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Symplectic volumes of double weight varieties
associated with SU(3), 1

By

TARO SUZUKI *

Abstract

We consider double weight varieties, that is, symplectic torus quotients for a direct product
of two integral coadjoint orbits of SU(3), and investigate their symplectic volumes. According
to a fundamental theorem for symplectic quotients, it is equivalent to studying weight multi-
plicities in a tensor product of two irreducible representations of SU(3), and their asymptotic
behavior. We assume that both of two coadjoint orbits used to define the double weight variety
are flag manifolds of SU(3). As a main result, we obtain an explicit formula for the symplectic
volumes of double weight varieties.

§1. Introduction

Let M be a symplectic manifold with a Hamiltonian action of a torus 7" and ® :
M — t* its moment map. For any regular value p € t* of ®, the symplectic quotient at
w is defined by

M//,T =@ (u)/T.

For example, let M be a coadjoint orbit Oy of a compact semi-simple Lie group G
through the point A € t*, and consider the action of the maximal torus T' C G on O,.
Then M//, T = O,//,T is called a weight variety. Many results have been obtained
about weight varieties. Knutson [15] studied the relation with weight spaces of an
irreducible representation (thereby Oy//,T" were named weight varieties), Guillemin-
Lerman-Sternberg [6] gave some formulas for the volumes of weight varieties, and
Goldin [4] gave an explicit expression for the cohomology rings of weight varieties for

Received September 30, 2011. Revised January 13, 2012.

2000 Mathematics Subject Classification(s): 53D20, 22E46.

Key Words: representation; tensor product; weight space; multiplicity; coadjoint orbit; symplectic
quotient.
*Department of Mathematics, Graduate School of Chuo University, 1-13-27 Kasuga Bunkyo-ku,
Tokyol112-8551, Japan.

e-mail: suzuki@gug.math.chuo-u.ac. jp

(© 2013 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



168 TARO SUZUKI

G = SU(n). For compact semi-simple Lie groups except of type A, it is known that
weight varieties are orbifolds in general (see [5]).

For A1, Ay € t*, let M be a direct product Oy, x O, of two coadjoint orbits of GG, and
consider the diagonal action of T C G on Oy, x Oy,. Then M}/, T = (Ox, x Ox,)//,T
is called a double weight variety.

In this paper, we consider the case where G = SU(3). Except for the orbit con-
sisting only of the origin, each coadjoint orbit of SU(3) is diffeomorphic to either the
flag manifold SU(3)/T or the complex projective space P2. Our aim is to express the
symplectic volume vol((Oy, x Oy,)//,T') of the double weight variety in an explicit
form.

First, we assume that A1, Ao € P, and p € P, where P denotes the weight lattice
of G and P, denotes the set of dominant integral weights of G. As we will discuss in
Section 2, under certain conditions on A1, Ao € P4 and p € P, we can express the volume
vol((Oz, x Ox,)//,T) in terms of representations of T'. Namely, vol((Ox, x Ox,)//,T)
is equal to

. 1
klggo 7 WViar @ Viex, Wi,

where V) denotes the irreducible representation of G with highest weight A € P, and for
a representation V of T', [V : W] denotes the multiplicity of weight space W, (u € P)
in the weight decomposition of V. Moreover, k runs over positive integers and d is
the complex dimension of (Oy, x Oy,)//,T. Here, the theorem of Guillemin-Sternberg
(and its generalization) on the characteristic numbers of symplectic quotients (see, e.g.,
[8] and [17]) plays the key role, as well as the Borel-Weil theorem and the Hirzebruch-
Riemann-Roch theorem. The argument above are essentially the same with those in
[20] and [21].

Next, we assume that both of two coadjoint orbits Oy, and O,, are flag manifolds
of SU(3). Namely, we assume A1, Ao € Py, where P, denotes the set of dominant
integral weights which belong to the interior of the Weyl chamber. The main result in
this paper is an explicit formula for the volume vol((Ox, x Ox,)//,T). The details of
the notation will be given in Sections 2 and 3.

Theorem. (See Theorem 3.4 below.) Let A1,y € Py, and p € P satisfy the
assumptions (A0), (A1) and (A2) in Section 3.2. Then we have

vol((Ox, X Oa) /[ T) = > e(wi)e(wa) F(Ax, Az, 3wy, wa),

wy,we €W

where W denotes the Weyl group of SU(3) and F(\1, \g, p; wi,we) is given as follows.

(1) If wi A + woda — p € 71,

1
F(A1, Ao, p;wy, we) = E<wl)\l +woda — p, Ao (widy + wadg — 1, 2A1 — Ag).
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(2) If wi A1 + wada — p € ¥a,

1
F(Ai, A, s wy,wa) = E<w1)\1 + wadg — 1, A1) (w1 Ay + woda — g1, —Ag + 2A5).
(3) Otherwise,
F(A1, A2, p;wyi, we) = 0.

§2. Preliminaries

§2.1. The representation theory of SU(3) and notation

We review some standard facts about the representation theory of SU(3) in order
to fix our notation. We refer to [2] for the generalities on compact Lie groups and their
representations.

Let G = SU(3), g = su(3), T the standard maximal torus of G consisting of
diagonal matrices in GG, and t its Lie algebra. Let g* and t* be the duals of g and ¢,
respectively. We denote by (, ) the pairing between g* and g, or t* and t. Let W = &3
be the Weyl group of G = SU(3) with respect to T'. We define an AdG-invariant positive
definite inner product (, ) on g by

(X,Y) = —ﬁﬁ(XY) (X,Y € g).

We identify g* with g by the inner product (, ). We regard t* as a subspace of g* by
the identification

t={feg'ft-f=f (el

The elements

100 000
(2.1) Hy=2rv/—1| 0-10]|, Ho=2rv/=1| 01 0
00-1

in t are generators of the integral lattice Ker(exp : t — T) and form a basis of t. Under
the identification by the inner product, we define the simple roots ai,as in t* by the
elements which correspond to Hy, Hy € t, respectively. Let A := {a1, 2,01 + az} be
the positive root system. Let us set

Q = Zoy + Lo,
71 = Rspar +Rog(ar + az), 72 := Roo(ar + az) + Rygas,
7 = Rspa1 + R>o(ar + a2), 72 := Rso(a1 + a2) + R>pas.
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We define the fundamental weights A;, Ay € t* by

2
Al = —051;-052’A2 =

o1 + 209
3 )

Under the identification by the inner product, A;, Ao € t* correspond to the elements

20 0 100
om/—1 om/—1
=" 0-1 0|, L="2" 01 0
3 3
00 —1 00-2

in t, respectively. Define

th = R>oA; + Ry, ) :=RogA; + RypAy,
P = ZAl + ZAQ, P_|_ = ZZOAl + ZzoAQ, P_|__|_ = Z>0A1 + Z>0A2.

The set t7 is a fundamental domain of the action of the Weyl group W on t*. Let us
set 1
== = A1 + As.
P 5 QGZA+ o 1+ Ao
According to the representation theory of compact Lie groups, irreducible repre-
sentations of G are, by assigning their highest weights, in one-to-one correspondence
with elements in P,. For A € Py, we denote by V) the irreducible representation of G
with the highest weight A € Py, and by x\ : G — C the character of V). For p € P,
we define e : T — C by e#(t) := 2™V LX) for t = expX € T (X € t). By the Weyl
character formula, y) is given as a function on 7" by

P wew E()e" (1)

e’ (t) [lacn, 1 —e2(1)’

where e(w) = %1 is the signature of w € W.

xXa(t) =

§2.2. Coadjoint orbits

Although we mainly consider the case G = SU(3), most of the following still holds
when G is a general compact Lie group. For further details on coadjoint orbits, see,
e.g., [13] and [16]. We also refer to [12] for the Borel-Weil theorem.

The left coadjoint action of G on g* is defined by g - f := Ad*(g)f for g € G and
f € g*, where

(Ad"(9)f,X) = (f,Ad(g"")X) (X €9).

We denote by Oy, = G - A the coadjoint orbit through A € t* C g*. Then the
intersection Oy Nt* is the W-orbit through A, and O, Nt} consists of a single point. In
other words, coadjoint orbits are parametrized by elements in t, .
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In particular, for G = SU(3), coadjoint orbits O, are classified as follows, where
G denotes the isotropy subgroup at A € t for the coadjoint action of G on g*.

(1) IfAet) , then Gy =T and Oy = SU(3)/T.

(2) I X e th —t5, — {0}, then Gx 2 S(U(1) x U(2)) and Oy = P2.

(3) If A =0, then G, = G and Oy = {0}.

On each coadjoint orbit Oy, there exists a natural G-invariant symplectic structure
wy, called the Kirillov-Kostant-Souriau symplectic form, defined by

(WN)2(Xa, Ya) = (2, [X,Y]) (z €0y, X,Y €g),

where X is the vector field on Oy given by

d
X, = 7 tzo(exp tX)-x.

The action of G on O, is Hamiltonian and the associated moment map is given by
the inclusion ¢y : Oy < g*, that is, we have d(ty, X)(-) = wr(X, ).

In addition, there exists a G-invariant complex structure Jy on O, which is com-
patible with the symplectic structure wy, that is, wy(+, Jx:) becomes a Riemannian
metric on Oy, and makes O, into a Kéahler manifold.

Moreover, in the case A € P, there exists a G-equivariant holomorphic line bundle

Ly over Oy such that ¢q(Ly) = [wy]. The Borel-Weil theorem shows that
H°(O,0(Ly)) 2V, H*(0x,0(Ly)) =0 (k> 0)

as representations of G, where O(L)) denotes the sheaf of germs of holomorphic sections
of L A

Remark 1. (1) For k € Ry and A € t7, Oy = Oy as complex manifolds. If we
compare the symplectic forms and the moment maps under this identification, we have
wix = kwy and vy = kuy. In the case k € Z~¢ and A € Py, we have Li) = L%k.

(2) For A € Py, the action on Oy of the center Z(G) = Z/3Z of G = SU(3) is
trivial, while that on L) is not trivial in general. However, by the construction of Ly
(see, e.g., [12]), if we suppose A € Py N Q, this action becomes trivial, too.

§2.3. Double weight varieties

For general properties of symplectic and Kéhler quotients, see, e.g., [10], [14] and
[18]. The following still holds for a general compact Lie group G.

Let A1, A2 € t}. The diagonal action of the maximal torus T" of G on the direct
product Oy, x O,, is also Hamiltonian and the moment map ® : Oy, x Oy, — t* is
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given by the composition of the map

*

O)\l X O)\z — g
(111'1,11'}2) — T+ X2
and the projection g* — t*. For u € t*, we define the symplectic (or Kéhler) quotient
at u by
(O>\1 X OAZ)//NT = (I)_l(,u)/T.

Here we assume that for p € t*,

(a0) @~ (u) # 0,

(al) p is a regular value of the moment map ®, and (O, x Oy,)//, T is a smooth
manifold.

Then there exist a natural symplectic structure w = w(A1, A2, ) and a compatible
complex structure J on (O, x Oy, )//, T, induced from those on Oy, x Oy,, which make
(Ox, x Ox,)//,T a Kahler manifold. The complex dimension d of (Ox, x Ox,)//, T is

1
d = dimp G — §(dimR G>\1 + dimp G)\z) — dimg 7.

We call (O, x Oy,)//,T a double weight variety.
Now, suppose A1, A2 € Py. Let Ly, be the T-equivariant holomorphic line bundle
over Oy, as in Section 2.2, and let us set

L= (L)\l X L>\2)//NT = ((prIIOq ® pr;L)\z)L@_l(u))/Ta
L= LM//NT = (pl“;-kL)\i|q>—1(M))/T (Z =1, 2)7
where
pr; . O>\1 X O>\2 — O)\i (Z - 172)
is the i-th projection.
By the assumption (al), the isotropy subgroup at each point in ®~1(u) is a finite
group. Since its action on pryLy, (i = 1,2) and Ly, X Ly, = prjLy, ® prjLy, may not

be trivial, £ and £; (i = 1,2) are, in general, orbifold holomorphic line bundles over
(Ox, x Oy,)//,T. We assume that

(a2) L; is a genuine holomorphic line bundle over (Oy, x Oy,)//, T for i =1,2.

Then we have £ = £1 ® L5 and ¢1(£) = ¢1(L1) + c1(L2) = [w(A1, A2, p)].
In general, let (M,w) be a compact Ké&hler manifold and suppose that there exists
a holomorphic line bundle L over M such that ¢;(L) = [w]. In this case, we define

X(M,L):= ) (~1)'H'(M,O(L))

i
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as a virtual vector space. The dimension dimc x(M, L) is called the Riemann-Roch
number of (M, L). We define the symplectic volume vol(M) of (M,w) by

d

w

vol(M ::/ —
(M) L

where d is the complex dimension of M.

Lemma 2.1.  Suppose that (M,w) and L satisfy the assumptions above. Then
we have

1
vol(M) = lim -5 - dime x (M, L"),

Proof. By the Hirzebruch-Riemann-Roch theorem, we have
dime x(M, L) = / Ch(L)Td(M) = / et (DTd(M),
M M

where Ch(L) is the Chern character of L and Td(M) is the Todd class of M. Hence we
have

1 eker(L) c1(L)?
. s Rk _ 1 e _ 1 _
kli)ngo 1 dime x (M, L=%) kli)rgo W Td(M) /M ¥ vol(M).

O

In addition, we assume that a torus 7' acts holomorphically on M, and this ac-
tion lifts to L — M. Then the action of T" on M is Hamiltonian, and the moment
map ¢ : M — t* is determined. For suitably chosen pu € P, we obtain the Kahler
manifold M//, T = ® *(u)/T, the line bundle L//, T = (L|g-1(,)/T over M//, T and
X(M//,T,L//,T) (see, e.g., [8] and [17]).

Remark 2. (1) It follows from the multiplicative property of y (see the appendix
in [11]) that x(Ox, X O, L, B Ly, ) = x(Ox, La,) @ X(Ox,, L, )-

(2) As in Remark 1 (1), (Orr, X Orx)//kx L = (Ox, x On,)//, T as complex
manifolds, and w(kAi, ko, ku) = kw(A1, Ag, ) for & € Rug, A, A2 € ¢} and p € t*.
In particular, it follows that vol((Ogx, X Ogx,)//kuT) = k% - vol((Ox, x Oy,)//,T). In
the case k € Zso, A1, 2 € Py and p € P, we have (Lpx, X Lix,) /1, T = ((Ly, X
LAz)//uT)®k-

(3) Even if A1, Ay € Py does not satisfy (a2), nA; and nAy does satisty (a2) for
some positive integer n. Hence, as far as the symplectic volume vol((Ox, x Oy,)//,T)
is concerned, we can assume (a2) without loss of generality.

On the other hand, we can regard x(M, L) as a representation of 7. Then we
obtain the weight decomposition

X(M,L) =" m,W,,
nePrP
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where W, denotes the weight space associated with p € P and
my, = [x(M, L) : W,] := dim¢(x(M, L) @ W)
is the weight multiplicity of W,,. Besides, for a representation V' of T,
Vi={weVit-v=v (VteT)}

is the set of invariants in V.
The Guillemin-Sternberg theorem and its generalization (see, e.g., [8] and [17]) tell

us the following.
Theorem 2.2.  Assume that the action of T on ®~1(u) is free. Then we have
dime x(M//, T, L//,T) = dime(x(M, L) @ W)" = [x(M, L) : W,].
In our situation, we obtain the following.

Proposition 2.3.  Suppose that A1, s € Py and p € P satisfy the assumptions
(a0), (al) and (a2). Then we have

(1) dlm(c X((O)q X OAz)//MT7 (L)q X LAz)//MT) = [V)q ® V)xz : WM])
(2) vol((Ox, x Ox,)//,T) = lim. % [Via, ® Vi, « W]

Proof. (1) It follows from Theorem 2.2, Remark 2 (1), and the Borel-Weil theorem.
(2) By Lemma 2.1, Remark 2 (2), and the assertion (1), we obtain
VO]((O)\l x O)\Z)//MT)

N S
= lim — - dime X((Ox, X Ox,)//u T (L, B Lyy)//uT)®)
N S
= lim — -dim¢ X((Okh X ij)\g)//k/LT7 (LkAl D kaz)//kuT)
) 1
= lim — - [VkM ® Via, - Wk,u,]'
O

In the next section, we will compute the Rimann-Roch number dimg x((Ox, X
Ox,)// T, (Lx, ®Ly,)//,T) and the volume vol((Ox, x Ox,)//,T) for A1, A2 € P and
we P.

§3. Main results

§3.1. Combinatorial expression
For A € P, let us set

Zwewg(w)ew(/\ﬂ)) e | Ay A2]H —Ay —A2]]
o [0 e e e e Me
acly

X\ =
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and define
F)ﬁ,)\z = XA XXt e

for A1, 2 € Py and p € P. As in the Weyl character formula, we also regard them as
functions on T

Lemma 3.1.  For A\j,A\s € Py and pp € P, [Va, ® Vi, : W] is equal to the
coefficient of €° (i.e., the constant term) in F/‘\LM\Q.

Proof. Let dur be the normalized invariant measure on 7'. Then we have

(3.1) Vi, @ Va, 1 W] = /T X (g (e () dior-

Let Hy, Hy be the basis of the integral lattice in t as (2.1). we write an element t € T
as t = exp(x1Hy + xoHy) with 21,25 € [0,1]. Let us set u; = 2™V =1 (; = 1,2) and
define an isomorphism 7' = U(1)? by ¢ ~ (u1,uz2). Then we have

du1 dU2

2/ —1ug 2mv/—1us

Hence (3.1) is equal to the coefficient of u1%us? in F' f\Ll’ A, (t); which is regarded as a

d,uT = dil’!ld:li'g =

. . n
Laurent series of (u1,uz). If we write F}| ,  as

A A
F>‘\u}1,)\2 — E Cm1’m2€m1 1+mo 2’

then we have

% _ E m m
F)\l)\z(ul,m)— le’m2ul 1U2 2,

Therefore, (3.1) is equal to the coefficient of €V in F/‘\Lh e O

Proposition 3.2.  Let A\, Ao € Py and p € P. Then we have

Vi, @ Va, : W] = Z e(wr)e(w2) E(A1; Az, p; w1, wa),

wy, w2 €W

where for wi,ws € W, we define

E(\, Aoy pywn,we) = (u+ 102 +1)(js + 1)

(jl 7j27j3)

and the sum is taken over all (j1, ja,j3) € (Z>0)> which satisfy the condition

(3.2) w1 (A1 + p) +w2(A2 + p) — = 2p — jrag — jeaa — jz(ar + ) = 0.
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Proof. Applying the generalized binomial theorem to (e” ][], A+(1 —e )2 in

I . .
F)\l, .+ We have a power series expansion

o= D D elw)e(wy)(=1)/r =7 (_2> (_2> (_2>

L 1 /2 3
w1, w2 €W (j1,52,753) J g ’

oWt (M +p)+wz2(Aa+p)—p—jrar—jaaz—j3(ar+az)—2p

A+ IN[jo+1\ /(73 +1
= Z Z e(wy)e(ws)
. . . 1 1 1
w1, w2 €W (j1,52,43)
. eW1(Aitp)fwe(Aetp)—p—jrar—jaaz—jz(a1+az)=2p

= Z Z e(wy)e(wz)(j1 +1)(j2 +1)(j3 + 1)

w1, w2 €W (j1,j2,43)
ewratp)twa(Aetp)—p—jron —jras—ja(aitaz)=2p

Hence our claim follows from Proposition 3.1. O

§3.2. Formulas for the Rimann-Roch number and the volume

In the following, we assume that A1, Ao € Py and p € P satisfy the following three
conditions.

(AO0) p € conv.{wiA; + wads|wy, wy € W},

(A1) For any wy,wy € W,

(widi +wada — p, Ay) # 0,
(wiA1 + wada — p, Aa) # 0,
(Wil +wada — p, Av) # (Wi A1 + wada — p, Aa),

(A2) )\1,/\2,,& € Q7

where conv.{wj A} +waAa|wy, wy € W} denotes the convex full of {wi A\ +weAo|wy, ws €

Remark 3. We mention the relation between the conditions (a0)—(a2) and the
conditions (A0)—(A2). By the convexity theorem of Hamiltonian torus actions on sym-
plectic manifolds (see, e.g., [1], [6] and [7]), (AO) implies (a0), and (Al) implies the
former part of (al). Moreover, for G = SU(3), the former part of (al) implies the latter
part of (al). Besides, by Remark 1 (2), (A2) implies (a2). As we noted in Remark 2 (3),
as far as the symplectic volume vol((Ox, x Oy,)//,T') is concerned, we may assume (A2)
without loss of generality.
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Under the conditions above, let us concretely compute F(A, A2, it; wy, ws) in Propo-
sition 3.2. The condition (3.2) in Proposition 3.2 means that (ji, jz,j3) € Z3 satisfies

g1 = (wi(A1 + p) Fwa(Aa 4+ p) — . —2p, A1) — j3 >0,
j2 = (wi(A1 + p) +wa(Ae + p) — = 2p, As) — j5 >0,
Jz > 0.

We write
A= <w1)\1 + wads — p, A1> , B = <w1>\1 + way — [, Az);
C = (wip +wap, A1), D= (wip+wap, Ag)

for brevity. Note that (p,A;) = (p,As) = 1. Then the condition (3.2) means that
(1, J2,73) € Z3 satisfies

J1=A4+C—-2—343>0,
Jjo=B+D—-2—-j3>0,
js > 0.

Therefore we consider the following cases. Recall that
71 = Rxpa; +Rxso(ag +a2) , 72 = Ryg(ar + az) + Rxpas.
Case 1. Suppose that A+ C —2>0and B+ D —2 > 0.

(1-1) If A+ C > B+ D, that is, wi(A1 + p) + w2(A2 + p) — u — 2p € 71, then we
have

E(A1, A2, s wy, wa)

B+D—-2
= > (A+C-1-j3)(B+D—1-j3)(js+1)
Js=0
_ %(BJFD “1)(B+D)(B+D+1)(2(A+C) - (B+ D)).

(1-2) If A4+ C < B+ D, that is, wi(A1 + p) + w2(A2 + p) — . — 2p € Y2, then we
have

E(A1, A2, p; wi, w2)
A+C -2
= > (A+C—1-j3)(B+D—1-js)(js+1)
73=0
1

= S(A+C-1)(A+C)A+C+1)(—(A+C) +2(B + D)),
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Case 2. Suppose that A+ C —2<0or B+ D —2<0.
We have E(A1, g, p; w1, wq) = 0.

Combining all the results above, we obtain the following explicit formula for the
Rimann-Roch number dime x((Ox, x Ox,)//, T, (Lx, K Ly,)//uT).

Proposition 3.3.  Let A\, o € Py and p € P satisfy the assumptions (A0),
(A1) and (A2). Then we have

dime X((Ox, X Ox)//uT (L, R Lx)//uT) = > elwi)e(wa) E(Ar, Ag, 5wy, wa),

wy,wa €W

where E(A1, Aa, 5 w1, wsa) s given as follows. We write

A = {(wi Ay +wada — i, A1), B = (w1 + wada — p, As),

C = (wip+wap, A1) , D= (wip+ wap, As)
for breuvity.
(1) Ifwi(A+p) +w2(re+p) —p—2p€mn,
E(A1; Az, 3 w1, w2)
1

= 5(B+D-1)(B+D)(B+D+1)2AA+C) - (B+D)).

(2) Ifwi(Ar+p) +wa(Aa+p) — p—2p € Y,
E(/\la/\Qnu;wlan)
1
= E(A—I— C—1)A+C)A+C+1)(—(A+C)+2(B+ D)).
(3) Otherwise,
E(A1, A2, pt; wi, wa) = 0.

In the following, we assume that both of two coadjoint orbits Oy, and O,, are flag
manifolds of SU(3). Namely, we assume A1, Ay € P, . Combining Propositions 2.3 and
3.3, we obtain the following formula for the volume vol((Ox, x Oy,)//,T).

Theorem 3.4.  Let M\, A2 € Py and p € P satisfy the assumptions (A0), (A1)
and (A2). Then we have

(3.3) vol((Ox, X Ox,)//uT) = Y e(wi)e(wa) F(Ar, Az, p wr, wa),

wy,we €W

where F(A1, Ag, s wy, ws) is given as follows.
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(1) If WAL + Wwady — HE M,

1
F(Ai, Ao, s wi, wa) = E<w1>\l +wadag — 1, Aa)3 (w1 Ay + wady — 1, 21 — As).

(2) If WAL + Wwady — M E Y2,

1
F(A1, Ao, pywy, wa) = E<w1)\1 + wadg — 1, A1) (w1 Ay + woda — g1, —Ag + 2A5).

(3) Otherwise,
F()\lv /\27 H; W, ’LUQ) =0.

Proof. We first note that for \;, Ao € Py, and p € P satisfying the assumptions
(A0), (Al) and (A2), we have

d= dim@(((’)h X O)Q)//MT) = 4.

According to Propositions 2.3 and 3.3, we must compute F(kA1, kAo, ku;wy, ws).
In this case, the condition in (1) of Proposition 3.3 means that kB + D — 2 > 0 and

0< (wl(k)\l + p) + wg(k/\g + p) —2p—ku, Ay — A2>
=k(A—B)+ (C — D).

Let us take k large enough. By the assumption (A1), these inequalities above means
that A > B > 0, that is, wiA; + waAo — 4 € v1. Then we have

E(kA1, kAg, kp;wy, wa)

_ %(kB + D —1)(kB+D)(kB + D +1)2(kA + C) — (kB + D))
4
= %B3(2A — B) + (lower terms of k).

Similarly, when k& > 0, the condition in (2) of Proposition 3.3 means that B > A >
0, that is, w1 A1 + waAs — pu € 2. Then we have
E(k)\la k)‘27 kua wy, ’11)2)
1
= E(kA +C-1)(EA+C)kA+C+1)(—(KA+C)+2(EB+ D))

k4
= EA:)’(—A + 2B) + (lower terms of k).

Finally, when k > 0, the condition in (3) of Proposition 3.3 means that A < 0 or
B < 0. Then we have
E(kA1, kA2, kp; wy, w2) = 0.

Combining all the results above and Proposition 2.3, we obtain our claim. O
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Remark 4. (1) In the case where \; or Ay isin Py — P, , although F(\1, Ao, p; wy, we) #
0 in general, the right hand side of the formula (3.3) is always equal to 0. We need an-
other consideration for this. We will discuss it in the forthcoming paper [19].

(2) In general, for an element p in the weight lattice P, there exist w € W and
p' € Py such that g = wy/. Since [Vy, ® Vi, : W] = [V, ® Vi, : W], we have
vol((Ox, x Oy,)//,T) = vol((Ox, x Oy,)//,»T). But the computation of the right hand
side of the formula (3.3) for 4/ € P, becomes more simpler than that for u € P.

Now, let A1, A2 € (P®Q)Nt, | and p € P®Q satisfy the conditions (A0) and (Al).
Then there exists n € Zs¢ such that nA;,n\y € P. and np € P. Therefore it follows
from Remark 2 (2) and Proposition 2.3 that the volume vol((Ox, x Oy,)//,T) is given
by the right hand side of the formula (3.3). Furthermore, by continuity of the symplectic
volume of symplectic quotients (see, e.g., [3] and [9]), we obtain the following.

Corollary 3.5.  Suppose that Ay, Ay € t&  and p € t* satisfy the conditions (AO)
and (A1) in Section 3.2. Then the volume vol((Ox, x Ox,)//T) is given by the right
hand side of the formula (3.3).

§4. An example

As a simple example of Theorem 3.4 or Corollary 3.5, let us consider the case where
w is sufficiently close to A1 + A2. In this case, we have F(A1, g, p; wy, ws) = 0 unless
the case w1 = wo = e. Hence we have

VO]((O>\1 X OAZ)//,UT) = F()\lv/\Qnu;wl =€, W2 = 6)
1
12
1 .
E</\l + Ay — M,A1>3<)\1 + Ao — u, —A1 + 2A2> (lf A+ A—p € ’}/2).

(A1 +Ag — 1, A2) (N + Ao — 1, 2A1 — Ay) (X +A—pem),

Now if we write \; = pag +qag, Ao = rag +sas € Pyy and p = xay +yas € P, we can
express the volume vol((Ox, x Oy,)//,T') as a polynomial of p,q,r, s, z,y as follows.

VO]((O>\1 x O)\Z)//NT)

1 .
E(q+s—y)3(2p—q+2r—s—2w+y) (if A1+ Ao — p €M),

1
E(p+r—x)3(—p+2q—r+23+x—2y) (if A1+ Ao — € 72).
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