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Seifert construction for nilpotent groups and
Application to S!-fibred nilBott Tower

By

MAaYUMI NAKAYAMA *

Abstract

We shall introduce a notion of S*-fibred nilBott tower. It is an iterated S*-bundle whose
top space is called an S'-fibred nilBott manifold. The nilBott tower is a generalization of real
Bott tower from the viewpoint of fibration. We prove that any S'-fibred nilBott manifold is
diffeomorphic to an infranilmanifold. An S'-fibred nilBott tower defines a sequence of group
extensions. We study the group extension at each stage to apply Seifert rigidity for S'-fibred
nilBott manifolds.

§1. Introduction

Let M be a closed aspherical manifold which is a top space of an iterated S'-bundles

over a point:
(1.1) M=M, - M,_1— ...~ M, — {pt}.

Suppose X is the universal covering of M and each X; is the universal covering of M,
and put 7 (M;) =m; (i =1,...,n—1) and 7y (M) = 7.

Definition 1.1.  An S'-fibred nilBott tower is a sequence (1.1) which satisfies I,
IT and III below (i = 1,...,n — 1). The top space M is said to be an S!-fibred nilBott
manifold (of depth n).

I. M; is a fiber space over M;_; with fiber S*'.
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II. For the group extension
(1.2) 1—27Z—m — w1 — 1
associated to the fiber space (I), there is an equivariant principal bundle:

III. Each m; normalizes R.
The purpose of this paper is to announce the following result.

Theorem 1.2.  Suppose that M is an S*-fibred nilBott manifold.

(1) If every cocycle of Hj(m;—1;7Z) which represents a group extension (1.2) is of finite
order, then M is diffeomorphic to a Riemannian flat manifold.

(II) If there exists a cocycle of Hi(m;—1;7) which represents a group extension (1.2) is
of infinite order, then M is diffeomorphic to an infranilmanifold. In addition, M
cannot be diffeomorphic to any Riemannian flat manifold.

§2. Preliminaries

§2.1. Infrahomogeneous space

Let G be a (noncompact) simply connected Lie group, and Aut(G) denote the
group of automorphisms of G onto itself. Put A(G) = G x Aut(G). A(G) becomes a

group;

(9,@) - (h, B) = (g - a(h), - B)

(g,h € G,a, 8 € Aut(G)). A(G) is called the affine group of G. Here, letting X = G,
an affine action (A(G), X) is obtained as follows:

((9,a),z) =g -a(z).

Let H C Aut(G) be a compact subgroup (for example, maximal compact subgroup,
finite groups). Form a subgroup E(G) = Gx H C A(G). Consider the action (E(G), X).
We note that if H is compact, then it is easy to check the following.

Lemma 2.1 (Proper action). (E(G), X) is a proper action.

By Lemma 2.1, if 7 C E(G) is a discrete subgroup, we obtain a properly discontin-
uous action (m, X).
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Definition 2.2. The quotient space X/m is said to be an infrahomogeneous
orbifold. When 7 has no elements of finite order, 7 is said to be torsionfree, and X /7
is called an infrahomogeneous manifold.

Example 2.3.

(1) Taking the vector space R™ as G it gives the usual affine group A(R™) = R™ x
GL(n,R). If H is a maximal compact subgroup O(n) of GL(n,R), we have the
euclidean group E(R™) = R™ x O(n). A discrete uniform subgroup 7 of E(R") is
called a crystallographic group. If # C E(R"™) is a torsionfree crystallographic group,
7 is called a Bieberbach group. Moreover, the infrahomogeneous space R" /7 is an
Fuclidean space form, i.e. a Riemannian flat manifold.

(2) When G is a simply connected nilpotent Lie group N, for any torsionfree discrete
uniform subgroup 7 C E(N), N/7 is called an infranilmanifold.

We have the fundamental classical result for crystallographic groups.

Theorem 2.4 (Bieberbach first theorem).  Let # C E(R™) be a crystallographic
group, then R" Nm =2 Z" and 7/R™ N7 is a finite group.

The above theorem is extended to the almost crystallographic groups. See [4] for

instance.

Theorem 2.5 (Auslander-Bieberbach theorem).  Let m be a torsionfree discrete
uniform subgroup of E(N), then N N m is a mazimal normal nilpotent subgroup of
and ©/N Nw is a finite group.

§3. Nil Geometry

Let
(3.1) l-A—=>rm—=F—=1

be a group extension where 7 is a torsionfree group, A is a torsionfree finitely generated
nilpotent group, and F' is a finite group. By Mal'cev’s existence theorem, there is a
(simply connected) nilpotent Lie group A containing A as a discrete uniform subgroup.
The rest of this section is to review the following realization theorem obtained in [5].

Theorem 3.1 (Realization).  There exists a discrete faithful representation p :
7 — BE(N) such that p|A =id. In particular, N'/p(w) is an infranilmanifold.
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In order to prove this theorem, we need several facts. So we shall prepare them in
turn.

§3.1. 2-cocycle

We recall the group cohomology. (Compare [10], [2] for example.)
Let G,Q be groups and ¢ : Q — Aut(G) a function. Suppose there is a function
f:Q x Q — G which satisfies that

(i) ¢(a)(@(B)(n) = f(a,B)p(aB)(n)f(a, B)~!
(ii) f(aa 1) = f(17a) = 17
(iii) @(a)(f(B, V) f(a,By) = fla, B)f(aB,v),

where n € G and «, 3,7 € (). Then f defines a group E which is the product G x @
with the group law:

(3.2) (n, @)(m, B) = (n- ¢p(a)(m) - f(«, B), aB).

Then there is a ¢-group extension 1 — G — E — Q — 1 where v(n,a) = a and the
group F is denoted by G Xy 4) Q-

Conversely, given a group extension 1 — G — E —» @ — 1, we can associate F
with a ¢- group extension. Choose a section ¢ : Q@ — E (voq =1id), and ¢(1) = 1. A
function ¢ : Q — Aut(G) is defined to be

d(a)(n) = qla)ng(a)™ Vaec@Q,¥n e Q).

Both q(af), ¢(a)q(B) are mapped to af € @, so there is an element f(«, ) € G such
that f(a, B) - q(af) = q(a)q(B). Then it is easily checked that f: Q x Q — G satisfies
the above (i) (ii) (iii).

Let Opext(Q, G, ¢) be the set of all congruence classes of ¢- group extensions. Then
an element [f] € Opext(Q, G, ¢) is represented by an extension 1 - G - E — Q — 1
with £ = G X(f,4) Q. It is easy to check that [fi] = [f2] € Opext(Q, A, ¢) if and only if
there is a function A : Q — C(G) such that

(33) fl(aaﬂ):(sl/\(o‘vﬂ)'fé(aaﬁ) (v OC,BEQ)-

Here C(G) is the center of G and &' is defined by §'A(a, B) = ¢(a)(A(B))A(Q)A(aB) .
For simplicity, we write it as fi = 6'\ - fo.

In particular, when G is an abelian group A, ¢ : Q — Aut(A) is a homomorphism
and hence A is a @-module. So there is the group cohomology H(]%(Q, A) and f is a
2-cocycle by (iii), i.e. [f] € H3(Q, A). Therefore any extension 1 -+ A = E = Q — 1
corresponds to a cocycle [f] € H(]%(Q, A). It is easy to check the following.
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Proposition 3.2.  Suppose that A is an abelian group. Then there is a one-to-
one correspondence between H(]%(Q,A) and Opext(Q, A, ¢).

Remark.  Suppose Q = F' is a finite group and f : FF x F — R" is a 2-cocycle
relative to ¢ : F' — Aut(R™). Put h: F — R™;

(3.4) h(a) = fla,7).

TEF
Then
'h(a, B) = ¢(a)(h(B)) — h(aB) + h(a)
=D d@)(fB,7) =D flaB, 1)+ ) fla,7)
TEF TEF TEF
= (flaB,7) = fa, 1) + f(e. B) = D flaB,m) + > fla,7)
TEF TeF TEF
= |F|f(a,B)
ie. 6! |}|h f. It implies that
(3.5) H3(F;R") =0.

§3.2. Pushout

Let m, A and NV be as before and 1 -+ A — m — @ — 1 a group extension which
is represented by [f] € Opext(Q, A, ¢). Given a function ¢ : Q@ — Aut(A), Mal'cev’s
unique extension theorem implies that each automorphism ¢(a) : A — A extends
uniquely to an automorphism ¢(a) : N' — N. In particular, this gives a correspondence
é: Q — Aut(N). Note that it is not necessarily a homomorphism. In general it satisfies

(3.6) $(a)($(B8)()) = f(a, B)g(aB)(x)f(a, B)! (x € N).

Then the “pushout” 7N = {(x,a) | * € N,a € Q} can be constructed. Its group law

is defined by (2, ) - (y, 8) = (26(c) (9)f (e, B), aB);

1 s N TN s Q s 1
(3.7) | | [

1 > A > T > Q) > 1.

This group (extension) 7\ is also represented by [f] € Opext(Q, N, ¢).
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§ 3.3. Existence of the Seifert construction

Let W be a contractible smooth manifold. Suppose that a group @ acts properly
discontinuously on W such that the quotient space W/Q is compact. Given a group

extension:

(3-8) 1 sy A T —— Q > 1,

we shall show that there is an action of 7 on N/ x W which is compatible with the left
translations of . Let Diff (V" x W) be the group of all diffeomorphisms of N'x W onto
itself. A is a subgroup of Diff (V' x W) via an embedding: [(n)(m,a) = (nm, «).

We denote Diff¥ (M x W) the normalizer of {(A) in Diff (A" x W). Let Map(W, )
be the set of smooth maps from W into N. Then Diff¥ (N x W) coincides with the
group Map(W, ') x (Aut(N) x Diff(W)) with the group law:

My g1, h1)(A, g, h) = ((g1 o Ao hiY) - A1, 919, hih)

and
(A g, h)(z,w) = (g(z) - A(hw), hw)

for (x,w) € N x W, defines an action on N' x W. See [5].
We call the set (A, 7,Q,W) a smooth data for the group extension (3.8). The
following theorem is obtained in [5].

Theorem 3.3.  For any smooth data (A, m,Q, W), there exists a continuous ho-
momorphism W : © — Diff" (N x W) such that ¥|a = 1.

U is called the Seifert construction of the smooth data (A, 7, Q, W). We shall review
the proof of [5].

Proof. Using the pushout (3.6) in §3.2, if we show that there exists a continuous
homomorphism ¥ : 7N — Diff¥ (A x W) such that ¥|xr = [, then a Seifert construction
U : 7 — Diff¥ (A x W) is obtained as a restriction. Suppose there exists a W. For
(n,a) € wN, if we put ¥(1,a) = (A, g,h) € Map(W,N) x (Aut(N) x Diff(W)), then

U(n,a) =£(n)¥(1,a) = (n- A, g,h). Then it is easy to check that

\Tl(nv Oé) = (TL ’ /\(Oﬁ), H(”) © Q_S(O‘)a Of)
where \ : Q — Map(W, ) satisfies
(3.9) fla,8) = (d(@) o A(B)oa™) - Aa) - AaB) ™" (a,8 € Q),

where f be a function representing the group extension (3.8). Therefore to guarantee
the existence of such ¥, we have only to find a map \ satisfying the condition (3.9).
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Remark that if A/ is a vector space V then Map(W,V) is a topological group with
Q-action by

(3.10) a - AMw) = ¢la)Matw)).

So we have a group cohomology H(%(Q, Map(W, V). First note that H(%(Q, Map(W,V)) =
0 for any vector space V. This vanishing is obtained by using Shapiro’s lemma. (See
[3], page 251, Lemma 8.4.)

By induction, we suppose that the statement is true for any nilpotent Lie group
whose dimension is less than dim N. Let C be the center of A" and put N7 = N/C,
7N1 = wN/C. Consider the group extension

] —— N —— N —— Q y 1
(3.11) lp lp H
1 —— M —— M —— Q > 1,

with a section ¢; = p o q of v; where ¢ is a section to v. The section ¢; determines
f1:QxQ — Ny and ¢1 : Q — Aut(N) as in §3.1. We suppose by induction on the
dimension of N that there exists A\; : @ — Map(W, N7) such that

fi(e, B) = (r(a) o Ar(B) o) - Ar(@) - Aa(af)

Choose any lift A" : Q — Map(W,N) of A1 so that A\; =po \. Put
g(a, B) = (¢(a) o N'(B) o a™) - N(a) - N(aB) ",
then there exists an element ¢(a, 8) € Map(W,C) such that

f(aaﬂ) = C(Oé,ﬁ) ' g(aaﬁ)'

Since both f and g satisfy (iii) in §3.1, ¢ is also a 2-cocycle i.e. [c] € H(]%(Q, Map(W,C))
which vanishes because C is a vector space. So there is a function n : Q@ — Map(W,C)
such that

c(a, B) = (d1(a) on(B) o a™) - n(a) - n(ap) .
Put A=n-X:Q — Map(W,N), then X satisfies (3.9). O

Remark. Let 1 - Z — m; — m;—_1 — 1 be a group extension as in (1.2). Then
m; acts on the universal cover X; of M; as freely. Assume that ¥; : m; — Diff(X;) is
the representation homomorphism for this action (7;, X;), then U, : m; — W, (m;) is the
Seifert construction of the smooth data (Z,m;, m;—1, X;-1).
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§3.4. Infranilmanifold

Let (A,m, F,{pt}) be a smooth data with finite group F' and f a function repre-
senting the given group extension 1 - A — 7© — F — 1. In the same way as the proof
of Theorem 3.3, we can obtain a 1-chain x : F' — A such that f = §'y;

(3.12) fle,8) = o) (x(B)x(@)x(aB) ™ (a.f € F).

We shall repeat the construction of x for our use. Let f : FF x F — N/C be a function
which represents 1 — N7 — wA; — F — 1, then we suppose f = 6!\ for some function
A : F — N/C by induction. Choose a lift A : F — A of A. Tt is easy to see the function
g = f-(68'N)71 is a cocycle lying in C, that is [g] € H%(F, C). As H%(F, C) = 0 from
(3.5), there is a map p : F — C such that 61y = g. Then f = 6*(u-A) and the 1-chain
X denoted by - A.

Now define an automorphism of N h(«) : N'— N for each a € F to be

h(a)(z) = x(a) ™" - ¢(a)(z) - x(a) (z € N).

Using (3.6), we can prove that h(af) = h(a)h(B) for a, 8 € F. Therefore h : F —
Aut(N) is a homomorphism. Since Aut(N) is a noncompact Lie group, it has a maximal
compact group K. Then the finite subgroup h(F) is conjugate to a subgroup of K. We
can assume that h(F) C K.

Define p : m — E(N) to be

(3.13) p((n, @) = (nx(a), () (n € A,a € F).
It is easy to check that p is a homomorphism. We define an action of m on A to be

(3.14) (n,@),2) = p(n, a)(x) = nd(a)(z)x(a) ((n,a) € ).
Theorem 3.1 is obtained by the following proposition.

Proposition 3.4.  The action (w,N) is a properly discontinuous free action. In
particular, p is a faithful representation.

Proof. First note that p|a = id, so A is contained in p(7). Since A acts as left
translations of N from (3.13), it acts properly discontinuously and freely. Moreover
since A is a finite index subgroup of p(7) from (3.1), p(7) acts properly discontinuously
on NV.

Let (n,a) € Kerp be an element of w. Then ((n,a),z) =z (Vo € N) by (3.14).
As 7 acts properly discontinuously, (n,«a) is of finite order. On the other hand, 7 is
torsionfree, we obtain (n,«) = 1 and so p is faithful. O

The following remark shows that p is a Seifert construction (cf. Theorem 3.3).
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Remark.  Let A(N)" be a group which is the product A" x Aut(N') with the group
law:

(n, @) - (m, B) = (a(m) - n, - B)
for n,m € N, and «, 8 € Aut(N'). The action (A(N)*,N) is obtained as follows:

(n,),x) = a(z) - n

for x € N. Then there is an isomorphism ¢ : A(N)* — A(N) defined by d(n,a) =
(n, p(n=1)()). Here pu : N'— Aut(N) is the conjugation homomorphism: pu(n)(x) =
nan~!. It is easily checked that

((TL, O‘)v CC) - (5(%, Oé), :l'})
This shows that the affine action (A(N), ) coincides with the above action (A(N)*, ).

Remark.  There is a commutative diagram.

l1—— N —— EWN) K » 1
(3.15) T T U
1 —— Nnp(r) —— p(m) H 1.

By the theorem of Auslander-Bieberbach, N' N p(7) is a maximal normal nilpotent
subgroup of p(7). Note that A C N N p(7), so if A is maximal, then A = N N p(m).

§3.5. Seifert rigidity

Let A; be a discrete uniform subgroup of a simply connected nilpotent Lie group
N; (i = 1,2) respectively. Let ¥y, ¥y be Seifert constructions for smooth data
(A1, 71,Q1, W1), (Ag,ma, Q2, W) respectively. Suppose there exists an isomorphism
0 : m; — w9 inducing isomorphisms 0: A1 — A, 0 : @1 — Q2. Furthermore (Qq, W1)
is equivariantly diffeomorphic to (Q2, Wa2). with respect to 6. Then S eifert rigidity shows
that (¥o(m), N1 x Wy) is equivariantly diffeomorphic to (¥;(ms), Na x Wa). See [5],
page 441.

§4. S'-fibred nilBott tower

This section is to give an idea of proof of Theorem 1.2. The details will appear in
[13]. (See also [6].) Let M; be an S*-fibred nilBott manifold (i = 1,...,n). Let

(4.1) 12Z—>m— mo1 — 1,
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be a group extension associated with a fiber space:
(4.2) St — M; — M;_.

The conjugate by each element of 7; defines a homomorphism ¢ : ;1 — Aut(Z) =
{£1}, so that the above group extension represents a 2-cocycle in Hj(m;_1;7Z). Then
we can find the commutative diagram of central extensions for each i:

1 S/ s A, N\ VR p—
(4.3) l l l
1 > R N; Niop — 1,

where A; and A;_; are torsionfree finitely generated normal nilpotent subgroups of
finite index in m; and 7;_1 respectively. And N, Ni_; are simply connected nilpotent
Lie groups containing A; and A,_; as a discrete cocompact subgroup, respectively:

1 1
F F
(4.4) 1 y 7 > T > i — 1
|
1 7 5 A~Z Ay —— 1
1 1

From Theorem 3.1 (see [5]) there exists a faithful representation

(4.5) pi+ ™ — E(N)

for which p;| 5 = id and the quotient Ni/pi(m;) is an infranilmanifold. On the other
hand, (4.5) induces the following group extension:

1 > 7 s T — w9 ——— 1
(4.6) I "’i pl
1 » 7 pilmi) —— pilmioy) — 1.

Since A~z centralizes Z, ./\7@ centralizes R in (4.3). And p; is a monomorphsim from m;_;
into E(NV;_1). Thus we have two Seifert fibrations

(Z,R) = (pi(m), Ni) == (pi(mi—1), Ni—1)



SEIFERT CONSTRUCTION FOR NILPOTENT GROUPS 131

and
(Z,R) — (mi, Xi) 2 (i1, Xi1)

(cf. (1.3)).
By induction, assume that the isomorphism p induces an equivariant diffeomor-
phism of (m;_1, X;_1) onto (p;(m;—1),N;—1). Then Seifert rigidity implies that (m;, X;)

is equivariantly diffeomorphic to (p;(m;),N;). Let M = X,,/7,. As a consequence, M
is diffeomorphic to an infranilmanifold N, /o (7).

We conclude that any S!-fibred nilBott manifold M is diffeomorphici to an in-
franilmanifold. According to Cases I, II stated in Theorem 1.2, we prove that A, is
isomorphic to a vector space or /\7n is a nilpotent Lie group but not a vector space
respectively (cf. [13]).

In order to study S'-fibred nilBott manifolds further, we introduce the following
definition:

Definition 4.1.  If an S!-fibred nilBott manifold M satisfies Case I (respectively
Case II) of Theorem 1.2, then M is said to be an S!-fibred nilBott manifold of finite type
(respectively of infinite type). Apparently there is no intersection between finite type
and infinite type. And S!-fibred nilBott manifolds are of finite type until dimension 2.

Remark.  Let M be an S!-fibred nilBott manifold of finite type, then p(r) is a
Bieberbach group (cf. Theorem 1.2). By the Bieberbach Theorem, p(7) satisfies a group
extension

(4.7) 172" —=p(r)— H—1

where Z™ = p(m) NR™, and H is the holonomy group of p(7). By Proposition 3.4, we
may identify p(7) with © whenever 7 is torsionfree.

The following Proposition 4.2 and Corollary 4.3 have been proved. See [13] for details.

Proposition 4.2.  Suppose M is an S'-fibred nilBott manifold of finite type.
Then the holonomy group of w is isomorphic to the power of cyclic group of order two
(Z2)® in (0 < s <n).

Corollary 4.3.  Fach S*-fibred nilBott manifold of finite type M admits a homo-
logically injective T*-action where k = Rank H(M). Moreover, the action is maximal,
i.e. k = Rank C'(7).
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§4.1. S!'-fibred nilBott manifolds of depth 3 (Case I).

By the definition of S'-fibred nilBott manifold M,, of depth n, My is either a torus
or a Klein bottle. In particular, M> is a Riemannian flat manifold. A 3-dimensional S'-
fibred nilBott manifold Mj is either a Riemannian flat manifold or an infranil-Heisenberg
manifold in accordance with the cases I (finite type) or II (infinite type) of Theorem
1.2.

On the other hand, there are 10-isomorphism classes Gi,...,Gg, B1,..., By of 3-
dimensional Riemannian flat manifolds. (Refer to Wolf [18] for the classification of
3-dimensional Riemannian flat manifolds.) Among these, real Bott manifolds consist of
4; G1, Ga, By, Bs. (See [15].) We shall show that Bs, By are S'-fibred nilBott manifolds.

By: T3 /75 whose holonomy group Zs = (a) acts on T3;

a(z1,22,23) = (—2123, 2223, 23).

Define an S'-action on 7% by
t(Zl, Z92, 23) = (tzl, tZQ, 23).

Then it is easy to see that the S!-action induces an S'-action on 7 /Zs naturally.
This gives a principal bundle

St T3/7y — K
where K is a Klein bottle. So the tower of S-fiber bundles
T3)79 — K — St — {pt}
is an S!-fibred nilBott tower.
By: T3/(Z2)? whose holonomy group (Z2)? = {a, 3) acts on T°;
a(z1, 22, 23) = (—21, 22, Z3),
B(21, 22, 23) = (21, —22, — Z3).

Denote an action of (Z3)? on T2 by

G(z1, 22) = (—21, 22),

B(z1,22) = (21, —22).

The quotient manifold is the Klein bottle T2/(Z3)? = (S x RP!)/Zy = K. The
projection P(21, 22, 23) = (21, 22) is equivariant with respect to the (Zz)2-action on
T?2. So the tower

T3)(Z9)* - K — S* — {pt}

is an S'-fibred nilBott tower.
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Proposition 4.4.  The 3-dimensional S*-fibred nilBott manifold of finite type
are those of G, Go, B1, Ba, Bs, By.

Proof. As any real Bott manifold is an S'-fibred nilBott manifold of finite type
(cf.[7]), consider Reimannian flat manifolds Gs, G4, Gs, Gg, B2, B4 which are not real
Bott manifolds. Since holonomy groups are the product of Zs by Proposition 4.2, the
remaining cases are either Gg, By, or By from the list [18]. Moreover, by Corollary
4.3, an S'-fibred nilBott manifold M of finite type admits a homologically injective
T*-action for k = Rank Hy(M) (k > 1). In particular, Z¥ is a direct summand of
Hy(M). By the classification of the first homology (cf.[18]), H1(M;Z) = Z4 + Z4 for
Gs. So it cannot admit a structure of S'-fibred nilBott manifold. For Riemannian
flat 3-manifolds corresponding to B, and By, we have shown that they admit S!-fibred
nilBott tower. O

§4.2. Sl'-fibred nilBott manifolds of depth 3 (Casell).

The 3-dimensional simply connected nilpotent Lie group N is isomorphic to the
Heisenberg Lie group N3 which is the product R x C with group law:

(@,2) - (y,w) = (v +y — Imzw, z + w).
Then the maximal compact Lie subgroup of Aut(N3) is U(1) x (7) which acts on N3

e (z,2) = (z,e%2) (e € U(1)),

4.8
48) T(z,2) = (—x, 2).

A 3-dimensional compact infranilmanifold is obtained as a quotient N3/T" where T is a
torsionfree discrete uniform subgroup of E(N3) = N3 x (U(1) x (7). (See [4].)
Let
St — My — M,

be an S'-fibred nilBott manifold of infinite type which has a group extension 1 — Z —
w3 — 7o — 1. Since R C N3 is the center of N3, there is a commutative diagram of

central extensions:

1 s 7, > Ag s Ao s 1
& 1
1 R > N3 > C > 1

(cf. (4.3)). Using this, we obtain an embedding:
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1 7 > T3 @ — o — 1
(4.10) l pl ﬁl
1 > R » E(N3g) —— Cx (U(1) x (1)) —— 1.

Note that C x (U(1) x (7)) = R? x O(2) = E(2). Since RN 73 = Z from (4.10), p(ms) is
a Bieberbach group in E(2) so that R?/p(ms) is either T2 or K.

We shall consider the following two cases.
Case (i): The holonomy group of 73 is trivial.
Let k € Z and define A(k) to be a subgroup of N3 generated by

c = (2k,0),a = (0,k),b = (0, ki).
Put Z = (¢) which is a central subgroup of A(k). It is easy to see that
(4.11) [a,] = ¢ *.
Since R is the center of N3, we have a principal bundle

St =R/Z — N3/A(k) — C/Z7.

Then the euler number of the fibration is £k. (See [12] for example.)

Case (ii): The holonomy group is nontrivial.
Let T'(k) be a subgroup of E(N3) generated by

n=((k,0),1),a= ((0, g),T) LB =((0,ki), I).

Note that a? = ((0,k),I). Then it is easy to check that
(4.12) ana ' =n7t aBat =nfp7t, st =n.
Then M3 = N3/T'(k) is an S'-fibred nilBott manifold:

St — N3/T(k) = K

where S! = R/(n) is the fiber (but not an action).

Proposition 4.5. A 3-dimensional S'-fibred nilBott manifold Ms of infinite
type is either a Heisenberg nilmanifold Ns/A(k) or an infranilmanifold N3 /T (k).
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The details of Proposition 4.5 will appear in [13]. Propositions 4.4 and 4.5 are also
obtained independently by Lee and Masuda (cf. [11]).

Remark.  Originally, the 3 x 3-unipotent upper traingular matrices N is called the
Heisenberg nilpotent Lie group. Of course N3 is isomorphic to N. We use N3 because
it is easy to see the automorphism group E(N3).

§5. Further remarks

Let @ = m1(K) be the fundamental group of the Klein bottle K. @ has a presen-
tation:

(5.1) {g.h|ghg™* =h'}.

A group extension 1 —+ Z — m — G — 1 for any 3-dimensional S!-fibred nilBott mani-
fold over K represents a 2-cocycle in HQ%(Q, 7)) for some representation ¢. Conversely,
given a representation ¢, we prove in [13] that any elements of Hi(Q, 7)) can be realized
as an S'-fibred nilBott manifold, we have obtained the following table.

Case 1 Case2 Case3 Case4
H3(Q,7) Zs Zs Z Zs
[f]=0 m1(B1) m1(Bs) m1(G2) m1(Bs)
71 (M) [f] # 0: torsion 71(B2) 71 (By) - m1(By)
[f] # 0: torsionfree - - I'(k) -
Here
Casel.: ¢(g) =1, ¢(h) =1,
Case2.: ¢(g) =1, ¢(h) = —1,
Case3.: ¢(g) =—1, ¢(h) =1,
Cased.: ¢(g) = —1, ¢(h) = —1.
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