Seifert construction for nilpotent groups and Application to S^1 -fibred nilBott Tower

By

Mayumi Nakayama *

Abstract

We shall introduce a notion of S^1 -fibred nilBott tower. It is an iterated S^1 -bundle whose top space is called an S^1 -fibred nilBott manifold. The nilBott tower is a generalization of real Bott tower from the viewpoint of fibration. We prove that any S^1 -fibred nilBott manifold is diffeomorphic to an infranilmanifold. An S^1 -fibred nilBott tower defines a sequence of group extensions. We study the group extension at each stage to apply Seifert rigidity for S^1 -fibred nilBott manifolds.

§ 1. Introduction

Let M be a closed aspherical manifold which is a top space of an iterated S^1 -bundles over a point:

$$(1.1) M = M_n \to M_{n-1} \to \dots \to M_1 \to \{ \text{pt} \}.$$

Suppose X is the universal covering of M and each X_i is the universal covering of M_i and put $\pi_1(M_i) = \pi_i$ (i = 1, ..., n - 1) and $\pi_1(M) = \pi$.

Definition 1.1. An S^1 -fibred nilBott tower is a sequence (1.1) which satisfies I, II and III below (i = 1, ..., n - 1). The top space M is said to be an S^1 -fibred nilBott manifold (of depth n).

I. M_i is a fiber space over M_{i-1} with fiber S^1 .

Received September 26, 2011. Revised December 16, 2011.

2000 Mathematics Subject Classification(s): 2000 Mathematics Subject Classification: Primary 57S25, Secondary 53C25

Key Words: Bott tower, Infranilmanifolds, Seifert Manifolds;

*Department of Mathematics and Information of Sciences, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, JAPAN.

e-mail: nakayama-mayumi@ed.tmu.ac.jp

© 2013 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

II. For the group extension

$$(1.2) 1 \to \mathbb{Z} \to \pi_i \longrightarrow \pi_{i-1} \to 1$$

associated to the fiber space (I), there is an equivariant principal bundle:

$$(1.3) \mathbb{R} \to X_i \xrightarrow{p_i} X_{i-1}.$$

III. Each π_i normalizes \mathbb{R} .

The purpose of this paper is to announce the following result.

Theorem 1.2. Suppose that M is an S^1 -fibred nilBott manifold.

- (I) If every cocycle of $H^2_{\phi}(\pi_{i-1}; \mathbb{Z})$ which represents a group extension (1.2) is of finite order, then M is diffeomorphic to a Riemannian flat manifold.
- (II) If there exists a cocycle of $H^2_{\phi}(\pi_{i-1}; \mathbb{Z})$ which represents a group extension (1.2) is of infinite order, then M is diffeomorphic to an infranilmanifold. In addition, M cannot be diffeomorphic to any Riemannian flat manifold.

§ 2. Preliminaries

§ 2.1. Infrahomogeneous space

Let G be a (noncompact) simply connected Lie group, and Aut(G) denote the group of automorphisms of G onto itself. Put $A(G) = G \rtimes Aut(G)$. A(G) becomes a group;

$$(g, \alpha) \cdot (h, \beta) = (g \cdot \alpha(h), \alpha \cdot \beta)$$

 $(g, h \in G, \alpha, \beta \in Aut(G))$. A(G) is called the affine group of G. Here, letting X = G, an affine action (A(G), X) is obtained as follows:

$$((g, \alpha), x) = g \cdot \alpha(x).$$

Let $H \subset \operatorname{Aut}(G)$ be a compact subgroup (for example, maximal compact subgroup, finite groups). Form a subgroup $\operatorname{E}(G) = G \rtimes H \subset \operatorname{A}(G)$. Consider the action $(\operatorname{E}(G), X)$. We note that if H is compact, then it is easy to check the following.

Lemma 2.1 (Proper action). (E(G), X) is a proper action.

By Lemma 2.1, if $\pi \subset E(G)$ is a discrete subgroup, we obtain a properly discontinuous action (π, X) .

Definition 2.2. The quotient space X/π is said to be an infrahomogeneous orbifold. When π has no elements of finite order, π is said to be torsionfree, and X/π is called an infrahomogeneous manifold.

Example 2.3.

- (1) Taking the vector space \mathbb{R}^n as G it gives the usual affine group $A(\mathbb{R}^n) = \mathbb{R}^n \times GL(n,\mathbb{R})$. If H is a maximal compact subgroup O(n) of $GL(n,\mathbb{R})$, we have the euclidean group $E(\mathbb{R}^n) = \mathbb{R}^n \times O(n)$. A discrete uniform subgroup π of $E(\mathbb{R}^n)$ is called a crystallographic group. If $\pi \subset E(\mathbb{R}^n)$ is a torsionfree crystallographic group, π is called a Bieberbach group. Moreover, the infrahomogeneous space \mathbb{R}^n/π is an Euclidean space form, i.e. a Riemannian flat manifold.
- (2) When G is a simply connected nilpotent Lie group \mathcal{N} , for any torsionfree discrete uniform subgroup $\pi \subset E(\mathcal{N})$, \mathcal{N}/π is called an infranilmanifold.

We have the fundamental classical result for crystallographic groups.

Theorem 2.4 (Bieberbach first theorem). Let $\pi \subset E(\mathbb{R}^n)$ be a crystallographic group, then $\mathbb{R}^n \cap \pi \cong \mathbb{Z}^n$ and $\pi/\mathbb{R}^n \cap \pi$ is a finite group.

The above theorem is extended to the almost crystallographic groups. See [4] for instance.

Theorem 2.5 (Auslander-Bieberbach theorem). Let π be a torsionfree discrete uniform subgroup of $E(\mathcal{N})$, then $\mathcal{N} \cap \pi$ is a maximal normal nilpotent subgroup of π and $\pi/\mathcal{N} \cap \pi$ is a finite group.

§ 3. Nil Geometry

Let

$$(3.1) 1 \to \Delta \to \pi \to F \to 1$$

be a group extension where π is a torsionfree group, Δ is a torsionfree finitely generated nilpotent group, and F is a finite group. By Mal'cev's *existence* theorem, there is a (simply connected) nilpotent Lie group \mathcal{N} containing Δ as a discrete uniform subgroup. The rest of this section is to review the following realization theorem obtained in [5].

Theorem 3.1 (Realization). There exists a discrete faithful representation ρ : $\pi \to E(\mathcal{N})$ such that $\rho | \Delta = \text{id}$. In particular, $\mathcal{N}/\rho(\pi)$ is an infranilmanifold.

In order to prove this theorem, we need several facts. So we shall prepare them in turn.

§ 3.1. 2-cocycle

We recall the group cohomology. (Compare [10], [2] for example.)

Let G, Q be groups and $\phi: Q \to \operatorname{Aut}(G)$ a function. Suppose there is a function $f: Q \times Q \to G$ which satisfies that

(i)
$$\phi(\alpha)(\phi(\beta)(n)) = f(\alpha, \beta)\phi(\alpha\beta)(n)f(\alpha, \beta)^{-1}$$

(ii)
$$f(\alpha, 1) = f(1, \alpha) = 1$$
,

(iii)
$$\phi(\alpha)(f(\beta, \gamma))f(\alpha, \beta\gamma) = f(\alpha, \beta)f(\alpha\beta, \gamma),$$

where $n \in G$ and $\alpha, \beta, \gamma \in Q$. Then f defines a group E which is the product $G \times Q$ with the group law:

$$(3.2) (n,\alpha)(m,\beta) = (n \cdot \phi(\alpha)(m) \cdot f(\alpha,\beta), \alpha\beta).$$

Then there is a ϕ -group extension $1 \to G \to E \xrightarrow{\nu} Q \to 1$ where $\nu(n, \alpha) = \alpha$ and the group E is denoted by $G \times_{(f,\phi)} Q$.

Conversely, given a group extension $1 \to G \to E \xrightarrow{\nu} Q \to 1$, we can associate E with a ϕ - group extension. Choose a section $q:Q\to E$ ($\nu\circ q=\mathrm{id}$), and q(1)=1. A function $\phi:Q\to\mathrm{Aut}(G)$ is defined to be

$$\phi(\alpha)(n) = q(\alpha)nq(\alpha)^{-1} \quad (\forall \alpha \in Q, \forall n \in G).$$

Both $q(\alpha\beta)$, $q(\alpha)q(\beta)$ are mapped to $\alpha\beta \in Q$, so there is an element $f(\alpha,\beta) \in G$ such that $f(\alpha,\beta) \cdot q(\alpha\beta) = q(\alpha)q(\beta)$. Then it is easily checked that $f: Q \times Q \to G$ satisfies the above (i) (ii) (iii).

Let $\operatorname{Opext}(Q, G, \phi)$ be the set of all congruence classes of ϕ - group extensions. Then an element $[f] \in \operatorname{Opext}(Q, G, \phi)$ is represented by an extension $1 \to G \to E \to Q \to 1$ with $E = G \times_{(f,\phi)} Q$. It is easy to check that $[f_1] = [f_2] \in \operatorname{Opext}(Q, A, \phi)$ if and only if there is a function $\lambda : Q \to \mathcal{C}(G)$ such that

(3.3)
$$f_1(\alpha,\beta) = \delta^1 \lambda(\alpha,\beta) \cdot f_2(\alpha,\beta) \quad (\forall \alpha,\beta \in Q).$$

Here C(G) is the center of G and δ^1 is defined by $\delta^1 \lambda(\alpha, \beta) = \phi(\alpha)(\lambda(\beta))\lambda(\alpha)\lambda(\alpha\beta)^{-1}$. For simplicity, we write it as $f_1 = \delta^1 \lambda \cdot f_2$.

In particular, when G is an abelian group A, $\phi: Q \to \operatorname{Aut}(A)$ is a homomorphism and hence A is a Q-module. So there is the group cohomology $H^2_{\phi}(Q, A)$ and f is a 2-cocycle by (iii), i.e. $[f] \in H^2_{\phi}(Q, A)$. Therefore any extension $1 \to A \to E \to Q \to 1$ corresponds to a cocycle $[f] \in H^2_{\phi}(Q, A)$. It is easy to check the following.

Proposition 3.2. Suppose that A is an abelian group. Then there is a one-to-one correspondence between $H^2_{\phi}(Q, A)$ and $\operatorname{Opext}(Q, A, \phi)$.

Remark. Suppose Q = F is a finite group and $f : F \times F \to \mathbb{R}^n$ is a 2-cocycle relative to $\phi : F \to \operatorname{Aut}(\mathbb{R}^n)$. Put $h : F \to \mathbb{R}^n$;

(3.4)
$$h(\alpha) = \sum_{\tau \in F} f(\alpha, \tau).$$

Then

$$\begin{split} \delta^1 h(\alpha,\beta) &= \phi(\alpha)(h(\beta)) - h(\alpha\beta) + h(\alpha) \\ &= \sum_{\tau \in F} \phi(\alpha)(f(\beta,\tau)) - \sum_{\tau \in F} f(\alpha\beta,\tau) + \sum_{\tau \in F} f(\alpha,\tau) \\ &= \sum_{\tau \in F} (f(\alpha\beta,\tau) - f(\alpha,\beta\tau) + f(\alpha,\beta)) - \sum_{\tau \in F} f(\alpha\beta,\tau) + \sum_{\tau \in F} f(\alpha,\tau) \\ &= |F| f(\alpha,\beta) \end{split}$$

i.e. $\delta^1 \frac{1}{|F|} h = f$. It implies that

$$(3.5) H_{\phi}^2(F; \mathbb{R}^n) = 0.$$

§ 3.2. Pushout

Let π , Δ and \mathcal{N} be as before and $1 \to \Delta \to \pi \to Q \to 1$ a group extension which is represented by $[f] \in \operatorname{Opext}(Q, \Delta, \phi)$. Given a function $\phi: Q \to \operatorname{Aut}(\Delta)$, Mal'cev's unique extension theorem implies that each automorphism $\phi(\alpha): \Delta \to \Delta$ extends uniquely to an automorphism $\bar{\phi}(\alpha): \mathcal{N} \to \mathcal{N}$. In particular, this gives a correspondence $\bar{\phi}: Q \to \operatorname{Aut}(\mathcal{N})$. Note that it is not necessarily a homomorphism. In general it satisfies

(3.6)
$$\bar{\phi}(\alpha)(\bar{\phi}(\beta)(x)) = f(\alpha,\beta)\bar{\phi}(\alpha\beta)(x)f(\alpha,\beta)^{-1} \ (x \in \mathcal{N}).$$

Then the "pushout" $\pi \mathcal{N} = \{(x, \alpha) \mid x \in \mathcal{N}, \alpha \in Q\}$ can be constructed. Its group law is defined by $(x, \alpha) \cdot (y, \beta) = (x\bar{\phi}(\alpha)(y)f(\alpha, \beta), \alpha\beta)$;

This group (extension) $\pi \mathcal{N}$ is also represented by $[f] \in \text{Opext}(Q, \mathcal{N}, \bar{\phi})$.

§ 3.3. Existence of the Seifert construction

Let W be a contractible smooth manifold. Suppose that a group Q acts properly discontinuously on W such that the quotient space W/Q is compact. Given a group extension:

$$(3.8) 1 \longrightarrow \Delta \longrightarrow \pi \stackrel{\nu}{\longrightarrow} Q \longrightarrow 1,$$

we shall show that there is an action of π on $\mathcal{N} \times W$ which is compatible with the left translations of \mathcal{N} . Let $\mathrm{Diff}(\mathcal{N} \times W)$ be the group of all diffeomorphisms of $\mathcal{N} \times W$ onto itself. \mathcal{N} is a subgroup of $\mathrm{Diff}(\mathcal{N} \times W)$ via an embedding: $l(n)(m, \alpha) = (nm, \alpha)$.

We denote $\operatorname{Diff}^{\operatorname{F}}(\mathcal{N} \times W)$ the normalizer of $l(\mathcal{N})$ in $\operatorname{Diff}(\mathcal{N} \times W)$. Let $\operatorname{Map}(W, \mathcal{N})$ be the set of smooth maps from W into \mathcal{N} . Then $\operatorname{Diff}^{\operatorname{F}}(\mathcal{N} \times W)$ coincides with the group $\operatorname{Map}(W, \mathcal{N}) \rtimes (\operatorname{Aut}(\mathcal{N}) \times \operatorname{Diff}(W))$ with the group law:

$$(\lambda_1, g_1, h_1)(\lambda, g, h) = ((g_1 \circ \lambda \circ h_1^{-1}) \cdot \lambda_1, g_1g, h_1h)$$

and

$$(\lambda, g, h)(x, w) = (g(x) \cdot \lambda(hw), hw)$$

for $(x, w) \in \mathcal{N} \times W$, defines an action on $\mathcal{N} \times W$. See [5].

We call the set (Δ, π, Q, W) a smooth data for the group extension (3.8). The following theorem is obtained in [5].

Theorem 3.3. For any smooth data (Δ, π, Q, W) , there exists a continuous homomorphism $\Psi : \pi \to \operatorname{Diff}^F(\mathcal{N} \times W)$ such that $\Psi|_{\Delta} = l$.

 Ψ is called the Seifert construction of the smooth data (Δ, π, Q, W) . We shall review the proof of [5].

Proof. Using the pushout (3.6) in § 3.2, if we show that there exists a continuous homomorphism $\bar{\Psi}: \pi \mathcal{N} \to \mathrm{Diff}^F(\mathcal{N} \times W)$ such that $\bar{\Psi}|_{\mathcal{N}} = l$, then a Seifert construction $\Psi: \pi \to \mathrm{Diff}^F(\mathcal{N} \times W)$ is obtained as a restriction. Suppose there exists a $\bar{\Psi}$. For $(n,\alpha) \in \pi \mathcal{N}$, if we put $\bar{\Psi}(1,\alpha) = (\lambda,g,h) \in \mathrm{Map}(W,\mathcal{N}) \rtimes (\mathrm{Aut}(\mathcal{N}) \times \mathrm{Diff}(W))$, then $\bar{\Psi}(n,\alpha) = \ell(n)\bar{\Psi}(1,\alpha) = (n \cdot \lambda,g,h)$. Then it is easy to check that

$$\bar{\Psi}(n,\alpha) = (n \cdot \lambda(\alpha), \mu(n) \circ \bar{\phi}(\alpha), \alpha)$$

where $\lambda: Q \to \operatorname{Map}(W, \mathcal{N})$ satisfies

(3.9)
$$f(\alpha, \beta) = (\bar{\phi}(\alpha) \circ \lambda(\beta) \circ \alpha^{-1}) \cdot \lambda(\alpha) \cdot \lambda(\alpha\beta)^{-1} \quad (\alpha, \beta \in Q),$$

where f be a function representing the group extension (3.8). Therefore to guarantee the existence of such $\bar{\Psi}$, we have only to find a map λ satisfying the condition (3.9).

Remark that if \mathcal{N} is a vector space V then $\mathrm{Map}(W,V)$ is a topological group with Q-action by

(3.10)
$$\alpha \cdot \lambda(w) = \bar{\phi}(\alpha)(\lambda(\alpha^{-1}w)).$$

So we have a group cohomology $H^2_{\bar{\phi}}(Q, \operatorname{Map}(W, V))$. First note that $H^2_{\bar{\phi}}(Q, \operatorname{Map}(W, V)) = 0$ for any vector space V. This vanishing is obtained by using Shapiro's lemma. (See [3], page 251, Lemma 8.4.)

By induction, we suppose that the statement is true for any nilpotent Lie group whose dimension is less than dim \mathcal{N} . Let \mathcal{C} be the center of \mathcal{N} and put $\mathcal{N}_1 = \mathcal{N}/\mathcal{C}$, $\pi \mathcal{N}_1 = \pi \mathcal{N}/\mathcal{C}$. Consider the group extension

$$(3.11) \qquad 1 \longrightarrow \mathcal{N} \longrightarrow \pi \mathcal{N} \xrightarrow{\nu} Q \longrightarrow 1$$

$$\downarrow^{p} \qquad \downarrow^{p} \qquad \parallel$$

$$1 \longrightarrow \mathcal{N}_{1} \longrightarrow \pi \mathcal{N}_{1} \xrightarrow{\nu_{1}} Q \longrightarrow 1,$$

with a section $q_1 = p \circ q$ of ν_1 where q is a section to ν . The section q_1 determines $f_1: Q \times Q \to \mathcal{N}_1$ and $\bar{\phi}_1: Q \to \operatorname{Aut}(\mathcal{N}_1)$ as in §3.1. We suppose by induction on the dimension of \mathcal{N} that there exists $\lambda_1: Q \to \operatorname{Map}(W, \mathcal{N}_1)$ such that

$$f_1(\alpha,\beta) = (\bar{\phi}_1(\alpha) \circ \lambda_1(\beta) \circ \alpha^{-1}) \cdot \lambda_1(\alpha) \cdot \lambda_1(\alpha\beta)^{-1}$$

Choose any lift $\lambda': Q \to \operatorname{Map}(W, \mathcal{N})$ of λ_1 so that $\lambda_1 = p \circ \lambda'$. Put

$$g(\alpha,\beta) = (\bar{\phi}(\alpha) \circ \lambda'(\beta) \circ \alpha^{-1}) \cdot \lambda'(\alpha) \cdot \lambda'(\alpha\beta)^{-1},$$

then there exists an element $c(\alpha, \beta) \in \operatorname{Map}(W, \mathcal{C})$ such that

$$f(\alpha, \beta) = c(\alpha, \beta) \cdot g(\alpha, \beta).$$

Since both f and g satisfy (iii) in §3.1, c is also a 2-cocycle i.e. $[c] \in H^2_{\bar{\phi}}(Q, \operatorname{Map}(W, \mathcal{C}))$ which vanishes because \mathcal{C} is a vector space. So there is a function $\eta: Q \to \operatorname{Map}(W, \mathcal{C})$ such that

$$c(\alpha, \beta) = (\bar{\phi}_1(\alpha) \circ \eta(\beta) \circ \alpha^{-1}) \cdot \eta(\alpha) \cdot \eta(\alpha\beta)^{-1}.$$

Put
$$\lambda = \eta \cdot \lambda' : Q \to \operatorname{Map}(W, \mathcal{N})$$
, then λ satisfies (3.9).

Remark. Let $1 \to \mathbb{Z} \to \pi_i \longrightarrow \pi_{i-1} \to 1$ be a group extension as in (1.2). Then π_i acts on the universal cover X_i of M_i as freely. Assume that $\Psi_i : \pi_i \to \text{Diff}(X_i)$ is the representation homomorphism for this action (π_i, X_i) , then $\Psi_i : \pi_i \to \Psi_i(\pi_i)$ is the Seifert construction of the smooth data $(\mathbb{Z}, \pi_i, \pi_{i-1}, X_{i-1})$.

§ 3.4. Infranilmanifold

Let $(\Delta, \pi, F, \{pt\})$ be a smooth data with finite group F and f a function representing the given group extension $1 \to \Delta \to \pi \to F \to 1$. In the same way as the proof of Theorem 3.3, we can obtain a 1-chain $\chi : F \to \mathcal{N}$ such that $f = \delta^1 \chi$;

(3.12)
$$f(\alpha,\beta) = \bar{\phi}(\alpha)(\chi(\beta))\chi(\alpha)\chi(\alpha\beta)^{-1} \ (\alpha,\beta \in F).$$

We shall repeat the construction of χ for our use. Let $\bar{f}: F \times F \to \mathcal{N}/\mathcal{C}$ be a function which represents $1 \to \mathcal{N}_1 \to \pi \mathcal{N}_1 \to F \to 1$, then we suppose $\bar{f} = \delta^1 \bar{\lambda}$ for some function $\bar{\lambda}: F \to \mathcal{N}/\mathcal{C}$ by induction. Choose a lift $\lambda: F \to \mathcal{N}$ of $\bar{\lambda}$. It is easy to see the function $g = f \cdot (\delta^1 \lambda)^{-1}$ is a cocycle lying in \mathcal{C} , that is $[g] \in H^2_{\bar{\phi}}(F,\mathcal{C})$. As $H^2_{\bar{\phi}}(F,\mathcal{C}) = 0$ from (3.5), there is a map $\mu: F \to \mathcal{C}$ such that $\delta^1 \mu = g$. Then $f = \delta^1(\mu \cdot \lambda)$ and the 1-chain χ denoted by $\mu \cdot \lambda$.

Now define an automorphism of \mathcal{N} $h(\alpha): \mathcal{N} \to \mathcal{N}$ for each $\alpha \in F$ to be

$$h(\alpha)(x) = \chi(\alpha)^{-1} \cdot \bar{\phi}(\alpha)(x) \cdot \chi(\alpha) \ (x \in \mathcal{N}).$$

Using (3.6), we can prove that $h(\alpha\beta) = h(\alpha)h(\beta)$ for $\alpha, \beta \in F$. Therefore $h : F \to \operatorname{Aut}(\mathcal{N})$ is a homomorphism. Since $\operatorname{Aut}(\mathcal{N})$ is a noncompact Lie group, it has a maximal compact group \mathcal{K} . Then the finite subgroup h(F) is conjugate to a subgroup of \mathcal{K} . We can assume that $h(F) \subset \mathcal{K}$.

Define $\rho: \pi \to E(\mathcal{N})$ to be

(3.13)
$$\rho((n,\alpha)) = (n\chi(\alpha), h(\alpha)) \ (n \in \Delta, \alpha \in F).$$

It is easy to check that ρ is a homomorphism. We define an action of π on \mathcal{N} to be

$$(3.14) \qquad ((n,\alpha),x) = \rho(n,\alpha)(x) = n\bar{\phi}(\alpha)(x)\chi(\alpha) \quad ((n,\alpha) \in \pi).$$

Theorem 3.1 is obtained by the following proposition.

Proposition 3.4. The action (π, \mathcal{N}) is a properly discontinuous free action. In particular, ρ is a faithful representation.

Proof. First note that $\rho|_{\Delta} = id$, so Δ is contained in $\rho(\pi)$. Since Δ acts as left translations of \mathcal{N} from (3.13), it acts properly discontinuously and freely. Moreover since Δ is a finite index subgroup of $\rho(\pi)$ from (3.1), $\rho(\pi)$ acts properly discontinuously on \mathcal{N} .

Let $(n, \alpha) \in \text{Ker } \rho$ be an element of π . Then $((n, \alpha), x) = x \ (\forall x \in \mathcal{N})$ by (3.14). As π acts properly discontinuously, (n, α) is of finite order. On the other hand, π is torsionfree, we obtain $(n, \alpha) = 1$ and so ρ is faithful.

The following remark shows that ρ is a Seifert construction (cf. Theorem 3.3).

Remark. Let $A(\mathcal{N})^*$ be a group which is the product $\mathcal{N} \times Aut(\mathcal{N})$ with the group law:

$$(n, \alpha) \cdot (m, \beta) = (\alpha(m) \cdot n, \alpha \cdot \beta)$$

for $n, m \in \mathcal{N}$, and $\alpha, \beta \in \text{Aut}(\mathcal{N})$. The action $(A(\mathcal{N})^*, \mathcal{N})$ is obtained as follows:

$$((n,\alpha),x) = \alpha(x) \cdot n$$

for $x \in \mathcal{N}$. Then there is an isomorphism $\delta : A(\mathcal{N})^* \to A(\mathcal{N})$ defined by $\delta(n,\alpha) = (n, \mu(n^{-1})(\alpha))$. Here $\mu : \mathcal{N} \to \operatorname{Aut}(\mathcal{N})$ is the conjugation homomorphism: $\mu(n)(x) = nxn^{-1}$. It is easily checked that

$$((n,\alpha),x) = (\delta(n,\alpha),x)$$

This shows that the affine action $(A(\mathcal{N}), \mathcal{N})$ coincides with the above action $(A(\mathcal{N})^*, \mathcal{N})$.

Remark. There is a commutative diagram.

By the theorem of Auslander-Bieberbach, $\mathcal{N} \cap \rho(\pi)$ is a maximal normal nilpotent subgroup of $\rho(\pi)$. Note that $\Delta \subset \mathcal{N} \cap \rho(\pi)$, so if Δ is maximal, then $\Delta = \mathcal{N} \cap \rho(\pi)$.

§ 3.5. Seifert rigidity

Let Δ_i be a discrete uniform subgroup of a simply connected nilpotent Lie group \mathcal{N}_i (i=1,2) respectively. Let Ψ_1 , Ψ_2 be Seifert constructions for smooth data $(\Delta_1, \pi_1, Q_1, W_1)$, $(\Delta_2, \pi_2, Q_2, W_2)$ respectively. Suppose there exists an isomorphism $\theta: \pi_1 \to \pi_2$ inducing isomorphisms $\bar{\theta}: \Delta_1 \to \Delta_2$, $\hat{\theta}: Q_1 \to Q_2$. Furthermore (Q_1, W_1) is equivariantly diffeomorphic to (Q_2, W_2) , with respect to $\hat{\theta}$. Then Seifert rigidity shows that $(\Psi_2(\pi_1), \mathcal{N}_1 \times W_1)$ is equivariantly diffeomorphic to $(\Psi_1(\pi_2), \mathcal{N}_2 \times W_2)$. See [5], page 441.

§ 4. S^1 -fibred nilBott tower

This section is to give an idea of proof of Theorem 1.2. The details will appear in [13]. (See also [6].) Let M_i be an S^1 -fibred nilBott manifold (i = 1, ..., n). Let

$$(4.1) 1 \to \mathbb{Z} \to \pi_i \longrightarrow \pi_{i-1} \to 1,$$

be a group extension associated with a fiber space:

$$(4.2) S^1 \to M_i \to M_{i-1}.$$

The conjugate by each element of π_i defines a homomorphism $\phi: \pi_{i-1} \to \operatorname{Aut}(\mathbb{Z}) = \{\pm 1\}$, so that the above group extension represents a 2-cocycle in $H^2_{\phi}(\pi_{i-1}; \mathbb{Z})$. Then we can find the commutative diagram of central extensions for each i:

where $\tilde{\Delta}_i$ and Δ_{i-1} are torsionfree finitely generated normal nilpotent subgroups of finite index in π_i and π_{i-1} respectively. And $\tilde{\mathcal{N}}_i$, \mathcal{N}_{i-1} are simply connected nilpotent Lie groups containing $\tilde{\Delta}_i$ and Δ_{i-1} as a discrete cocompact subgroup, respectively:

From Theorem 3.1 (see [5]) there exists a faithful representation

for which $\rho_i|_{\tilde{\Delta}_i} = \text{id}$ and the quotient $\tilde{\mathcal{N}}_i/\rho_i(\pi_i)$ is an infranilmanifold. On the other hand, (4.5) induces the following group extension:

Since $\tilde{\Delta}_i$ centralizes \mathbb{Z} , $\tilde{\mathcal{N}}_i$ centralizes \mathbb{R} in (4.3). And $\hat{\rho}_i$ is a monomorphsim from π_{i-1} into $E(\mathcal{N}_{i-1})$. Thus we have two Seifert fibrations

$$(\mathbb{Z},\mathsf{R}) \to (\rho_i(\pi_i),\tilde{\mathcal{N}}_i) \xrightarrow{\nu_i} (\hat{\rho}_i(\pi_{i-1}),\mathcal{N}_{i-1})$$

and

$$(\mathbb{Z},\mathsf{R}) \to (\pi_i,X_i) \xrightarrow{p_i} (\pi_{i-1},X_{i-1})$$

(cf. (1.3)).

By induction, assume that the isomorphism $\hat{\rho}$ induces an equivariant diffeomorphism of (π_{i-1}, X_{i-1}) onto $(\hat{\rho}_i(\pi_{i-1}), \mathcal{N}_{i-1})$. Then Seifert rigidity implies that (π_i, X_i) is equivariantly diffeomorphic to $(\rho_i(\pi_i), \tilde{\mathcal{N}}_i)$. Let $M = X_n/\pi_n$. As a consequence, M is diffeomorphic to an infranilmanifold $\tilde{\mathcal{N}}_n/\rho_n(\pi_n)$.

We conclude that any S^1 -fibred nilBott manifold M is diffeomorphic to an infranilmanifold. According to Cases I, II stated in Theorem 1.2, we prove that $\tilde{\mathcal{N}}_n$ is isomorphic to a vector space or $\tilde{\mathcal{N}}_n$ is a nilpotent Lie group but not a vector space respectively (cf. [13]).

In order to study S^1 -fibred nilBott manifolds further, we introduce the following definition:

Definition 4.1. If an S^1 -fibred nilBott manifold M satisfies Case I (respectively Case II) of Theorem 1.2, then M is said to be an S^1 -fibred nilBott manifold of finite type (respectively of infinite type). Apparently there is no intersection between finite type and infinite type. And S^1 -fibred nilBott manifolds are of finite type until dimension 2.

Remark. Let M be an S^1 -fibred nilBott manifold of finite type, then $\rho(\pi)$ is a Bieberbach group (cf. Theorem 1.2). By the Bieberbach Theorem, $\rho(\pi)$ satisfies a group extension

$$(4.7) 1 \to \mathbb{Z}^n \to \rho(\pi) \longrightarrow H \to 1$$

where $\mathbb{Z}^n = \rho(\pi) \cap \mathbb{R}^n$, and H is the holonomy group of $\rho(\pi)$. By Proposition 3.4, we may identify $\rho(\pi)$ with π whenever π is torsionfree.

The following Proposition 4.2 and Corollary 4.3 have been proved. See [13] for details.

Proposition 4.2. Suppose M is an S^1 -fibred nilBott manifold of finite type. Then the holonomy group of π is isomorphic to the power of cyclic group of order two $(\mathbb{Z}_2)^s$ in $(0 \le s \le n)$.

Corollary 4.3. Each S^1 -fibred nilBott manifold of finite type M admits a homologically injective T^k -action where $k = \operatorname{Rank} H_1(M)$. Moreover, the action is maximal, i.e. $k = \operatorname{Rank} C(\pi)$.

§ 4.1. S^1 -fibred nilBott manifolds of depth 3 (Case I).

By the definition of S^1 -fibred nilBott manifold M_n of depth n, M_2 is either a torus or a Klein bottle. In particular, M_2 is a Riemannian flat manifold. A 3-dimensional S^1 -fibred nilBott manifold M_3 is either a Riemannian flat manifold or an infranil-Heisenberg manifold in accordance with the cases I (finite type) or II (infinite type) of Theorem 1.2.

On the other hand, there are 10-isomorphism classes $\mathcal{G}_1, \ldots, \mathcal{G}_6, \mathcal{B}_1, \ldots, \mathcal{B}_4$ of 3-dimensional Riemannian flat manifolds. (Refer to Wolf [18] for the classification of 3-dimensional Riemannian flat manifolds.) Among these, real Bott manifolds consist of 4; $\mathcal{G}_1, \mathcal{G}_2, \mathcal{B}_1, \mathcal{B}_3$. (See [15].) We shall show that $\mathcal{B}_2, \mathcal{B}_4$ are S^1 -fibred nilBott manifolds.

 \mathcal{B}_2 : T^3/\mathbb{Z}_2 whose holonomy group $\mathbb{Z}_2 = \langle \alpha \rangle$ acts on T^3 ;

$$\alpha(z_1, z_2, z_3) = (-z_1 z_3, z_2 z_3, \bar{z}_3).$$

Define an S^1 -action on T^3 by

$$t(z_1, z_2, z_3) = (tz_1, tz_2, z_3).$$

Then it is easy to see that the S^1 -action induces an S^1 -action on T^3/\mathbb{Z}_2 naturally. This gives a principal bundle

$$S^1 \to T^3/\mathbb{Z}_2 \longrightarrow K$$

where K is a Klein bottle. So the tower of S^1 -fiber bundles

$$T^3/\mathbb{Z}_2 \to K \to S^1 \to \{ \mathrm{pt} \}$$

is an S^1 -fibred nilBott tower.

 \mathcal{B}_4 : $T^3/(\mathbb{Z}_2)^2$ whose holonomy group $(\mathbb{Z}_2)^2 = \langle \alpha, \beta \rangle$ acts on T^3 ;

$$\alpha(z_1, z_2, z_3) = (-z_1, \bar{z}_2, \bar{z}_3),$$

$$\beta(z_1, z_2, z_3) = (z_1, -z_2, -\bar{z}_3).$$

Denote an action of $(\mathbb{Z}_2)^2$ on T^2 by

$$\hat{\alpha}(z_1, z_2) = (-z_1, \overline{z}_2),$$

$$\hat{\beta}(z_1, z_2) = (z_1, -z_2).$$

The quotient manifold is the Klein bottle $T^2/(\mathbb{Z}_2)^2 = (S^1 \times \mathbb{RP}^1)/\mathbb{Z}_2 = K$. The projection $P(z_1, z_2, z_3) = (z_1, z_2)$ is equivariant with respect to the $(\mathbb{Z}_2)^2$ -action on T^2 . So the tower

$$T^3/(\mathbb{Z}_2)^2 \to K \to S^1 \to \{ \mathrm{pt} \}$$

is an S^1 -fibred nilBott tower.

Proposition 4.4. The 3-dimensional S^1 -fibred nilBott manifold of finite type are those of \mathcal{G}_1 , \mathcal{G}_2 , \mathcal{B}_1 , \mathcal{B}_2 , \mathcal{B}_3 , \mathcal{B}_4 .

Proof. As any real Bott manifold is an S^1 -fibred nilBott manifold of finite type (cf. [7]), consider Reimannian flat manifolds \mathcal{G}_3 , \mathcal{G}_4 , \mathcal{G}_5 , \mathcal{G}_6 , \mathcal{B}_2 , \mathcal{B}_4 which are not real Bott manifolds. Since holonomy groups are the product of \mathbb{Z}_2 by Proposition 4.2, the remaining cases are either \mathcal{G}_6 , \mathcal{B}_2 , or \mathcal{B}_4 from the list [18]. Moreover, by Corollary 4.3, an S^1 -fibred nilBott manifold M of finite type admits a homologically injective T^k -action for $k = \operatorname{Rank} H_1(M)$ ($k \geq 1$). In particular, \mathbb{Z}^k is a direct summand of $H_1(M)$. By the classification of the first homology (cf. [18]), $H_1(M;\mathbb{Z}) = \mathbb{Z}_4 + \mathbb{Z}_4$ for \mathcal{G}_6 . So it cannot admit a structure of S^1 -fibred nilBott manifolds. For Riemannian flat 3-manifolds corresponding to \mathcal{B}_2 and \mathcal{B}_4 , we have shown that they admit S^1 -fibred nilBott tower.

§ 4.2. S^1 -fibred nilBott manifolds of depth 3 (CaseII).

The 3-dimensional simply connected nilpotent Lie group \mathcal{N} is isomorphic to the Heisenberg Lie group N_3 which is the product $R \times \mathbb{C}$ with group law:

$$(x,z)\cdot(y,w)=(x+y-\mathrm{Im}\bar{z}w,z+w).$$

Then the maximal compact Lie subgroup of Aut (N_3) is U(1) $\forall \langle \tau \rangle$ which acts on N_3

(4.8)
$$e^{\mathbf{i}\theta}(x,z) = (x, e^{\mathbf{i}\theta}z) \ (e^{\mathbf{i}\theta} \in \mathrm{U}(1)),$$
$$\tau(x,z) = (-x,\bar{z}).$$

A 3-dimensional compact infranilmanifold is obtained as a quotient N_3/Γ where Γ is a torsionfree discrete uniform subgroup of $E(N_3) = N_3 \rtimes (U(1) \rtimes \langle \tau \rangle)$. (See [4].)

Let

$$S^1 \to M_3 \to M_2$$

be an S^1 -fibred nilBott manifold of infinite type which has a group extension $1 \to \mathbb{Z} \to \pi_3 \to \pi_2 \to 1$. Since $R \subset N_3$ is the center of N_3 , there is a commutative diagram of central extensions:

(cf. (4.3)). Using this, we obtain an embedding:

Note that $\mathbb{C} \rtimes (\mathrm{U}(1) \rtimes \langle \tau \rangle) = \mathbb{R}^2 \rtimes \mathrm{O}(2) = \mathrm{E}(2)$. Since $\mathsf{R} \cap \pi_3 = \mathbb{Z}$ from (4.10), $\hat{\rho}(\pi_2)$ is a Bieberbach group in $\mathrm{E}(2)$ so that $\mathbb{R}^2/\hat{\rho}(\pi_2)$ is either T^2 or K.

We shall consider the following two cases.

Case (i): The holonomy group of π_3 is trivial.

Let $k \in \mathbb{Z}$ and define $\Delta(k)$ to be a subgroup of N_3 generated by

$$c = (2k, 0), a = (0, k), b = (0, k\mathbf{i}).$$

Put $Z = \langle c \rangle$ which is a central subgroup of $\Delta(k)$. It is easy to see that

$$[a,b] = c^{-k}.$$

Since R is the center of N_3 , we have a principal bundle

$$S^1 = \mathsf{R}/\mathsf{Z} \to N_3/\Delta(k) \longrightarrow \mathbb{C}/\mathbb{Z}^2.$$

Then the euler number of the fibration is $\pm k$. (See [12] for example.)

Case (ii): The holonomy group is nontrivial.

Let $\Gamma(k)$ be a subgroup of $E(N_3)$ generated by

$$n = ((k,0),I), \ \alpha = \left((0,\frac{k}{2}),\tau\right), \ \beta = ((0,k\mathbf{i}),I).$$

Note that $\alpha^2 = ((0, k), I)$. Then it is easy to check that

(4.12)
$$\alpha n \alpha^{-1} = n^{-1}, \ \alpha \beta \alpha^{-1} = n^k \beta^{-1}, \ \beta n \beta^{-1} = n.$$

Then $M_3 = N_3/\Gamma(k)$ is an S^1 -fibred nilBott manifold:

$$S^1 \to N_3/\Gamma(k) \to K$$

where $S^1 = R/\langle n \rangle$ is the fiber (but not an action).

Proposition 4.5. A 3-dimensional S^1 -fibred nilBott manifold M_3 of infinite type is either a Heisenberg nilmanifold $N_3/\Delta(k)$ or an infranilmanifold $N_3/\Gamma(k)$.

The details of Proposition 4.5 will appear in [13]. Propositions 4.4 and 4.5 are also obtained independently by Lee and Masuda (cf. [11]).

Remark. Originally, the 3×3 -unipotent upper traingular matrices N is called the Heisenberg nilpotent Lie group. Of course N_3 is isomorphic to N. We use N_3 because it is easy to see the automorphism group $E(N_3)$.

§ 5. Further remarks

Let $Q = \pi_1(K)$ be the fundamental group of the Klein bottle K. Q has a presentation:

(5.1)
$$\{g, h \mid ghg^{-1} = h^{-1}\}.$$

A group extension $1 \to \mathbb{Z} \to \pi \to G \to 1$ for any 3-dimensional S^1 -fibred nilBott manifold over K represents a 2-cocycle in $H^2_\phi(Q,\mathbb{Z})$ for some representation ϕ . Conversely, given a representation ϕ , we prove in [13] that any elements of $H^2_\phi(Q,\mathbb{Z})$ can be realized as an S^1 -fibred nilBott manifold, we have obtained the following table.

		Case 1	Case2	Case3	Case4
	$H^2_\phi(Q,\mathbb{Z})$	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb Z$	\mathbb{Z}_2
	[f] = 0	$\pi_1(\mathcal{B}_1)$	$\pi_1(\mathcal{B}_3)$	$\pi_1(\mathcal{G}_2)$	$\pi_1(\mathcal{B}_3)$
$\pi_1(M)$	$[f] \neq 0$: torsion	$\pi_1(\mathcal{B}_2)$	$\pi_1(\mathcal{B}_4)$	-	$\pi_1(\mathcal{B}_4)$
	$[f] \neq 0$: torsionfree	-	-	$\Gamma(k)$	-

Here

Case1.: $\phi(g) = 1$, $\phi(h) = 1$,

Case2.: $\phi(g) = 1$, $\phi(h) = -1$,

Case 3.: $\phi(q) = -1, \ \phi(h) = 1,$

Case4.: $\phi(g) = -1$, $\phi(h) = -1$.

References

- [1] G. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.
- [2] K. Brown, Cohomology of groups, GTM, Springer-Verlag, 1982.

- [3] P.E. Conner and F. Raymond, Actions of compact Lie groups on aspherical manifolds, Topology of Manifolds, Proceedings Inst. Univ. of Georgia, Athens, 1969, Markham (1970), 227-264.
- [4] K. Dekimpe, Almost-Bieberbach groups: Affine and Polynomial structures, Lecture Notes in Math., 1639 (1996), Springer-Verlag.
- [5] Y. Kamishima, K.B. Lee and F. Raymond, *The Seifert construction and its applications to infranil manifolds*, Quart. J. Math., Oxford (2), **34** (1983), 433-452.
- [6] Y. Kamishima and M. Nakayama, On the nil-Bott Tower, In prepration.
- [7] Y. Kamishima and Admi Nazra, Seifert fibred structure and rigidity on real Bott towers, Contemp. Math., vol. 501, 103-122 (2009).
- [8] K.B. Lee and F. Raymond, Seifert manifold, Handbook of Geometric Topology, R.J. Daverman and R. Sher (eds.), North-Holland (2002), 635-705.
- [9] K.B. Lee and F. Raymond, Geometric realization of group extensions by the Seifertconstruction, Contemporary Math. 33 (1984), 353-411.
- [10] S. Maclane, *Homology*, Die Grundlehren der mathematischen Wissenschaften vol. 114 Springer, Berlin, New York 1967.
- [11] J. B. Lee, and M. Masuda, Topology of iterated S^1 -bundles, Preprint, arXiv:1108.0293 math.AT (2011).
- [12] J. Milnor, On the 3-dimensional Brieskorn manifolds M(p,q,r), Ann. of Math. Studies, Princeton Univ. Press No. 84 (1975), 175–225.
- [13] M. Nakayama, On the S^1 -fibred nil-Bott Tower, In prepration.
- [14] A. Nazra, Diffeomorphism Classes of Real Bott Manifolds, Tokyo J. Math. 34 (2011), 229-260.
- [15] A. Nazra, Geometry of Transformation Groups and Related Topics, Diffeomorphism Type of Real Bott Towers, RIMS Kokyuroku 1612, Kyoto University, September 2008, 165-176.
- [16] V. Puppe, Multiplicative aspects of the Halperin-Carlsson conjecture, Georgian Math. J. 16 (2009), no. 2, 369-379.
- [17] M.S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse Math. Grenzgebiete vol. 68 Springer, Berlin, New York 1972.
- [18] J. Wolf, Spaces of constant curvature, McGraw-Hill, Inc., 1967.