & 0\\
0 & a^{-1}
\end{array}\right)}|a\in \mathrm{F}_{q}^{*}\}=\langle\overline{D}\rangle\cong C_{\frac{q-1}{2}},
hence

\displaystyle \sum_{\langle\overline{D^{i}}\rangle\leqq H\in \mathrm{C}\mathrm{y}\mathrm{c}1(\langle\overline{D}\rangle)} $\mu$(\langle\overline{D^{i}}\rangle, H)=0
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holds. Thus, \langle\overline{D^{i}}\rangle satisfies the Möbius condition.

(iv) The case of \langle\overline{C^{j}}\rangle

Suppose that  q\equiv 3 mod4. If j\displaystyle \neq\frac{q+1}{4} ,
then we have

C_{PSL}(\langle\overline{C^{j}}\rangle)=\langle\overline{C}\rangle\cong C_{\frac{q+1}{2}},
hence

\displaystyle \sum_{\langle\overline{C^{j}}\rangle\leqq H\in \mathrm{C}\mathrm{y}\mathrm{c}1(\langle\overline{C}\rangle)} $\mu$(\langle\overline{C^{j}}\rangle, H)=0
holds. On the other hand, if j=\displaystyle \frac{q+1}{4} ,

then we have

C_{PSL}(\langle\overline{C^{j}}\rangle)=\{\overline{\left(\begin{array}{ll}
a & -b\\
b & a
\end{array}\right)}, \overline{\left(\begin{array}{ll}
c & d\\
d & -c
\end{array}\right)}|a^{2}+b^{2}=1, c^{2}+d^{2}=-1\}\cong D_{q+1},
hence

\displaystyle \sum_{\langle\overline{C^{j}}\rangle\leqq H\in \mathrm{C}\mathrm{y}\mathrm{c}1(c_{PsL(\langle\overline{C^{j}}\rangle))}} $\mu$(\langle\overline{C^{j}}\rangle, H)=0
holds, where D_{q+1} is a dihedral group of order q+1 . Suppose that q\equiv 1 mod4. Then,
we obtain

C_{PSL}(\langle\overline{C^{j}}\rangle)=\langle\overline{C}\rangle\cong C_{\frac{q+1}{2}},
hence

\displaystyle \sum_{\langle\overline{C^{j}}\rangle\leqq H\in \mathrm{C}\mathrm{y}\mathrm{c}1(\langle\overline{C}\rangle)} $\mu$(\langle\overline{C^{j}}\rangle, H)=0
holds. Now, we have checked that SL(2,2^{r}) and PSL(2,p^{r}) (p:\mathrm{o}\mathrm{d}\mathrm{d} prime) satisfy the

Möbius condition, thereby they are BUGs. By applying Lemma 2.3 to the following
exact sequences

1\rightarrow\{\pm I\}\rightarrow SL(2,p^{r})^{p}\rightarrow PSL(2,p^{r})inclroj\rightarrow 1 (exact)

1\rightarrow SL(2, q)\rightarrow GL(2, q)incl\rightarrow \mathrm{F}_{q}^{*}det\rightarrow 1 (exact);

we complete the proof.

§5. Our results and the prime condition

Let p be a prime number. For q=p^{r}, (r>1) , PSL(2, q) is simple. In this section,

by constructing examples which do not satisfy the prime condition, we show that our

results truly give new examples of BUGs.
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Example 5.1. For r\geqq 2 , put q=2^{r} . We consider the element D\in SL(2, q)=
PSL(2, q) defined in Proposition 4.2. Its order is q-1 . If r=180m(m\in \mathbb{N}) , q-1 does

not satisfy the prime condition, thereby, such a SL(2, q) is a new example of a BUG. In

fact, the set of prime factors of 2^{180}-1 is {3, 5, 7, 11, 13, 19, 31, 37, 41, 61, 73, 109, 151, 181, 331, 631,

1321; 23311; 54001; 18837001; 29247661} and

\displaystyle \sum_{p|2^{180}-1}\frac{1}{p}=\frac{35321221549140241319311687902094091214451968173237813}{34055456463686419074629933936673537413749758270746715}>1
p: prime

Example 5.2. Let p be an odd prime number. For r\geqq 2 , put q=p^{r} . We take

the element D\in SL(2, q) defined in Proposition 4.3. Then the order of \overline{D}\in PSL(2, q)
is \displaystyle \frac{q-1}{2} . As a similar discussion as Example 5.1, we obtain:

(1) If p=3 and r=60m(m\in \mathbb{N}) , \displaystyle \frac{q-1}{2} does not satisfy the prime condition because

it is divisible by 10010=2\cdot 5\cdot 7 .1113.

(2) If p=5 and r=30m(m\in \mathbb{N}) , \displaystyle \frac{q-1}{2} does not satisfy the prime condition because

it is divisible by 462=2\cdot 3\cdot 7\cdot 11.

(3) If p\geqq 7 and r=4m(m\in \mathbb{N}) , \displaystyle \frac{q-1}{2} does not satisfy the prime condition because

it is divisible by 30.

Thus, for these p and r, PSL(2,p^{r}) is a new example of a BUG.
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