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Smith sets of non-solvable groups whose nilquotients
are cyclic groups of order 1, 2, or 3

By

TosH1IO SUMI*

Abstract

Let G be a finite group. Two real G-modules U and V are called Smith equivalent if
there exists a smooth action of G on a sphere with exactly two fixed points at which tangential
representations are isomorphic to U and V respectively. The Smith set of G is the subset of
the real representation ring of G consisting differences of Smith equivalent G-modules. We
discuss the question when the Smith set of an Oliver group becomes a group and give several
examples of classes of non-solvable groups of which the Smith sets are groups.

§1. Introduction

Let G be a finite group. Two real G-modules U and V are called Smith equivalent if
there exists a smooth action of G on a sphere ¥ such that 3¢ = {z, y}, and T,(X) = U
and Ty(X) = V as a real G-module. Let Sm(G), called the Smith set of G, be the
subset of the real representation ring RO(G) of G consisting of all differences [U] — [V]
for real G-modules U and V which are Smith equivalent. If ¥ is connected for any
subgroup P of GG of prime power order, then we call that U and V are c-primary Smith
equivalent. Let PSm¢(G) be the subset of Sm(G) consisting of all differences for c-
primary Smith equivalent real G-modules. The set Sm(G) always contains the zero but
the set PSm®(G) contains the zero if and only if G is not of prime power order.

Atiyah and Bott [2] showed that the Smith set of a cyclic group of prime order is
zero, namely, Smith equivalent real modules are isomorphic. Cappell and Shaneson [4]
showed that the Smith set of any cyclic group Cly,, of order 4n > 8 is not zero, namely,
there is a pair of non-isomorphic Smith equivalent real modules. Dovermann and Petrie
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[12] gave infinitely many cyclic groups of odd order of which the Smith sets are not
zero. For a perfect group G, Laitinen and Pawalowski [19] showed that PSm¢(G) is
not zero if and only if the number, denoted by 7, of real conjugacy classes of elements
of G not of prime power is greater than or equal to 2. Pawatowski and Solomon [26]
showed that for a gap Oliver group G with rg > 2, if G % Aut(A4g), PXL(2,27), then
PSmc(G) # 0. Note that rg = 2 for G = Aut(4s), PXL(2,27). Morimoto determined
PSmc(Aut(4g)) = Sm(Aut(Ag)) = 0 [21] and PSmS(PXL(2,27)) # 0 [22]. Pawalowski
and Sumi [28] showed that PSm°(G) # 0 for a non-solvable group G with rg > 2
which which is not isomorphic neither to Aut(Ag) nor to PX1.(2,27). Therefore, for
a non-solvable group G, PSm®(G) # 0 if and only if r¢ > 2 and G % Aut(4s).
Many researchers have studied the problem [32] whether the Smith set is zero or not
5,11, 6, 7, 9, 12, 20, 34, 8, 14, 13].

In general, the Smith set is not a group. For example, Morimoto pointed out that
the Smith set of a cyclic 2-group is a finite set by Bredon’s inspection [3] and therefore,
it is not a group (see [24, Theorem 1] for details). In this paper, we try to find classes
of finite non-solvable groups G such that Sm(G) is a group.

Main Theorem.  The Smith set Sm(G) is a group for groups G such as

the alternating groups Ay,

the symmetric groups Sy,

the projective special linear groups PSL(2,q) and PSL(3,q),

the projective general linear groups PGL(2,q) and PGL(3, q),

the projective special unitary groups PSU(3,¢?), and

the sporadic groups and their automorphism groups.

This paper is organized as follows. In Section 2, we prepare notations and results
as tools to determine the Smith sets for appropriate groups. In Section 3, we completely
determine the Smith sets of the alternating groups and the symmetric groups. In Sec-
tion 4, we consider certain classes of perfect groups and determine the Smith sets of
PSL(2,q), PSL(3,q) and PSU(3,¢?). In Section 5, we treat some classes of non-perfect
non-solvable groups and determine the Smith sets of PGL(2, ¢) and PGL(3, ¢). In Sec-
tion 6, we discuss the sporadic groups and their extensions, and compute the related
Smith sets.

§ 2. Preliminaries and basic results

In this paper, every group G that we consider is finite. Also, we assume that 1 is a
power of a prime. First we introduce notations. Let RO(G) be the real representation
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ring of G, P(G) the set of all subgroups of G of prime power order, and put
P(G) ={P € P(G) | |P|=2% a>3} and P,(G) =P(G) \ P.(G).
Also we put
Elm.(G) ={g € G [ (9) € Pe(G)} and Elm,(G) ={g € G| (g) € Po(G)}-

Let OP(G) be the smallest normal subgroup of G of order a power of p for a prime p
and L(G) the set of all subgroups L of G such that L > OP(G) for some prime p. Let
G™! be the smallest normal subgroup of G such that the quotient G/G™! is nilpotent.
Then

Gt =(o"(G).
P
For subsets F; and F3 of subgroups of G and a subset A of RO(G), we put
Ar, = [ ker(Res§: RO(G) — RO(P)) N A,
PecF
AP = [ ker(Fix": RO(G) — RO(Na(L)/L)) N A
LeFs
and A% = Ar, N A"2. By Smith theory, it holds that PSm®(G) C RO(G)p(c)-
Theorem 2.1 ([29]). It holds that Sm(G) C RO(G)p,c)-

Note that
RO(G)p, () = RO(G){(g)|geEIm.(G)}-
In particular if G has no element of order 8 then Sm(G)pg) = Sm(G). For example,
the Ree group 2G(3*"*1) [37] and the Suzuki group 2B, (22""1) [36] are simple groups
which have no element of order 8.
Put
MNo(G):={H<G|[G: H <2}

and

Ny(G):= () H.
HeN2(G)

The group N2(G) is the smallest normal subgroup H so that G/H is an elementary
abelian 2-group.

Theorem 2.2 ([21]).

Sm(G) C RO(G)N=(&),
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Theorem 2.3 ([27, Theorem 2.5]).  Ifg{g*) C {g) for g € Elm.(G), then it holds

Let Irr(G) be the set of representatives of isomorphism classes of the irreducible
real G-modules and put

ir(g,G) = |{[V] € Irr(G) | dim VI = 0 = dim VN2(¥)}

for g € G and
ir(G) = max ({ir(9, G) | g € Elmc(G)} U{0}).

Proposition 2.4.  For a group G and its quotient group K, it holds that ig(K) <
ir(G).

Proof. Let f: G — K be a canonical epimorphism. Note that f*: RO(K)N2(K)
RO(G)N2(@) is injective since f(Na(G)) = No(K), and dim(f*V)® = dim V/®) for 2 €
G and a real K-module V. Let a be an element of Elm,(K) such that ig(K) = ir(a, K)
and let b be an element of f~!(a) N Elm.(G). If a real K-module V satisfies that
VNAK) = 0 = dimV® then (f*V)N2(K) = 0 = dim(f*V)?. For an irreducible real
K-module V, f*V is an irreducible real G-module. Therefore ir(K) < ir(G). O

We can slightly extend Theorem 2.5 [27].

Proposition 2.5. Ifir(G) < 1 then Sm(G)pq) = Sm(G).

Proof. Let [U] — [V] € Sm(G). By Theorem 2.2, we may assume that UN2() =
0 = VN2(G) In this situation, according to the proof of Theorem 2.5 [27], if ig(G) = 0
then dim U9 > 0 for g € Elm.(G) and if ig(G) = 1 then xy(g9) = xv(g) for g € Elm.(G).
In the both cases [U] — [V] € RO(G)p(g). Therefore Sm(G)pe) = Sm(G) holds. O

We obtain the characters of irreducible real G-modules from the characters of ir-
reducible complex G-modules. The indicator ¢y of an irreducible complex G-module V'

|—é| > xvig?).

gelG

is given by

It takes a value 0, 1 or —1. The value is 1 if and only if the character yy is a character
of an irreducible real G-module. If the value is —1 (resp. 0) then 2yy (resp. xv + Xy )
is a character of an irreducible real G-module. We frequently use the formula

. 1
dime V¥ = ol > xvle)
ce(g)

for g € Elm.(G). In particular, if dim¢ V9 > 0 then we do not have to take care about
the indicator of V.
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Lemma 2.6.  If there is not an irreducible complex G-module V' such that dim V9
is zero for any g € Elm.(G), then ix(G) = 0.

Let Irrc(G) be the set of representatives of isomorphism classes of the irreducible
complex G-modules. Let G be a central extension of K by H, that is, H < Z(G) and
1— H— G5 K — 1is an exact sequence. Fix an injective map f: K — G such that
mo f =id and if elements z and y of K are conjugate then f(z) and f(y) are conjugate
in G. The map f is not necessary a homomorphism. An element of G is expressed as
hf(k) for h € H and k € K. Let V be an irreducible complex G-module. The character
value xv (hf(k)) of V at hf(k) can be described as x¢(h)xy(k) for some [¢] € Irre(H)
and some [n] € Irr¢(K). In such a case, we denote V' by V(§,n). This notation depends
on a choice of f. It holds that

Irre(G) = {[V(€.n)] | [€] € Trve(H), [n] € Trre(K)}.

We canonically extend it to a bilinear map V'(-,-): R(H) x R(K) — R(G), where R(G)
is the complex representation ring of G. Similarly as for ig(G), we put

ic(g,G) = {[V] € Irre(G) | dim V9 = 0 = dim V2(9)}

for g € G and
ic(G) = max ({ic(9,G) | g € ElIm.(G)} U{0}).

Lemma 2.7.  ic(G) =0 if and only if ir(G) = 0.

Proof. Let W be an irreducible real G-module which comes from an complex G-
module V with dim V9 = 0 = dim V™2(%) . Since xw is equal to xv, 2xv or xv + Xv,
dim WY is equal to dim¢ VY or 2dime V9. Therefore the statements ic(G) = 0 and
ir(G) = 0 are equivalent. O

Lemma 2.8. Let G be a central extension of a group K by a group H of odd
order and 7: G — K a canonical epimorphism. For x € Elm.(G), it holds that
ic(z,G) > |Irr(H)|ic(n(2), K) and ic(G) > |TIrr(H)|ic(K). Furthermore, if O?(K) =
K then ic(G) = ic(x,G) = |Irre(H)|ic(n(x), K) and ic(K) = ic(w(z), K) for some
z € Elm.(G).

Proof. Let f: K — G be an injective map such that wo f = id, if elements x and
y of K are conjugate then f(x) and f(y) are conjugate in GG, and f(b) is an element of
order a power of 2 for any element b of order a power of 2. Let z € Elm.(G). Since
|H| is odd, 7(z) is an element of Elm.(K). Since f(m(x)) € 7 !(x(x)) and = have
order a power of 2, it holds that f(mw(xz)) = z. Let [§] € Irre(H) and [n] € Irre(K)
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with nV2(5) = 0. Since xv (¢, (z) = (dimg &)xy(7(2)), dimen™@ = 0 if and only if
dimc V(&,1)* =0, and then ic(z, G) > |Irre (H)|ic(7(x), K).

Now suppose that K = O?(K). Then G = O%(G) = No(G). Since dime V (£,1)¢ =
(dimg £)(dime ), if dime 7™®) = 0 then dimen® = 0 = dime V(€,1)¢. Therefore
ic(xz, Q) = |Irre(H)|ic(m(z), K). O

Proposition 2.9.  Let G be a central extension of a group K with O*(K) = K
by a group H of odd order. Then ix(G) = ig(K)+ (| Irr(H)| —1)ic(K)/2. In particular,
ir(G) =0 if and only if ig(K) = 0.

Proof. Let g be an element of G such that ir(g,G) = ir(G). Note that 1y (¢, =
tety. There are ig(K) elements [V] of Irr(G) which come from V(R,-) such that
dim V9 = 0 = dim VN2(9)_ Let [¢] be an element of Irr(H) with £ # R. Then ¢¢ = 0 and
for [n] € Irrc(K), there is one element of Irr(G) whose character is Xy (¢, + XV &
Therefore ir(G) = ir(K) + (|Irr(H)| — 1)ic(K)/2. By Lemma 2.7, ix(G) = 0 and
ir(K) = 0 are equivalent. O

For an element h € G, let
FO(G,h) = {([V]|V € Irr(@), dim V" = 0) ¢ RO(G).
The subset FO(G, h) is a subgroup of RO(G).

Theorem 2.10.  If FO(G,h)p, = 0 for all h € Elm.(G), then Sm(G)pq) =
Sm(G).

Proof. Let [U] — [V] € Sm(G). Suppose that xy(h) # xv(h) for some h €
Elm.(G). It holds that U" = 0 = V" by Smith theory. Then [U] — [V] € FO(G, h).
Further, it follows from Theorem 2.1 that 0 # [U] — [V] € FO(G, h)p, ) O

Let D(G) be the set of pairs (P, H) of subgroups P and H of G such that P € P(G)
and P < H. A finite group G is called a gap group [25] if there is a real G-module V
such that dim V¥ = 0 for L € £(G) and dim V¥ > 2dim V¥ for (P, H) € D(G). For
example, a non-trivial perfect group is a gap group. A finite group G is called an Oliver
group [18] if there does not exist a pair (P, H) of normal subgroups P in H and H in G
such that P € P(G), H/P is a cyclic group and G/H is a group of prime power order.
In particular, a non-solvable group is an Oliver group.

Lemma 2.11. Let G be a non-trivial perfect group. Then G is a gap Oliver
group with PSm°(G) = RO(G);C%). Furthermore, if ir(G) < 1 then

PSm*(G) = RO(G) ity = Sm(G).
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Lemma 2.12.  Let G be a gap Oliver group. If G/G™! is an elementary abelian

2-group, then PSm*(G) = RO(G)%{)C(;;}. Furthermore, if ig(G) < 1 then

PSm®(G) = RO(G)Ks) = Sm(G).

Proof of Lemmas 2.11 and 2.12. 1f G is perfect then Ny (G) = G = G™L. If G/G™!
is a 2-group then O?(G) = G™!. By the Realization Theorem [26, p.850], we have

PSm*(G) = RO(G)5ey)]

and by Proposition 2.5, .
Gnll
Sm(G) C RO(G)picy’.

Therefore the equality holds. O

Let rg be the number of real conjugacy classes represented by elements not of
prime power order. Then RO(G);)C(;E;) is a free abelian group of rank max(rg — 1,0). In
particular, PSm¢(G) =0 if rg < 1.

In the case where G is not a gap group, we check the weak gap condition. We say
that a G-module V satisfies the weak gap condition if the following conditions all hold

(cf. [23]).
e dim V¥ >2dim V¥ for (P, H) € D(G).

o If dim V¥ = 2dim V¥ for some (P,H) € D(G), then [H : P] = 2 and dimV# >
dim VE +1 for every H < K < G.

o If dim VP = 2dim V¥ for some (P, H) € D(G) with [H : P] = 2, then the map
gx: V1 — V1 is orientation preserving for any g € Ng(H).

o If dim VP = 2dim V¥ and dim VP = 2dim V' for some (P, H),(P,H') € D(Q),
then the smallest subgroup of G containing H and H' does not lie in L(G).

Lemma 2.13.  Let H be a subgroup of G, V a G-module and gH € Ng(H)/H.
If (xH),: VT — VH preserves the orientation, where xH is a generator of a Sylow
2-subgroup of (gH), then (gH).: VH — V' preserves the orientation.

Proof. Tt is clear that (yH),: V! — V! preserves the orientation for any yH €
N¢(H)/H of odd order. Therefore the assertion follows. O

Let D@ (G) be the subset of D(G) consisting of (P, H) such that the following
properties hold.
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(1) [H:P]=[0*G)H : O*(G)P] =2 and OP(G)P = G for every odd prime p,
(2) O?(Cg(h)) is a subgroup of P for any element h € H . P of order 2, and
(3) Cg(h) is a 2-group for any 2-element h € H ~\. P of order > 2.
We consider the following partial condition (PWGC) of the weak gap condition:
e dim V' >2dim V¥ for (P,H) ¢ DA (Q).

o If dim V¥ = 2dim V¥ for some (P, H) € D®(G), then the map (¢H),: VH — V1
is orientation preserving for any gH € Ng(H)/H of order a power of 2.

Let R[G]z(g) be a real G-module defined as

(RG] - R[GI) — (D RIG] — RG]F) (.
P

A real G-module V is called £(G)-free if [V] € RO(G)*(%) and called nonnegative if
dim V¥ > 2dim V¥ for (P, H) € D(G). Suppose that P(G)NL(G) = @. In their paper
[18], Laitinen and Morimoto essentially used the L£(G)-free and nonnegative real G-
module R[G]z(qy, denoted by V(G). It also holds that dim R[G]E(G) > 2dimR[G]f(G)
if (P, H) does not satisfy (1). By [35, Theorem C and Lemma 4.3], there exists an £(G)-
free nonnegative real G-module V fulfilling that dim V¥ > 2dim V¥ if (P, H) does not
satisfy (2) or (3). Therefore, there exists an L£(G)-free nonnegative real G-module W
such that W contains R[G]. () as a submodule and dimW?* > 2dim W# if (P, H)
does not satisfy (1), (2) or (3). By [18, Theorem 3.2] with Lemma 2.13, for an Oliver
group G, if a real G-module V satisfies (PWGC) then V @ W®™ satisfies the weak gap
condition for some even integer n > 0. In particular, if G is a gap group then taking W
as a gap real G-module, for any G-module V, V @ W®" satisfies the weak gap condition
for sufficient large integer n > 0.

Proposition 2.14.  IfU andV are L(G)-free real G-modules satisfying (PWGC)
then there are L(G)-free real G-modules U’ and V' satisfying the weak gap condition
such that [U'] — [V'] = [U] — [V].

Proof. For each X = U,V let nx be an even positive integer such that X ¢ W®n
satisfies the weak gap condition. Put m = max(ny,ny) and X' = X W™ for X = U
or V. Since W is nonnegative, the assertion follows. O

Therefore, by Proposition 2.14 and [28, Theorem 3.9], the following theorem holds.

Theorem 2.15.  Let G be an Oliver group. If U and V are G-modules such
that [U] — [V] € RO(G)p(g), U =0 =V for L € L(G), and both U and V satisfy
(PWGCQC), then [U] — [V] € PSm®(G).
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From the next section, we use these results to determine Sm(G).

§3. Alternating groups and symmetric groups

In G = A, or S,, it holds that g{g?) C (g)* for any g € Elm.(G). This allows to
determine Sm(G) for G = A,, or S,,.

Proposition 3.1.  For the alternating group A,,,

PSm*(An) = Sm(An) = RO(An) 53

which is a free abelian group of rank max(ra, —1,0). In particular, Sm(A,) = 0 if and
only if n < 7.

Proof. By Theorem 2.3, Sm(A,) is a subset of RO(An)g(l’;li). For n <7, A, has
no element of order 8 and then PSm¢(A,) = Sm(A,) [19]. Furthermore, for n < 7,
T4, <1 and then PSm°(A,) = 0 by [26, Theorem B3]. Let n > 8. Since A,, is a gap

Oliver group, Theorem 2.11 implies PSm®(A,) = Sm(A,) = RO(An);;?Zi). O

Proposition 3.2.  For the symmetric group S,

PSm*(S,) = Sm(Sn) = RO(Sn) s,

which is a free abelian group of rank

0, n=234,5,
1, n =06,
rs, —2(>3), n>T.

Proof. By Theorem 2.3, Sm(S,,) is a subset of RO(S,)p(s,) and by Theorem 2.2,
Sm(S,,) is a subset of RO(S,,){4»}. Therefore Sm(S,,) is a subset of RO(Sn)g?gi).

For n < 7, S,, has no element of order 8 and then PSm¢(S,) = Sm(S,) [19].
Furthermore, for n < 5, rg, < 1 and then PSm®(S,) = 0 by [26, Theorem B3]. For
n > 6, S, is a gap Oliver group and then PSm®(G) = Sm(G) = RO(Sn)g(lgi) by
Theorem 2.12. O

§4. Projective special linear groups

The next targets are the projective special linear groups PSL(2, ¢) which are simple
groups for g > 4.

Since PSL(2,2) & Dg = S5 and PSL(2,3) = Ay, it holds that Sm(PSL(2,q)) =0
for ¢ = 2, 3.
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Theorem 4.1. For G = PSL(2,q), ir(G) = 0 and PSm°(G) = Sm(G) =
RO(G);{DC(%) which is a free abelian group of rank max(r¢,_, +rc,., —1,0).

Proof. 1f q is a power of 2 then G has no element of order 4 and then ig(G) = 0.
Let g be a power of an odd prime. It is easy to see that r¢ = r¢,_, +rc,,,- By
Lemmas 2.7 and 2.11, it suffices to show that ic(G) = 0. The character table for G is
known (cf. [1]) and it is induced from the character table for SL(2,q) [17, 30]. First
suppose that ¢ is congruent to 1 modulo 4. Put g = 2°t1¢ 4+ 1, where t is odd. Let x be
an element of G of order (¢ —1)/2 and y = z'. An element of order a power of 2 greater
than or equal to 4 is conjugate to an element of the cyclic group (y). The following
table is a part of the character table for G and the dimensions of the (y)-fixed point
sets of the irreducible complex G-modules:

Vv X1 Xq Xé:)-l Xéj_)1 X(g+1)/2 | Xgr1)2
(e) 1 ¢ |q-1 q+1 (¢+1)/2 | (¢+1)/2
(@) | 1 1 0 eI (—1) (—=1)°
dimVVy || 1 |2t+1| 2t Zi L gz K(]jg) t t

where n = exp(nv/—1/(¢ — 1)), 1< i< (g~ 1)/dand 1< < (g — 5)/4.

Therefore ic(G) = 0.

Next suppose that ¢ is congruent to 3 modulo 4. Then ¢ — 1 is not divisible by 4.
Put ¢ = 2°1¢ — 1, where s > 1 and ¢ is odd. Let = be an element of G of order ¢ + 1
and y = 2'. An element of order a power of 2 greater than or equal to 4 is conjugate to
an element of the cyclic group (y).

Vv X1 Xq Xt(;J)A XE]J—)I X(q+1)/2 X/(q—l—l)/Q
(e) 1 q g—1 q+11](g+1)/2] (¢+1)/2
(z%) 1 —1 —o — g 0 1 1
2t 25 Vi
dimVy || 1 | 26—1 (2° / ,Z) % ¢ ¢
2 —2 (25| 4)

where o = exp(mv/—1/(¢+1)),1<i<(¢—3)/4and 1 < j < (¢—3)/4.

Note that if t = 1 then (¢ — 3)/4 < 2°. Thus if ¢ is divisible by 2® then ¢t > 1 and
2t — 2 > 0. Therefore ic(G) = 0. O

Theorem 4.2.  Let G = PSL(3,q) or PSU(3,¢?). Thenir(G) =0 and PSm¢(G) =
Sm(G) = RO(G);)C(;(};) which is a free abelian group.
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Proof. The group G is a simple group. By using the character table [31], we
straightforwardly see that ic(G) = 0. By Lemmas 2.7 and 2.11 we get the assertion. O

We have the same result for certain perfect groups.

Theorem 4.3. Let G = SL(3,q) or SU(3,q¢?). Then ir(G) =0 and PSm°(G) =
Sm(G) = RO(G) ity

Proof. SL(3,q) is a central extension of the simple group PSL(3,¢q) by a cyclic
group of order ged(3,q — 1). Also, SU(3,¢?) is a central extension of the simple group
PSU(3, ¢%) by a cyclic group of order ged(3, g+ 1). Therefore the assertion follows from
Theorem 4.2 and Lemma 2.8. O

8§5. Projective general linear groups

We consider the projective general linear group PGL(2, ¢). For even ¢, it is isomor-
phic to PSL(2, ¢) which is a perfect group for ¢ > 4. For odd ¢ > 5, it has a subgroup
PSL(2, q) with index 2.

Theorem 5.1.  Let q be a power of an odd prime and G = PGL(2,q). It holds
that ig(G) < 1. If G is a gap group, then PSm®(G) = Sm(G) = RO(G)%PEZI;(Q’Q)} which
is a free abelian group of rank rc,_, + 1o, — 2-

Proof. Let x4_1, v4 and z441 be elements of G of order ¢ — 1, ¢ and ¢ + 1,
respectively. The character table of PGL(2, ¢) is known (cf. [33]):

X1 | X1 | Xq Xy Xéill Xff_)l
(e) 1 1 q q q+1 q—1
(zg) || 1 1 0 0 1 —1
@ )| 1| 1| (e | et g ate 0
(332+1) 1| (=1 | =1 (=1)b+! 0 —eiblg—1) _ —35b(qg—1)

Here 1 <a<(¢—1)/2,1<b<(q¢+1)/2,1<i<(¢q—1)/2,1<j<(¢+1)/2, and
e = exp(2mv/—=1/(¢* - 1).

Since the indicator of each irreducible complex G-module is one, the table is also
a character table of the irreducible real G-modules. Note that dim(y;)?(®) =1 =

dim(x;)V2(@). Now we show that ig(G) < 1. If G has no element of order 8 then we
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have nothing to do. The other cases are the case where ¢ — 1 is divisible by 8 and the
case where g + 1 is divisible by 8.

Suppose that g — 1 is divisible by 8. Let ¢ — 1 = 2°¢, where ¢ is odd. An element of
order 8 is conjugate to an element of the subgroup (z,_1). Let y be an element of the
group (xq—1) of order 2°. Then we have

\ Xe | Xg xffll xfl"_)l

t (2° f4)
t+2 (2°4)

dimV¥ || t+1 | ¢ t

and then ig(G)) = 0.

Next suppose that g 4+ 1 is divisible by 8. Similarly as above, letting ¢ + 1 = 2°¢,
for an element y of the group (x441) of order 2%, we have the data of dimensions of the
fixed point sets:

v Xo | x| X8, o
t o (2° )
dimVy | t—1| ¢ | ¢ L
t—2 (2°]J)

Note that if 2° | j occurs then ¢t > 3, since j < 2°71t. Therefore ig(G) < 1. We have
done to show that ig(G) <1 for any q.
Thus, by Lemma 2.12, PSm®(G) = Sm(G) = RO(G);{DPEZI;(Q’(])} and since x4, and

Zq+1 are elements not of prime power order, rank RO(G);P(ZI;(Q"])} =rc,_, trog, —

2. |

For odd g, if PGL(2,¢) is a gap group then ¢ # 3,5,7,9,17 [35]. If ¢ = 3,5, 7 then
PSmc(G) = Sm(G) = 0 since r¢ < 1.

Now we discuss the Smith sets of PGL(2,9) and PGL(2, 17). Since their groups are
not gap groups, we confirm the assumption of Theorem 2.15. Let ¢ = 9,17 and let z441
and z,_; be an element of PGL(2, ¢) of order ¢+ 1 and ¢— 1 respectively. An element of
PGL(2,q) ~ PSL(2, q) of order 2 is conjugate to an element of the cyclic group (xq41).
Then for (P, H) € D@)(G), if H~ P has the element a:t(;fll)/ ? of order 2 then P contains
(z2,1). Thus, any element of D) (@) is conjugate to ((22_1), (@g—1)), ((2241), (Tq41)),
or ((x2,,),Dg11), where Dy is a dihedral group generated by z2,, and y which is
conjugate to a:g‘fll)/ ?. For the groups H in the above pairs of subgroups, Ng(H)/H is
a cyclic group Cy of order 2 generated by an element gH such that g is conjugate in G

+1)/2 —1)/2 -1)/2
to 2 T5D/2 gD/ (-7

a1 ,and x, " , respectively.

Proposition 5.2. It holds that

PSm*(PGL(2,9)) = Sm(PGL(2,9)) = RO(PGL(2,9)) 5 berria )
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which is a free abelian group of rank 1.

Proof. We use the notation in the proof of Theorem 5.1. Let G = PGL(2,9),
U= Xél) @ X(Q) and V = Xé?’) P Xg;). By the character table for GG, we have

RO(G) iy > = (U] = [V)).

We show that both U @& V and 2V satisfy the weak gap condition. Recall a non-
solvable group is an Oliver group. Then G is an Oliver group. For each (P, H) €
D)(@), we have U and V¥ are both isomorphic to R[Ng(H)/H] as Ng(H)/H-
modules and dimU? = dim V¥ = 4. Therefore U @ V and 2V satisfy (PWGC) and
then RO(G)f)((g)) C PSm®(G) by Theorem 2.15. Since L£(G) = {PSL(2,9),G}, we
have RO(G){PSI;(2 9GF = RO(G)f)((g)) By Theorem 2.2 with ig = 0, the equalities
RO(G) o > = PSme(G) = Sm(G) hold, O

Proposition 5.3. It holds that

PSm*(PGL(2,17)) = Sm(PGL(2,17)) = RO(PGL(2,17)) b b itia 1oy

which is a free abelian group of rank 3.

Proof. By the notation in the proof of Theorem 5.1, let G = PGL(2,17), Uy =
X+ 32, Vi = %2+ = 1, e = 1, Us = 1+ )
Vi = Xﬁ‘é) + X%), and Wy = U; © Vj and W} = 2V}, for j = 1,2,3. Then the three
elements [W;] — [W}] span RO(G)gzg;“@’N)’G}. For each (P,H) € D®(G) we have
dim U =4 =dim VT, and U and V¥ are isomorphic to R[Cs] as Ng(H)/H-modules.
Therefore W; and W} satisty (PWGC). By Theorems 2.2 and 2.15 with ig = 0, the

equalities RO(G);P(g;J(Q DG = pme (G) = Sm(G) hold. O

Therefore the Smith set of PGL(2, q) is a free abelian group for any ¢, a power of
a prime.

Now we discuss the Smith sets of Oliver groups G with [G : O3(G)] = 3. The
following theorem is a key result for PGL(3, ¢), obtained essentially by Theorem 1.3
[22].

Theorem 5.4. If G is an Oliver group such that G/G™! = C3 and G™ has a
subquotient group isomorphic to Dog for distinct primes s and t, then

PSm®(G) = RO(G) -

Furthermore, if ir(G) < 1 then PSm®(G) = Sm(G) = RO(G)%{)C(;(};).
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Proof. The Realization Theorem [26, p.850] implies that RO(G);?E;;} C PSme(G),
since G is a gap group. -1If G ~ G™! has no element not of prime power order, then
a el c G .
RO(G);{D(é) = RO(G);(G)} and PSm¢(G) = RO(G);{D(é) holds. Otherwise, by Theo-
rem 1.3 [22], PSm‘(G) = RO(G);((%) holds. Therefore, if ig(G) < 1, then Proposi-
tion 2.5 implies that PSm¢(G) = RO(G);((%) = Sm(G). O

Note that PGL(3,2) = PSL(3,2) = PSL(2,7) and 7pgr,(2,7) = 0, which implies
Sm(PGL(3,2)) = 0. Also note that Sm(PGL(3,3)) = 0 since PGL(3,3) = PSL(3,3)
and rpsr3,3) = 1. If PGL(3,q) # PSL(3,q) then ¢ — 1 is divisible by 3. Hence, if
q — 1 is not divisible by 3 then the Smith set of PGL(3, ¢) has been already obtained in
Theorem 4.2.

Theorem 5.5.  Let g > 4 be a power of a prime such that q — 1 is divisible by 3
and let G = PGL(3,q). It holds that ix(G) = 0. Furthermore, PSm*(G) = Sm(G) =
RO(G)%{)C(%) which is a free abelian group of rank rg — 1.

Proof. The character table for G is well-known [33]. The equality ic(G) = 0
follows from it. Then, by Lemma 2.7, ig(G) = 0 holds.

We show that PSm®(G) = Sm(G) = RO(G);C(%). First suppose that ¢ = 4.
We have RO(G);?ZI;(?’A)} C PSm®(G) by the Realization Theorem [26, p.850]. Since
rpsr(3,4) = 0 and [PGL(3,4) : PSL(3,4)] = 3, or by the character table of G, we see
that the equalities RO(G);PEZI;(:)’A)} = RO(G);C(%) and then PSm¢(G) = RO(G);C(%)
hold. Suppose that ¢ > 4. It suffices to see that the equation PSm(G) = RO(G);)C(;(};)
holds. Since G is a non-solvable group, it is an Oliver group with [G : PSL(3,¢q)] = 3.
The group PSL(3,¢) has a subgroup isomorphic to PGL(2,q) which has a subgroup
isomorphic to Dy(,—1) of order 2(¢ — 1). If ¢ is odd, then ¢ — 1 is divisible by 6 and
otherwise ¢ — 1 is not a power of 3 by Lemma 3.3 [35]. Therefore, by Theorem 5.4,

PSm*(G) = RO(G)p g holds. O

Proposition 5.6.  For G = GL(2,2%) or GL(3,2%), ir(G) = 0.

Proof. GL(n,2%) is a central extension of PGL(n,2%) by a cyclic group of or-
der 2¢ — 1, PGL(2,2%) = PSL(2,2%) and [PGL(3,2%) : PSL(3,2%)] = ged(3,2% — 1).
Therefore, Theorems 4.1 and 5.5 and Proposition 2.9, ig(G) = 0 for G = GL(2,2%) or
GL(3,2%). O

Theorem 5.7. Let a > 4 be an even integer. Put n = 2,3 and q = 2*. For
a subgroup G of GL(n,q) with |G : SL(n,q)] = 3, it holds that PSm®(G) = Sm(G) =
G
RO(G) it
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Proof. By Proposition 2.9, we have ig(G) = 0. PSL(2,q) = PGL(2,q) has a
subgroup isomorphic to a dihedral subgroup of Dy(,_1). Since ¢ — 1 is an odd integer
divisible by 3, Lemma 3.3 (1) [35] implies that ¢ — 1 is not a power of 3. Therefore
G = PSL(n, q) has a dihedral subgroup of order 2st where s and t are distinct odd
primes. By Theorem 5.4 we have PSm®(G) = Sm(G) = RO(G);C(;(};). O

§ 6. Sporadic groups and their automorphism groups

There are 26 simple groups which are not classical groups, called sporadic groups.
Atlas of finite groups [10] has an information of prime power maps. The prime power
map for a prime p sends a conjugacy class () to (zP). Therefore the numbers ig(G)
and ic(G) for a group G described in [10] can be computed.

Theorem 6.1.  For a sporadic group G, igr(G) =0 and
PSm*(G) = Sm(G) = RO(G) 5.

If G is a sporadic group, then [Aut(G) : G] < 2, and Aut(G) % G implies that G is
isomorphic to

M12, MQQ, JQ, J3, SUZ, HS, MCL, He, F’igg, F’i/24, HN, or O'N

(cf. [10]). The automorphism groups of these groups are all gap groups [35, Corol-
lary 3.6].

Theorem 6.2.  For a sporadic group G, ig(Aut(G)) =0 and
PSme(Aut(G)) = Sm(Aut(G)) = RO(Aut(G) Y} 1o

We denote by K.n the extension of C), by K and by m.K.n the extension of K.n by
C,, where CY} is a cyclic group of order k. All groups L = m.K.n listed below are gap
groups, since K and K.2 = Aut(K) are gap groups, and the number ig(L) = 0, which
is also computable by using the software GAP [15]. Therefore we have the following
theorem.

Theorem 6.3.  Sm(G)pq) = Sm(G) with L > G > L™ for the following
groups L:
3.McL.2, 3.8uz.2, 3.J3.2, 3.Fil,.2, 3.0'N.2, 6.Fiss.2, 6.Ms.2,
2.M12, QHS, 2.Ru

We need more inspection to determine whether Sm(G) is zero for an Oliver group
G such that G/G™! is not of prime power order.
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