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N‐flips in 3‐dimensional Small Covers

By

Yasuzo NISHIMURA *

Abstract

We study combinatorial construction of 3‐dimensional small covers using the connected

sum and the surgery in [11]. On the other hand, an operation called the N‐flip in even trian‐

gulations on spheres has been studied in [8]. In this paper we study N‐flips in 3‐dimensional

small covers and give other construction theorem for 3‐dimensional small covers by the N‐flip.

§1. Introduction

Small Covers were introduced by Davis and Januszkiewicz [1] as an n‐dimensional

closed manifold M^{n} with a locally standard (\mathbb{Z}_{2})^{n} ‐action such that its orbit space is a

simple convex polytope P (later we assume that polytopes are all simple and convex).
Davis and Januszkiewicz showed that the (equivariant homeomorphic classes of) small

covers over P are classified by (\mathbb{Z}_{2})^{n} ‐colorings  $\lambda$ : \mathcal{F}(P)\rightarrow(\mathbb{Z}_{2})^{n} where \mathcal{F}(P) is the set

of facets of P (cf. [1, Proposition 1.8]). In other words a small cover is correspondent to

\mathrm{a}(\mathbb{Z}_{2})^{n} ‐colored polytope (P,  $\lambda$) . Here we understand that two (\mathbb{Z}_{2})^{n} ‐colorings on P are

the same when one is correspondent to the other by a change of basis of (\mathbb{Z}_{2})^{n} . In [3],
[5], [7], [10] and [11] constructions of 3‐dimensional small covers M^{3} from basic small

covers by some operations have been studied. At first Izmestiev [3] studied a class of

3‐dimensional small covers M^{3} which is called linear models which are correspondent
to 3‐colored polytopes. He proved that each linear model M^{3} can be constructed from

the 3‐dimensional torus T^{3} using the connected sum and the surgery (cf. [3, Theorem

3] ) . We generalized this result to general small covers M^{3} which are correspondent to

(\mathbb{Z}_{2})^{3} ‐colored polytopes in [11, Theorems 1.4 and 1.6]. Partial results were shown in [5],
[7] and [10].
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On the other hand in the view of the topological graph theory, some other operations
called the N‐flip and the P_{2} ‐flip on even triangulations of surfaces were studied in [4] and

[8]. These operations both correspond to compositions of two surgeries on 3‐dimensional

linear models. In [8, Theorem 2], it was proved that two linear models over polytopes
with same number of faces can be transformed into each other by these operations. In

this paper we relate this result to our previous results, and we give other expressions of

the construction theorem for 3‐dimensional small covers by the N‐flip.

§2. Basics of small covers

In this section we recall the definitions and basic facts of small covers (see [1] for

detail). Let P be an n‐dimensional simple convex polytope with the set of facets (i.e.
codimension‐one faces) \mathcal{F}=\{F_{1}, \cdots, F_{m}\}. A small cover M over P is an n‐dimensional

closed manifold with a locally standard (\mathbb{Z}_{2})^{n} ‐action such that its orbit space is P . For a

small cover M and a facet F of P
,

we set  $\lambda$(F) the generator of the isotropy subgroup at

x\in$\pi$^{-1} (intF) where  $\pi$ :  M\rightarrow P is the orbit projection. Then a function  $\lambda$ : \mathcal{F}\rightarrow(\mathbb{Z}_{2})^{n}
(which is defined up to change of basis of (\mathbb{Z}_{2})^{n} ) is called a characteristic function of

M which satisfies the following condition.

() if  F_{1}\cap\cdots\cap F_{n}\neq\emptyset then \{ $\lambda$(F_{1}), \cdots,  $\lambda$(F_{n})\} is linearly independent.

Therefore  $\lambda$ is a kind of face‐coloring of  P . Then we call a function satisfing ()
\mathrm{a}(\mathbb{Z}_{2})^{n} ‐coloring of P . Here we say that two (\mathbb{Z}_{2})^{n} ‐colored polytopes (P_{i}, $\lambda$_{i})(i=1,2)
are equivalent when there exists a combinatorial equivalence of polytopes  $\phi$ :  P_{1}\rightarrow P_{2}

such that  $\theta$ 0$\lambda$_{1}=$\lambda$_{2}0 $\phi$ for some  $\theta$\in \mathrm{A}\mathrm{u}\mathrm{t}(\mathbb{Z}_{2})^{n} . Conversely given a simple convex

polytope P and \mathrm{a} (Zcoloring  $\lambda$ : \mathcal{F}\rightarrow(\mathbb{Z}_{2})^{n} satisfing () ,
we can construct a small

cover M with a characteristic function  $\lambda$ as follows:

 M(P,  $\lambda$):=P\times(\mathbb{Z}_{2})^{n}/\sim,

where (x, t)\sim(y, s) is defined as x=y\in P and t^{-1}s is contained in the subgroup

generated by  $\lambda$(F_{1}) , \cdots,  $\lambda$(F) such that x\in \mathrm{i}\mathrm{n}\mathrm{t}(F_{1}\cap\cdots\cap F_{k}) . We say that two small

covers M_{i} over P_{i}(i=1,2) are \mathrm{G}\mathrm{L}(n, \mathbb{Z}_{2}) ‐equivalent on a combinatorial equivalence of

polytopes  $\phi$ :  P_{1}\rightarrow P_{2} when there exists a  $\theta$‐equivariant homeomorphism  f : M_{1}\rightarrow M_{2}

such that $\pi$_{2}\circ f= $\phi$\circ$\pi$_{1} and f(g x) = $\theta$(g) f(x)(g\in(\mathbb{Z}_{2})^{n}, x\in M_{1}) for some

 $\theta$\in \mathrm{A}\mathrm{u}\mathrm{t}(\mathbb{Z}_{2})^{n} . Moreover we say that two small covers are equivalent when they are

\mathrm{G}\mathrm{L}(n, \mathbb{Z}_{2}) ‐equivalent on some combinatorial equivalence of polytopes  $\phi$ :  P_{1}\rightarrow P_{2} . In

[6] this equivalence and a \mathrm{G}\mathrm{L}(n, \mathbb{Z}_{2}) ‐equivalence on the identity are called a weakly equiv‐

ariantly homeomorphism and a DJ‐equivalence respectively. Davis and Januszkiewicz

proved that a small cover M over P with a characteristic function  $\lambda$ is  DJ‐equivalent



\mathrm{N}‐fiips 1N 3‐dimensional Small Covers 139

to M(P,  $\lambda$) (cf. [1, Proposition 1.8]). Therefore we can identify an equivalence class of

small cover M(P,  $\lambda$) with an equivalence class of (\mathbb{Z}_{2})^{n} ‐colored polytope (P,  $\lambda$) .

Example 2.1. The real projective space \mathbb{R}P^{n} and the n‐dimensional torus T^{n}

with the standard (\mathbb{Z}_{2})^{n} ‐actions are examples of small covers over the n‐simplex \triangle^{n} and

the n‐cube I^{n} respectively. Figure 1 shows their characteristic functions on polytopes
in the case of n=3 ,

where \{ $\alpha$,  $\beta$,  $\gamma$\} is a basis of (\mathbb{Z}_{2})^{3} . We denote the associated

(\mathbb{Z}_{2})^{n} ‐colored simplex and cube by \triangle^{3} and (I^{3}, $\lambda$_{0}) respectively.

\mathrm{Y}

 $\beta$  $\alpha$  $\beta$

 $\gamma$

 $\alpha$+ $\beta$+ $\gamma  \alpha$

Figure 1. Characteristic functions of \mathbb{R}P^{3} and T^{3}.

A small cover over P with an n‐coloring (i.e.  $\lambda$(\mathcal{F}) is a basis of (\mathbb{Z}_{2})^{n} ) is called

a linear model. An example of a linear model is the torus T^{n} shown in Example 2.1.

In this case the n‐coloring of P (i.e. the linear model on P ) is unique up to a change
of colors (or basis of (\mathbb{Z}_{2})^{n} ). In case n=3 ,

it is well‐known that a simple convex

polytope is 3‐colorable if and only if each facets contains an even number of edges.
Such a polytope coincides the dual of an even triangulation of the sphere.

In [9, Theorem 1.7], we gave a criterion when a small cover is orientable. We recall

its criterion in the special case n=3.

Theorem 2.2. A 3‐dimensional small cover M(P,  $\lambda$) is orientable if and only if

 $\lambda$(\mathcal{F}) is contained in \{ $\alpha$,  $\beta$,  $\gamma$,  $\alpha$+ $\beta$+ $\gamma$\} for a suitable basis \{ $\alpha$,  $\beta$,  $\gamma$\} of (\mathbb{Z}_{2})^{3}.

From the above theorem small covers \mathbb{R}P^{3} and T^{3} given in Figure 1 are both

orientable. Since each triple of \{ $\alpha$,  $\beta$,  $\gamma$,  $\alpha$+ $\beta$+ $\gamma$\} is linearly independent, a coloring
which satisfies Theorem 2.2 is just a 4‐coloring. We notice that the existence of an

orientable small cover over every simple convex 3‐polytope is guaranteed by the Four

Color Theorem (cf. [9, Corollary 1.8]). Henceforth we assume that n=3 and (P,  $\lambda$) is

a pair of a 3‐dimensional simple convex polytope P with (\mathbb{Z}_{2})^{3} ‐coloring  $\lambda$
,

and \{ $\alpha$,  $\beta$,  $\gamma$\}
is a basis of (\mathbb{Z}_{2})^{3} . From the Steinitz�s theorem (see [2] etc.) a3‐dimensional simple
convex polytope is combinatorially equivalent to a 3‐connected 3‐regular planner graph
which is the 1‐skeleton of P.
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Example 2.3. We consider small covers on a 3‐sided prism P^{3}(3)=I\times\triangle^{2}.
There exists three types of (\mathbb{Z}_{2})^{3} ‐coloring on P^{3}(3) shown in Figure 2 up to equivalence.
The first example M(P^{3}(3), $\lambda$_{1}) is equivariantly homeomorphic to S^{1}\times \mathbb{R}P^{2} . The

second example M(P^{3}(3), $\lambda$_{2}) is homeomorphic but not‐equivariantly homeomorphic to

S^{1}\times \mathbb{R}P^{2} (cf. [7, Lemmas 4.2 and 4.3]). We denote it by S^{1}\ltimes \mathbb{R}P^{2} . The last example

M(P^{3}(3), $\lambda$_{3}) is orientable and homeomorphic to \mathbb{R}P^{3}\#\mathbb{R}P^{3}.

 $\alpha  \alpha  \alpha$

 $\beta$ \backslash ( $\beta$ 1'  $\beta  \gamma$

 $\alpha  \alpha$+ $\beta  \alpha$

 $\beta$+\mathrm{Y}  $\beta$+ $\gamma  \alpha$+ $\beta$+ $\gamma$

Figure 2. Three types of (\mathbb{Z}_{2})^{3} ‐coloring on P^{3}(3)=I\times\triangle^{2};$\lambda$_{1}, $\lambda$_{2} and $\lambda$_{3}.

We recall some operations on (\mathbb{Z}_{2})^{3} ‐colored polytopes (i.e. 3‐dimensional small

covers) which were introduced in [3], [5], [7] and [10].

Denition 2.4 (connected sum \# ). The operation \# in Figure 3 is called the con‐

nected sum (at vertices). We notice that the connected sum of colored polytopes  P_{1}\# P_{2}
is well‐defined in every cases. Then the operation \# corresponds with the equivariant
connected sum  M(P_{1}, $\lambda$_{1})\# M(P_{2}, $\lambda$_{2}) at fixed points (cf. [1, 1.11]).

\#
—

Figure 3. Connected sum \#.

Specifically the connected sum with \triangle^{3} and (I^{3}, $\lambda$_{0}) on polytopes, denoted by Bl_{v}
and Bl_{v}^{T} , correspond to the operations called the (T-)blow up (at a fixed point) on small

covers (Figures 4 and 5), respectively.

Denition 2.5 (surgery The operation \Vert in Figure 6 (from left to right) is

called the surgery along an edge  e and its inverse \Vert^{-1} (from right to left) is called the
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Bl_{v} Bl_{v}^{T}
——

Figure 4. Blow up Bl_{v}=\#\triangle^{3} . Figure 5. T‐blow up Bl_{v}^{T}=\#(I^{3}, $\lambda$_{0}) .

inverse surgery along a pair of edges \{e_{1}, e_{2}\} . We denote the surgery along an edge e

(resp. its inverse) as \Vert_{e} (resp. \Vert_{\{e_{1},e_{2}\}}^{-1}=(\Vert_{e})^{-1} ), when an edge needs to be indicated.

The operations \Vert and \Vert^{-1} both correspond to the equivariant surgeries on a small cover

(cf. [3]). We do not allow the surgeries \Vert and \Vert^{-1} when the 3‐connectedness of the

1‐skeleton of P is destroyed after doing them.

\#
—

\overline{\natural^{-1}}

Figure 6. Surgery \Vert and its inverse \Vert^{-1}.

Denition 2.6 (connected sum along edges \#^{e} ). The operation \#^{e} in Figure 7 is

called the connected sum along edges. We notice that the operation \#^{e} is obtained as a

composition \#^{e}=\Vert\circ\# as shown in same figure (cf. [5, Theorem  4.1(2)] ). The operation

\#^{e} corresponds to a connected sum around the circles $\pi$^{-1}(e) of each small covers.

\underline{\#^{\mathrm{e}}}

\#\backslash \nearrow^{\natural}

Figure 7. Connected sum along edges \#^{e}=\Vert\circ\#.
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Specifically the operations \#^{e}P^{3}(3) and \#^{e}\triangle^{3} are often called the cutting edge (Fig‐
ure 8) and the diagonal flip (Figure 9), respectively. The former corresponds to a kind

of blow up at the circle $\pi$^{-1}(e) on small covers. This operation is denoted by Bl_{e} and is

called the blow up along an edge. In Figure 8, as a color of center square we can choose

not only  $\beta$+ $\gamma$ but also  $\alpha$+ $\beta$+ $\gamma$ when *=0 . The latter operation \#^{e}\triangle^{3}=\Vert\circ(\#\triangle^{3})
corresponds to the Dehn surgery of type \displaystyle \frac{2}{1} on small covers (cf. [10] or [5, 3.5]). This

operation is denoted by \Vert^{D} and is called the Dehn surgery.

Moreover the operations \#^{e}(I^{3}, $\lambda$_{0}) in Figure 10 is called the T ‐blow up along an

edge and is denoted by Bl_{e}^{T}.

Figure 8. Cutting edge Bl_{e}=\#^{e}P^{3}(3) . Figure 9. Dehn surgery \Vert^{D}=\#^{e}\triangle^{3}.

Bl_{e}^{T}
-

Figure 10. T‐blow up along an edge Bl_{e}^{T}=\#^{e}(I^{3}, $\lambda$_{0}) .

Denition 2.7 (color change \#_{4}^{c} ). The operation \#_{4}^{c} in Figure 11 is called the

color change for a 2‐independent quadrilateral. Here a face F is called 2‐independent
if the maximal number of linearly independent vectors of {  $\lambda$(F_{j})|F_{j} is adjacent to F }
is two. (i.e. \star=0 or  $\gamma$ in Figure 11). This operation is defined as the connected sum

along a face with \mathrm{a}(\mathbb{Z}_{2})^{3} ‐colored cube (I^{3},  $\lambda$) (see [7]).

Combinatorial constructions of 3‐dimensional small covers (i.e. (\mathbb{Z}_{2})^{3} ‐colored poly‐

topes) using the above operations have been studied in [3], [5], [7], [10] and [11]. We

recall the conclusive theorem as follows (cf. [11, Theorems 1.4 and 1.6]).

Theorem 2.8. (1) Each small cover M^{3} can be constructed from \mathbb{R}P^{3}, T^{3},  S^{1}\times

\mathbb{R}P^{2} and S^{1}\ltimes \mathbb{R}P^{2} by using operations \# and \natural.

(2) Each small cover M^{3} can be constructed from \mathbb{R}P^{3}, S^{1}\times \mathbb{R}P^{2} and S^{1}\ltimes \mathbb{R}P^{2} by

using operations \#, \#^{e}, \Vert^{-1} and \#_{4}^{c}.
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\underline{\#_{4}^{\mathrm{c}}}
\leftarrow

Figure 11. Color change \#_{4}^{c} for a 2‐independent quadrilateral.

Remark. In the above theorem the later is a non‐decreasing construction, i.e. all

operations do not decrease the number of faces. We can restrict the above theorem to

3‐ (resp. 4‐)colored polytopes, and obtain the construction theorem for linear models

[11, Corollary 4.10] (resp. orientable small covers [11, Propositions 5.2 and 5.3]).

§3. N‐flips in 3‐dimensional small covers

In the view of topological graph theory, Nakamoto, Sakuma and Suzuki [8] gave a

characterization of even triangulations on sphere (i.e. linear models) using the opera‐

tions called the N ‐flip and the P_{2} ‐flip. In this section we discuss N‐flips in (\mathbb{Z}_{2})^{3} ‐colored

polytopes.

Denition 3.1 (N‐flip and P_{2} ‐flip). The operations \Vert^{N} in Figure 12 and \Vert^{P} in

Figure 13 are called the N ‐flip and the P_{2} ‐flip respectively. These operation act on a

(locally) even triangulation of sphere. We consider their duals and generalize to (\mathbb{Z}_{2})^{3}-
colored polytopes as Figures 14 and 15. We notice that the N‐flip \Vert^{N} and the P_{2} ‐flip \Vert^{P}
can be also obtained as compositions of surgeries \Vert_{e}\circ\Vert_{\{e_{1},e_{2}\}}^{-1} as shown in same figures.
Moreover \Vert^{P} can be also obtained as a composition Bl_{e}^{T}\circ(Bl_{e}^{T})^{-1} as shown in Figure
15 when colors around v are linearly independent.

Figure 12. N‐flip \Vert^{N} (dual). Figure 13. P_{2} ‐flip \Vert^{P} (dual).

We notice that the N‐flip preserves the partition of faces by colors. Although the

P_{2} ‐flip also preserves the total number of faces, it changes the partition of faces by
colors. In [8] a characterization of 3‐colored polytopes under these operations was given
as follows.
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Figure 14. N‐flip \Vert^{N} . Figure 15. P_{2} ‐flip \Vert^{P}.

Theorem 3.2 (Nakamoto, Sakuma and Suzuki). (1) Let (P_{i}, $\lambda$_{i})(i=1,2) be

3‐colored polytopes such that |$\lambda$_{1}^{-1}(x)|=|$\lambda$_{2}^{-1}(x)| forx= $\alpha$,  $\beta$,  $\gamma$ . Then  P_{1} and P_{2} can

be transfO rmed into each other by a sequence of N‐flips \Vert^{N}.
(2) Any two 3‐colored polytopes with the same number of faces can be transfO rmed into

each other by a sequence of N‐flips \Vert^{N} and P_{2} ‐flips \Vert^{P}.

Remark. The above theorem is a 3‐colored analogue of the famous theorem �two

(non‐colored) simple convex polytopes with the same number of faces can be transformed

into each other by a sequence of diagonal flips \Vert^{D} �

Izmestiev�s theorem [3, Theorem 3] �Each linear model M^{3} can be constructed

from T^{3} by using \#, \Vert and \Vert^{-1} �
can be led from Theorem 3.2 immediately because \Vert^{N}

and \Vert^{P} are both compositions of \Vert and \Vert^{-1} . Moreover we may obtain another expression
of the construction theorem for linear models by using the N‐flip as follows.

Theorem 3.3. Each linear model M^{3} can be constructed from T^{3} by using three

operations Bl_{v}^{T}, Bl_{e}^{T} and \Vert^{N}.

Proof. Notice that the number of faces of a 3‐colored polytope is six (when P=I^{3} )
or more than seven. We shall prove by the induction on the number of faces. When

the number of faces is six, theorem is trivial because (P,  $\lambda$) is just the 3‐colored cube

(I^{3}, $\lambda$_{0}) . We assume that the number of faces is more than seven. Since the operations

Bl_{v}^{T} or Bl_{e}^{T} increase the number of faces by three or two respectively, it is easy to

construct a 3‐colored polytope P' with same number of faces as P . From the Theorem

3.2 (2), there exists a sequence P'=P_{0}\rightarrow P_{1}\rightarrow P_{2}\rightarrow\cdots\rightarrow P_{n}=P such that

P_{i}=\Vert^{N}P_{i-1} or P_{i}=\Vert^{P}P_{i-1}(i=1,2, \cdots, n) . If there is no P_{2} ‐flip in this sequence,

then the proof finishes. Let P_{m-1}\rightarrow P_{m} be the last P_{2} ‐flip in this sequence. Here
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we notice that P_{m}=Bl_{e}^{T}\circ(Bl_{e}^{T},)^{-1}P_{m-1} and (Bl_{e}^{T},)^{-1}P_{m-1} has less faces than P.

Therefore (Bl_{e}^{T})^{-1}P_{m-1} can be constructed from (I^{3}, $\lambda$_{0}) by using Bl_{v}^{T}, Bl_{e}^{T} and \Vert^{N}
because of the induction hypothesis. Then the proof is complemented. \square 

Corollary 3.4. For each 3‐colored polytope (P,  $\lambda$) ,
the following inequality holds:

|$\lambda$^{-1}( $\alpha$)|\leq|$\lambda$^{-1}( $\beta$)|+|$\lambda$^{-1}( $\gamma$)|-2.

Proof. The above inequality holds for the 3‐colored cube (I^{3}, $\lambda$_{0}) . For a 3‐colored

polytople (P,  $\lambda$) ,
we denote 3‐colorings of Bl_{v}^{T}P and Bl_{e}^{T}P by $\lambda$_{v} and $\lambda$_{e} respectively.

Then it is easy to see that |$\lambda$_{v}^{-1}(x)|=|$\lambda$^{-1}(x)|+1 for any x= $\alpha$,  $\beta$,  $\gamma$ and |$\lambda$_{e}^{-1}(x)|=
|$\lambda$^{-1}(x)|, |$\lambda$_{e}^{-1}(y)|=|$\lambda$^{-1}(y)|+1 for some x\in\{ $\alpha$,  $\beta$,  $\gamma$\} and any y\neq x . Therefore if the

above inequality holds for (P,  $\lambda$) then it also holds for (Bl_{v}^{T}P, $\lambda$_{v}) and (Bl_{e}^{T}P, $\lambda$_{e}) . \square 

Next we consider the construction of orientable small covers by the N‐flip. We

recall that each 4‐colored polytope (P^{3},  $\lambda$) can be constructed from 3‐colored polytopes
and \triangle^{3} by using \# and \Vert^{D} (cf. [11, Proposition 4.2] or [10]). We combine this fact

with Theorem 3.3 and prove immediately that each orientable small cover M^{3} can be

constructed from T^{3} and \mathbb{R}P^{3} by using operations \#, Bl_{e}^{T}, \Vert^{D} and \Vert^{N} . Moreover we can

restrict \# to  Bl_{v} and Bl_{v}^{T} and show the following theorem.

Theorem 3.5. Each orientable small cover M^{3} can be constructed from T^{3} and

\mathbb{R}P^{3} by using operations Bl_{v}, Bl_{v}^{T}, Bl_{e}^{T}, \Vert^{D} and \Vert^{N}.

Proof. By induction on the number of faces of P
,

it is sufficient to prove the

following assertion:

() There exists a sequence P_{0}\rightarrow P_{1}\rightarrow\cdots\rightarrow P_{n}=P such that P_{0} is a 3‐colored

polytope and P_{i} is one of \Vert^{D}P_{i-1}, \Vert^{N}P_{i-1} and Bl_{v}P_{i-1}.
We have already known that () holds for each 4‐colored polytope P whose faces of

P are less than seven (cf. [7] or [11]). Then we assume that a 4‐colored polytope P has

at least seven faces. Moreover we may assume that P has no triangular face because if

P has a triangular face then we obtain P=Bl_{v}P' for some P' immediately. Let F be a

3‐independent face which has the least edges. Here a face F is 3‐independent means that

the maximal number of linearly independent vectors of {  $\lambda$(F_{j})|F_{j} is adjacent to F } is

three. From the proof of [11, Proposition 4.2], there exists an edge e of F such that

the 3‐independence of F is preserved under the Dehn surgery \Vert^{D} along e . If the Dehn

surgery \Vert^{D} along this edge e does not destroy the 3‐connectedness of the 1‐skeleton of

P then we can decrease the number of edges of F and prove () by induction on the

number of edges of F . We consider the case that the 3‐connectedness of the 1‐skeleton

of P is destroyed after doing \Vert^{D} along the edge e . In this case the situation around
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Figure 16. Obstacle for the Dehn surgery \Vert^{D} along the edge e.

F is shown as Figure 16 (F_{1}\cap F_{3}=e'\neq\emptyset) . In Figure 16,  $\lambda$(F) and  $\lambda$(F) are  $\beta$ or

 $\alpha$+ $\beta$+ $\gamma$ . Since there is no triangular face of  P
,

the three faces F_{2}, F_{4}, F_{7} in Figure 16

are different to each other ( F_{9} may coincide with F_{2} ).
(i) When  $\lambda$(F_{4})\neq $\lambda$(F_{5}) ,

we can do the Dehn surgery \Vert^{D} along the edge e' and

dissolve the obstacle for \Vert^{D} along the edge e.

(ii) When  $\lambda$(F_{4})= $\lambda$(F) (we may assume its value to be  $\beta$ ), we notice that  $\lambda$(F)
and  $\lambda$(F) are  $\alpha$ or  $\alpha$+ $\beta$+ $\gamma$,  $\lambda$(F) and  $\lambda$(F) are  $\gamma$ or  $\alpha$+ $\beta$+ $\gamma$.

(a) In case  $\lambda$(F_{6})= $\gamma$ or  $\lambda$(F_{7})= $\alpha$ ,
we can do \Vert^{N}=\Vert_{f}0\Vert_{\{ff\}}^{-1}1,2 or \Vert^{N}=\Vert_{g}\circ\Vert_{\{g_{1},g_{2}\}}^{-1}

and dissolve the obstacle for \Vert^{D} along the edge e respectively (see Figure 17). The case

when  $\lambda$(F_{8})= $\alpha$ or  $\lambda$(F_{9})= $\gamma$ is similar.

Figure 17. After doing \Vert^{N} in Figure 16.

(b) In case  $\lambda$(F_{6})= $\lambda$(F_{7})= $\lambda$(F_{8})= $\lambda$(F_{9})= $\alpha$+ $\beta$+ $\gamma$ (in this case  F_{5} has at least

five edges), we can do \Vert^{D} along one of edges f or f_{2} because either F_{3}\cap F_{6} or F_{1}\cap F_{8}

must be empty. Next we can do \Vert^{D} along the edge e' and dissolve the obstacle for \Vert^{D}
along the edge e.

In all cases we can decrease the number of edges of F by operations \Vert^{D} and if

necessary \Vert^{N} until F is transformed into a triangle. Then we can decrease the number

of faces of P by the blow down Bl_{v}^{-1} until P becomes a 3‐colored polytope. Namely
the proof of () can be done by the double induction on the numbers of edges of F and



\mathrm{N}‐fiips 1N 3‐dimensional Small Covers 147

faces of P. \square 

Next we consider the constructions of general (\mathbb{Z}_{2})^{3} ‐colored polytopes by the N‐flip.
We say that (P,  $\lambda$) is quasi‐decomposable when there exist two (\mathbb{Z}_{2})^{3} ‐colored polytopes

(P_{i}, $\lambda$_{i})(i=1,2) such that (P,  $\lambda$)=(P_{1}, $\lambda$_{1})\#(P_{2}, $\lambda$_{2}) or (P,  $\lambda$)=(P_{1}, $\lambda$_{1})\#^{e}(P_{2}, $\lambda$_{2})
except P=P_{1}\#^{e}\triangle^{3}(=\Vert^{D}P_{1}) .

Theorem 3.6. Each small cover M^{3} can be constructed from \mathbb{R}P^{3}, S^{1}\times \mathbb{R}P^{2}

and S^{1}\ltimes \mathbb{R}P^{2} by using operations \#, \#^{e}, \Vert^{N} and \#_{4}^{c}.

Proof. We shall prove by induction on the number of faces of P . We have already
known the theorem is stated for a polytope which has at most six faces. Then we

assume that the faces of P are more than six. We notice that P has a small face F

(which has at most five edges). From [11, Proposition 4.5] if P has a 3‐independent
small face then either P or \Vert^{D}P is quasi‐decomposable. Moreover when P has a 2‐

independent triangular face, P is also quasi‐decomposable (cf. [11, Proposition 3.5]).
In these cases we can reduce P to polytopes which decreased in the number of faces by

using the inverses of operations \# and \#^{e} . It is sufficient to consider the case when P

has a 2‐independent quadrilateral or pentagon.

(i) When F is a 2‐independent pentagon, the situation around F is shown as the

first diagram in Figure 18. We can assume that P has no triangle. We do the N‐flip

\Vert^{N}(=\Vert_{e}0\Vert_{\{e_{1},e_{2}\}}^{-1}) and transform F into a triangle (the second diagram). Then \Vert^{N}P has

a2‐independent triangle and therefore it is quasi‐decomposable.

Figure 18. 2‐independent pentagon.

(ii) When F is a 2‐independent quadrilateral, the situation around F is shown as

the first diagram in Figure 19. In this diagram we can assume that P has no triangle
and no pentagon. First we do the color change \#_{4}^{c} if necessary and change the color of

F to  $\alpha$+ $\beta$+ $\gamma$ . Next we do the Dehn surgery \Vert^{D} along an edge e and transform F into

a pentagon (second diagram). Then \Vert^{D}\circ\#_{4}^{c}P has a 3‐independent pentagon. Therefore

we can reduce this case to the previous case.

\square 
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Figure 19. 2‐independent quadrilateral.

Remark. We expect that the above theorem is improvable like Theorems 3.3 and

3.5 as follows: Each small cover M^{3} can be constructed from \mathbb{R}P^{3}, S^{1}\times \mathbb{R}P^{2} and

S^{1}\ltimes \mathbb{R}P^{2} by using operations Bl_{v}, Bl_{e}, Bl_{v}^{T}, Bl_{e}^{T}, \Vert^{D}, \Vert^{N} and \#_{4}^{c} (i.e. \# and \#^{e} are

restricted to {Blv, Bl_{v}^{T} } and \{\Vert^{D}, Bl_{e}, Bl_{e}^{T}\} respectively). However the proof seems

rather delicate.
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