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On Controlled Assembly Maps

By

Masayuki Yamasaki *

Abstract

Theorem 3.9 of [9] says that the L^{-\infty} homology theory and the controlled L^{-\infty} theory of

a simplicially stratified control map p:E\rightarrow X are equivalent. Unfortunately the proof given
there contains serious errors. In this paper I give a correct statement and a correct proof.

§1. Introduction

For a covariant functor \mathrm{J}=\{\mathrm{J}_{n}\} from spaces to spectra and a map p : E\rightarrow X,

Quinn defined a homology spectrum \mathbb{H}(X;\mathrm{J}(p))[4].
\mathbb{H} \mathrm{J} defines a covariant functor which sends a pair (X, p : E\rightarrow X) to a

spectrum \mathbb{H}(X;\mathrm{J}(p)) . Suppose we are given a covariant functor \mathrm{J} -) which sends a

pair (X, p) to a spectrum \mathrm{J}(X;p) . Then we can define a covariant functor, also denoted

\mathrm{J} , from spaces to spectra by \mathrm{J}(E)=\mathrm{J}(*;E\rightarrow*) . And then we obtain a homology

spectrum \mathbb{H}(X;\mathrm{J}(p)) for a map p:E\rightarrow X . Quinn showed that, if the original functor

\mathrm{J} -) satisfies three axioms (the restriction, continuity, and inverse limit axioms) and

p is nice ( i.e . it is a stratified system of fibrations [4]), then there is a homotopy

equivalence

A:\mathbb{H}(X;\mathrm{J}(p))\rightarrow \mathrm{J}(X;p)

when X is compact [4, Characterization Theorem, p.421]. If X is non‐compact, we need

to consider a locally‐finite homology theory.
In [9], I considered an L^{-\infty} ‐theory functor \mathrm{L} -). To avoid confusion with the

ordinary L^{h}‐theory functor, \mathrm{L}(X;p) will be denoted \mathrm{L}^{-\infty}(X;p) with decoration -\infty

in this paper. Note that \mathrm{L}_{j}^{-\infty}(X;p) �s are not only spaces but \triangle‐sets, and that the
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index j is the negative of the usual index for spectra. \mathrm{L}^{-\infty} is functorial; there is a

�forget‐control� map

F : \mathrm{L}^{-\infty}(X;p : E\rightarrow X)\rightarrow \mathrm{L}^{-\infty}(*;E\rightarrow*)=\mathrm{L}^{-\infty}(E) .

If E has the homotopy type of a connected CW‐complex, then the homotopy groups of

\mathrm{L}^{-\infty}(E) are isomorphic to the groups L^{-\infty}($\pi$_{1}(E)) of Wall and Ranicki.

We only consider the case when X is a finite polyhedron, and also assume that p

is a simplicially stratied fibration, i.e. X is a geometric realization of a finite ordered

simplicial complex K and that p has an iterated mapping cylinder decomposition with

respect to K in the sense of Hatcher [1, p.105] [2, p.457]. See §3 for details about

simplicially stratified fibrations.

The following is the key technical result of [9, Theorem 3.9]:

Theorem 1.1 (Characterization Theorem). Suppose p:E\rightarrow|K| is a simpli‐

cially stratied fibration on a finite polyhedron K. Then there is a homotopy equivalence

(
\backslash controlled assembly map�)

A_{j}:\mathbb{H}_{j}(K;\mathrm{L}^{-\infty}(p))\rightarrow \mathrm{L}_{-j}^{-\infty}(|K|;p)
such that its composition with the forget‐control map F is the ordinary assembly map

a_{j}:\mathbb{H}_{j}(K;\mathrm{L}^{-\infty}(p))\rightarrow \mathrm{L}_{-j}^{-\infty}(E) .

Unfortunately there were erroros in the construction of the controlled assembly

map A_{j} . An analysis of the errors will be given in a separate paper, since any quick

repair does not seem to be possible.
In this paper, I employ homology theory re‐defined by Quinn in his 1995 paper

[5]. There he showed that homology for bordism‐type theories can be represented by

((cycles�. This notion of �cycles� was independently developed about the same time by
Ranicki [6]. The key is the use of dual cones. If the control map p : E\rightarrow|K| is

simplicially stratified, then cycles are collections of pieces on dual cones of the vertices

of K
,

which can be glued to define the assembly map. These pieces can be shrunk to

the center of the cones, and we can inductively use such shrinking operations to define

Alexander tricks on the pieces. And the Alexander tricks will produce the desired

controlled assembly maps.

One may wonder why we do not appeal to Quinn�s Characterization Theorem

mentioned above. One reason is that it seems very difficult to check that \mathrm{L}^{-\infty} satisfies

the restriction axiom. Another reason is that I feel safer working with the theory

developed in [5].
In §2, we review the definition of various \mathrm{L}^{h}/\mathrm{L}^{-\infty} ‐spaces. In §3, we describe

homology and the bordism spectra of cycles. In §4, we adapt the squeezing technique
of [3] and use it to construct A . In §5, we give a proof of Theorem 1.1.
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I would like to thank Frank Quinn for advising me to work with dual cones instead

of simplices, when we discussed the difficulty in the argument of [9]. And I would like

to thank the referee for pointing out many errors and improper arguments and making
various invaluable suggestions. He also emphasized the benefits of dual cones to me

in his comment to the first revision. I close the introduction by quoting a part of his

comment. The map p : E\rightarrow|K| is as above and D( $\sigma$) denotes the dual cone of a

simplex  $\sigma$ of  K.

The first benefit of the set of dual cones is that it is closed under intersections.

The second is that the star of each \partial D( $\sigma$) in the second barycentric subdivision

is a tubular neighborhood of \partial D( $\sigma$) . Then, when E is a triangulated manifold,

any simplicial map p:E\rightarrow K is automatically transverse to each \partial D( $\sigma$) , upon

taking second barycentric subdivisions and without needing a homotopy.

§2. L‐specta and controlled L‐spectra

Constructions of various L‐theoretic spaces (‐sets) will be given in terms of geo‐

metric modules and geometric morphisms. Roughly speaking, a geometric module on

a space E is a free module generated by �points� in E
,

and a geometric morphism be‐

tween two geometric modules G and G' on E is a locally finite sum of paths in E which

connect generators of G to generators of G' with integer coefficients. If f : G\rightarrow G' is

a geometric morphism between geometric modules on E and if \overline{E} is a covering space

of E with the deck transformation groups  $\pi$
,

then  f lifts to a \mathbb{Z} $\pi$‐equivariant geometric

morphism \tilde{f}:\overline{G}\rightarrow\overline{G}' between the corresponding covers \overline{G} and \overline{G}' of G and G' ,
because

paths constituting f have lifts to \overline{E} . There are also notions of homotopies between

geometric morphisms which are actually homotopies of the paths. See [9, §2] for details.

Recall that a \triangle‐set is a semi‐simplicial set without degeneracies [7]. When  X and

Y are \triangle‐sets, their geometric product  X\otimes Y is defined as follows. First construct

css‐sets (semi‐simplicial sets with degeneracies) F(X) and F(Y) by adding degenerate

simplices to X and Y . Their product F(X)\times F(Y) is a css‐set whose n‐simplices are

the pairs (, v) of n‐simplices  $\mu$\in F(X) and v\in F(Y) . Face maps and degeneracy

maps are induced by those of F(X) and F(Y) in the obvious manner. Then X\otimes Y is

the \triangle‐set made up of non‐degenerate simplices of  F(X)\times F(Y) . Its realization |X\otimes Y|
is homeomorphic to the product CW‐complex |X|\times|Y| of the realizations |X| and |Y|.
The notation X\times Y is used to represent the �non‐geometric product� whose n‐simplices
are the pairs (, v) of n‐simplices  $\mu$\in X and v\in Y . For example, let us regard the two

ordered simplicial complexes \triangle^{k} and [0 ,
1 ] as \triangle‐sets. Then the product \triangle^{k}\times[0 ,

1 ] has
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only 0‐simplices and 1‐simplices; on the other hand, the pair

\{\mathrm{z}(\langle 0,1, \ldots, j, j+1, \ldots,

j+1 k-j+1

of two degenerate (k+1) ‐simplices is non‐degenerate in F(\triangle^{k})\times F([0,1 and hence

defines \mathrm{a}(k+1) ‐simplex in the geometric product \triangle^{k}\otimes[0 ,
1 ] . We will denote this

simplex by listing the vertices as follows:

\langle(0,0) , (1,0), . . .

, (j, 0) , (j, 1) ,
. . .

, (k-1,1) , (k, 1)\rangle

\triangle‐sets are usually defined using certain (k+2) ‐ads as k‐simplices; see e.g. [8,
§0]. For these we use d_{i} �s to denote the face operators. In this article we heavily use

materials from Quinn [5, §§,4]; there he uses
(

([k] ‐ads� instead of (k+2) ‐ads, where [k]
denotes the set \{0 , 1, 2, . . .

, k\} . For a finite set A
,

an A‐ad x of dimension n is an object
with codimension 1 faces \{\partial_{a}x|a\in A\} such that

(1) \partial_{a}x is an (A-\{a\})-\mathrm{a}\mathrm{d} of dimension n-1 ;

(2) for each n and A
,

there is an (empty� A‐ad of dimension n ;

(3) there is a reindexing operation which changes the label set A to another set B via

a bijection A\rightarrow B ;

(4) there is an expansion operation of the label set A by adding empty faces;

(5) there is an orientation reversing operation, x\mapsto-x
,

on A‐ads; and

(6) if a\neq b\in A ,
then \partial_{a}\partial_{b}x=-\partial_{b}\partial_{a}x.

\mathrm{A}[k]-\mathrm{a}\mathrm{d}x=(x;\partial_{0}x, \partial_{1}x, \ldots, \partial_{k}x) looks like \mathrm{a}(k+2)-\mathrm{a}\mathrm{d} ,
but it is not one, because

the indexing schemes and orientation conventions are different. If we want to construct

\mathrm{a} \triangle‐set using [k] ‐ads, then we need to change the faces in the following manner: if x is a

[k]-\mathrm{a}\mathrm{d} , then \partial_{i}x is not a [k1]‐ad, but is an ([k]-\{i\})-\mathrm{a}\mathrm{d} ; so define d_{i}x by reindexing the

([k]-\{i\})-\mathrm{a}\mathrm{d}(-1)^{i}\partial_{i}x via the order‐preserving bijection [k-1]\rightarrow[k]-\{i\} ,
and continue

changing the faces of these and so on. Then we have the usual identity d_{i}d_{j}=d_{j-1}d_{i}
for i<j.

If A is an ordered set of k+1 elements, then one can use the order preserving

bijection from A to [k] to identify an A‐ad with a [k]-\mathrm{a}\mathrm{d} , and also with \mathrm{a}(k+2)-\mathrm{a}\mathrm{d} by
the construction above.

\mathrm{A}[k]-\mathrm{a}\mathrm{d}x is said to be special if \partial_{0}\partial_{1}\ldots\partial_{k}x=\emptyset.
Let A=\{a_{0}, . . . , a_{i}\} and B=\{b_{0}, . . . , b_{j}\} be sets. Then their disjoint union A\sqcup B

is the union A\cup B' of A and a copy B' of B which is disjoint from A . When A and B
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are ordered, B' is given the order coming from the identification with B and elements of

B' are defined to be larger than elements of A . When there is no ambiguity, we pretend
A and B are disjoint and omit mentioning a copy of B . An A\sqcup B-\mathrm{a}\mathrm{d}x is said to be

special in A (resp. in B ) if \partial_{a_{0}}\ldots\partial_{a_{i}}x=\emptyset ( resp. \partial_{b_{0}}\ldots\partial_{b_{j}}x=\emptyset) .

A class of A‐ads with arbitrary A is called a bordism‐type theory if it satisfies a

certain Kan condition [5, §3]. We introduce two (homotopy invariant� functors \mathcal{L}^{h} and

\mathcal{L}^{-\infty} from spaces to bordism‐type theories.

Let E be a space. An A‐ad of dimension n in \mathcal{L}^{h}(E) is a strictly n‐dimensional

finitely generated geometric module quadratic Poincaré A‐ad on E. \mathcal{L}^{h}(E) satisfies Kan

condition and, hence, it is a bordism‐type theory. The definition of these A‐ads is given

inductively by a �low‐tech� way as explained in [5, 6. 3\mathrm{B}] . To define an [n]-\mathrm{a}\mathrm{d} ,
we need

the notion of (A-\{a\}) ‐ads and glueing of these. Glueing of more than two A‐ads are

performed inductively, and we may encounter a difficulty in general as was pointed out

in [9], but if the pieces are arranged just like the faces of a simplex, then there is no

problem for glueing.
The definition of \mathcal{L}^{-\infty} is slightly more complicated. First a primitive A‐ad of

dimension n in \mathcal{L}^{-\infty}(E) is, for some integer l\geq 0 ,
a strictly (n+l) ‐dimensional geometric

module quadratic Poincaré A‐ad x on \mathbb{R}^{l}\times E such that x is locally finitely generated and

has bounded radius with respect to the projection \mathbb{R}^{l}\times E\rightarrow \mathbb{R}^{l} . The external suspension
of such an x is the pullback of the tensor product 1$\sigma$^{*}(S^{1})\otimes x of the geometric module

symmetric Poincaré complex of S^{1} and x via the covering map \mathbb{R}^{l+1}\times E=\mathbb{R}\times \mathbb{R}^{l}\times E\rightarrow

 S^{1}\times \mathbb{R}^{l}\times E . Iterated external suspensions are also called the external suspensions. The

integer n+l will be called the real dimension. Now an A‐ad of dimension n in \mathcal{L}^{-\infty}(E) is

an equivalence class of primitive A‐ads of dimension n in \mathcal{L}^{-\infty}(E) ,
where the equivalence

relation is generated by identifying x with its external suspensions. Such an A‐ad of

dimension n in \mathcal{L}^{-\infty}(E) is said to have real dimension \leq k if there is a representative
with real dimension \leq k. \mathcal{L}^{-\infty}(E) satisfies the Kan condition and it is a bordism‐type

theory.
A bordism‐type theory determines an  $\Omega$‐spectrum called the bordism spectrum. In

the case of \mathcal{L}^{h}(E) ,
it is denoted \mathrm{L}^{h}(E) . \mathrm{L}_{n}^{h}(E) is a \triangle‐set whose  j‐simplices are the

special [j] ‐ads x of dimension n+j in \mathcal{L}(E) . The basepoint \emptyset is the trivial complex  0.

The bordism spectrum \mathrm{L}^{-\infty}(E) of \mathcal{L}^{-\infty}(E) is defined in the same manner.

The functors \mathcal{L}^{h} and \mathcal{L}^{-\infty} are �homotopy invariant�, i.e. a homotopy equivalence
E\rightarrow E' of spaces induces homotopy equivalences \mathrm{L}^{h}(E)\rightarrow \mathrm{L}^{h}(E') and \mathrm{L}^{-\infty}(E)\rightarrow
\mathrm{L}^{-\infty}(E') of spectra. If E has the homotopy type of a connected CW‐complex, then the

homotopy groups $\pi$_{n}(\mathrm{L}^{h}(E)) and $\pi$_{n}(\mathrm{L}^{-\infty}(E)) are isomorphic to the L^{h} ‐groups L_{n}^{h}(\mathbb{Z} $\pi$)

lIt is unfortunate that the same symbol \otimes \mathrm{i}\mathrm{s} used to represent the tensor product of a quadratic
complex and a symmetric complex and to represent the geometric product of two \triangle‐sets. I hope
there will be no confusions.



202 Masayuki Yamasaki

and the  L^{-\infty} ‐groups L_{n}^{-\infty}(\mathbb{Z} $\pi$) of the fundamental group  $\pi$=$\pi$_{1}(E) of E.

Let \mathcal{J} represent both \mathcal{L}^{h} and \mathcal{L}^{-\infty} ,
and \mathrm{J}(E) denote its bordism spectrum. Suppose

we are given a [j]\sqcup[1]-\mathrm{a}\mathrm{d}x of dimension n+j+1 in \mathcal{J}(E) which is special both in [j] and

in [1]. It is a �bordism� between \partial_{0'}x and \partial_{1'}x ,
where \{0', 1'\} is a copy of [1]. Although

the two ends \partial_{0'}x and \partial_{1'}x define j‐simplices of \mathrm{J}_{n}(E) ,
x itself defines \mathrm{a}(j+2) ‐simplex

of \mathrm{J}_{n-1}(E) and cannot be used to relate the two ends in \mathrm{J}_{n}(E) directly. The next

lemma shows that we can �subdivide� x into mutually adjacent j+1(j+1) ‐simplices
of \mathrm{J}_{n}(E) connecting \partial_{0'}x and \partial_{1'}x , just like the (j+1) ‐simplices of the geometric product

\triangle^{j}\otimes[0 ,
1 ] of the two \triangle‐sets \triangle^{j} and [0 ,

1 ].

Lemma 2.1 (Triangulation of [j]\sqcup[1] ‐ads). Suppose x is a [j]\sqcup[1]-ad of dimen‐

sion n+1+j in \mathcal{J}(E) which is special both in [j] and in [1]. Then there is a \triangle ‐map  $\varphi$

from the geometric product \triangle^{j}\otimes[0 ,
1 ] to \mathrm{J}_{n}(E) such that x is bordant to the union of

the images of the (j+1) ‐simplices by  $\varphi$ , fixing the two ends \partial_{0'}x and \partial_{1'}x.

Proof. If j=0 ,
then x represents a 1‐simplex of \mathrm{J}_{n}(E) ,

so there is nothing to

prove. Assume inductively that we have constructed such a \triangle‐map for  j<k ,
and

consider a [k]\sqcup[1]-\mathrm{a}\mathrm{d}x of dimension(n+1+k) in \mathcal{J}(E) . By assumption we have a

\triangle‐map \triangle^{k-1}\otimes[0 ,
1 ] to \mathrm{J}_{n}(E) for each face \partial_{i}x . Since the construction is by induction,

we may assume that these match up along the common faces. The geometric product

\triangle^{k}\otimes[0 ,
1 ] contains the following k+1(k+1) ‐simplices:

\triangle_{0}^{k+1}=\langle\underline{0}, \underline{1} , . . .

, \underline{k-1}, \mathrm{k}, \overline{k}\rangle, \triangle_{1}^{k+1}=\langle\underline{0}, \underline{1} , . . .

, \underline{k-1}, \overline{k-1}, \overline{k}\rangle,
. . .

, \triangle_{k-1}^{k+1}=\langle\underline{0}, \underline{1}, \overline{1}
,

. . .

, \overline{k}\rangle, \triangle_{k}^{k+1}=\langle\underline{0}, \overline{0}, \overline{1}
,

. . .

, \overline{k}\rangle,

where \underline{i} and \overline{i} denote (i, 0) and (i, 1) , respectively. Starting from the bottom (k+1)-
simplex \triangle_{0}^{k+1} ,

we keep extending the already constructed \triangle‐map over the (k+1)-
simplices except for the last one, using the Kan condition. Now on the boundary of

the top (k+1) ‐simplex \triangle_{k}^{k+1} of \triangle^{k}\otimes[0 ,
1 ], \mathrm{a} \triangle‐map is defined. We need to define a

(k+1) ‐simplex of \mathrm{J}_{n}(E) with the given faces using x.

\partial_{0'}x

\partial_{1'}x

Let z be the union of the images of the first k(k+1) ‐simplices. Glue -z to x

along the images of the faces whose realization are subsets of \partial(|\triangle^{k}|\times|[0,1]|) ,
then
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we obtain \mathrm{a}(k+1) ‐simplex \tilde{x} of \mathrm{J}_{n}(E) which fits into the already constructed map.

Since z is actually obtained by glueing trivial cobordisms, this \triangle‐map has the required

property. \square 

Remark. If compatible \triangle‐maps on some of the prisms (d_{i_{0}}\ldots d_{i_{l}}\triangle^{j})\otimes[0 ,
1 ] are

already given, one can use them because the proof is by induction.

Lemma 2.2 (Triangulation of [j]\sqcup[1]\sqcup[1] ‐ads). Suppose y is a [j]\sqcup[1]\sqcup[1]-ad
of dimension n+j+2 in \mathcal{J}(E) which is special in [j] and also in the two [1]' s . Then

there is a \triangle ‐map  $\varphi$ : \triangle^{j}\otimes[0, 1]\otimes[0, 1]\rightarrow \mathrm{J}_{n}(E) such that y and the union of the images

of the (j+2) ‐simplices by  $\varphi$ are bordant fixing the two ends \partial_{0''}y and \partial_{1''}y.

Proof. Let \{\triangle_{i}^{k+1}\} be the (k+1) ‐simplices used in the proof of Lemma 2.1. Then

\{|\triangle_{i}^{k+1}|\times|[0, 1]|\} gives a decomposition of |\triangle^{k}|\times|[0, 1]|\times|[0, 1]| into k+1 prisms. An

inductive process using Kan condition (i.e. glueing) gives k+1[k+1]\sqcup[1] ‐ads where

the union is bordant to y , realizing the model above. Now apply Lemma 2.1 inductively
to each prism to get a desired \triangle‐map. \square 

Next we also fix a control map p:E\rightarrow X to a metric space X . Then we can

talk about the radius of a simplex of \mathrm{L}_{n}^{h}(E) by looking at the radii of the paths and

homotopies involved. For a positive number  $\epsilon$, \mathrm{L}_{n}^{h}(X, p,  $\epsilon$) denotes the \triangle‐subset of

\mathrm{L}_{n}^{h}(E) made up of all the simplices with radius \leq $\epsilon$.

The \triangle‐set \mathrm{L}_{n}^{h}(X;p) is a sort of homotopy inverse limit of \mathrm{L}_{n}^{h}(X, p,  $\epsilon$) �s as  $\epsilon$\rightarrow 0 :

a j‐simplex is a \triangle‐map from the geometric product \triangle^{j}\otimes[0, \infty ) of the standard j‐

simplex \triangle^{j} and the interval [0, \infty ) with the standard triangulation to \mathrm{L}_{n}^{h}(E) satisfying
the following condition: there is a sequence $\epsilon$_{i} monotone decreasing to 0 such that the

image of \triangle^{j}\otimes[i, \infty ) lies in \mathrm{L}_{n}^{h}(X, p, $\epsilon$_{i}) . Then there is a natural homotopy equivalence
T :  $\Omega$ \mathrm{L}_{n}^{h}(X;p)\rightarrow \mathrm{L}_{n+1}^{h}(X;p) and these spaces form an  $\Omega$‐spectrum \mathrm{L}^{h}(X;p) ,

which will

be called the controlled L^{h} ‐spectrum of the pair (X, p:E\rightarrow X) . Suppose we have a k‐

simplex  $\sigma$ of  $\Omega$ \mathrm{L}_{n}^{h}(X;p) . It is actually a \triangle‐map  $\sigma$ : \triangle^{k}\otimes[0, \infty ) \otimes[0, 1]\rightarrow \mathrm{L}_{n}^{h}(E) . There

is a sequence $\epsilon$_{i} monotone decreasing to 0 such that the image of \triangle^{j}\otimes[i, \infty ) \otimes[0 ,
1 ]

lies in \mathrm{L}_{n}^{h}(X,p, $\epsilon$_{i}) ,
and  $\sigma$ sends the simplices of \triangle^{k}\otimes[0, \infty ) \otimes\{0 ,

1 \} to 0 . We define

 T $\sigma$ : \triangle^{k}\otimes[0, \infty)\rightarrow \mathrm{L}_{n+1}^{h}(E) as follows. Let  $\tau$ be an  m‐simplex of \triangle^{k}\otimes[0, \infty ). The

images of  m‐simplices of the geometric product  $\tau$\otimes[0 ,
1 ] by  $\sigma$ can be glued together to

form an  m‐simplex (T $\sigma$)( $\tau$) of \mathrm{L}_{n+1}^{h}(E) ,
because  $\sigma$( $\tau$\otimes 0)= $\sigma$( $\tau$\otimes 1)=0 . Furthermore

the glueing processes are the same for all \triangle^{k}\otimes[i, i+1]\otimes[0 ,
1 ] (i=0,1,2, \ldots) ,

there is

a positive constant C such that the image of \triangle^{k}\otimes[i, \infty ) by  T $\sigma$ lies in \mathrm{L}_{n+1}^{h}(X, p, C$\epsilon$_{i}) .

So  T $\sigma$ is a  k‐simplex of \mathrm{L}_{n+1}^{h}(X;p) . The construction of a homotopy inverse of T is

essentially the same as the construction in the L^{-\infty} case described in [9, Theorem 3.4].
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There is a �restriction� \triangle‐map

 R : \mathrm{L}_{n}^{h}(X;p)\rightarrow \mathrm{L}_{n}^{h}(E) ;  $\varphi$\mapsto $\varphi$(0)

When X is a single point, R is a homotopy equivalence \mathrm{L}_{n}^{h}(*;E\rightarrow*)\simeq \mathrm{L}_{n}^{h}(E) and we

can identify these, because everything has radius 0 and \mathrm{L}_{n}^{h}(; E\rightarrow*) is just the path

space of \mathrm{L}_{n}^{h}(E) .

Therefore we can identify the restriction \triangle‐map  R : \mathrm{L}_{n}^{h}(X;p)\rightarrow \mathrm{L}_{n}^{h}(E) with the

�forget‐control� \triangle‐map

 F:\mathrm{L}_{n}^{h}(X;p)\rightarrow \mathrm{L}_{n}^{h}(*;E\rightarrow*)
which is induced by the pair (1 : E\rightarrow E, X\rightarrow*) .

The controlled L^{-\infty} ‐spectrum \mathrm{L}^{-\infty}(X;p) is defined in the following manner. We

projection
measure the radius of a simplex using (Recall
that we required that the radius measured in \mathbb{R}^{l} be bounded.) If k is a non‐negative

integer and  $\epsilon$ is a positive number, then we define \mathrm{L}_{n}^{-\infty}(X,p,  $\epsilon$)^{(k)} to be the \triangle‐subset

of \mathrm{L}_{n}^{-\infty}(E) made up of all the simplices whose radius and real dimension are less than

or equal to  $\epsilon$ and  k
, respectively.

A j‐simplex of the \triangle‐set \mathrm{L}_{n}^{-\infty}(X;p) is a \triangle‐map from \triangle^{j}\otimes[0, \infty ) to \mathrm{L}_{n}^{-\infty}(E)
satisfying the following condition: there exist a non‐negative integer k and a sequence

$\epsilon$_{i} monotone decreasing to 0 such that the image of \triangle^{j}\otimes[i, \infty ) lies in \mathrm{L}_{n}^{-\infty}(X, p, $\epsilon$_{i})^{(k)}.
This is the controlled L^{-\infty} ‐spectrum of (X, p) . As in the case of \mathrm{L}^{h}

,
the spectrum

\mathrm{L}^{-\infty}(; E\rightarrow*) is homotopy equivalent to Ranicki�s spectrum \mathrm{L}^{-\infty}(E) .

§3. L‐homology and cycles

This section is a review of Quinn�s description of homology and cycles [5, §4] in a

very special case. Ranicki�s description [6, §12] is also used at several places. Although
we do not use the homology spectrum directly in this paper, we first review its con‐

struction. And then we review the notion of cycles which are used as substitutes of

homology classes.

We first review the notion of itereated mapping cylinders ([2, p.457]). Suppose

we have a sequence of maps X_{0}\rightarrow X_{1}f_{1}\rightarrow f_{2} . . . \rightarrow X_{n}f_{n} . The iterated mapping cylinder
M (fl, . . .

, f_{n} ) is defined to be the usual mapping cylinder (X_{0}\times[0,1]\cup X_{1})/(x, 1)\sim f_{0}(x)
for n=1 . There is a canonical (strong deformation) retraction r_{1} : M(f_{1})\rightarrow X_{1} . For

n>1 ,
assume inductively that we defined M(f_{1}, \ldots, f_{n-1}) and constructed \mathrm{a} (strong

deformation) retraction r_{n-1} : M(f_{1}, . . . , f_{n-1})\rightarrow M_{n-1} . Now we define M(f_{1}, . . . , f_{n})
to be the mapping cylinder of the composition

----\rightarrow-----\rightarrow\mathrm{M} (\mathrm{f} , . . . ,f)M(f_{1},
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and define r_{n}:M(f_{1}, \ldots, f_{n})\rightarrow X_{n} to be the obvious (strong deformation) retraction.

There is a natural projection M(f_{1}, \ldots, f_{n})\rightarrow $\sigma$=\langle v_{0}, v_{1} ,
. . .

,  v_{n}\rangle ,
since  $\sigma$ is the iterated

mapping cylinder of the following sequence of trivial maps:

\{v_{0}\}\rightarrow\{v_{1}\}\rightarrow\ldots\rightarrow\{v_{n}\} .

In this section, we only consider the case when p:E\rightarrow X is a simplicially stratified

fibration (i.e. p has an iterated mapping cylinder decomposition [1][2] in the following

sense).

Denition 3.1. Let K be a finite ordered simplicial complex and let  p:E\rightarrow

 X=|K| be a map. An iterated mapping cylinder decomposition of p is a collection of

maps

{ f_{uv} : p^{-1}(u)\rightarrow p^{-1}(v)|u and v are vertices of the same simplex of K and u<v }

which satisfy the following conditions.

\bullet  f_{uv} �s satisfy f_{uw}=f_{vw}\circ f_{uv}.

\bullet For each simplex  $\sigma$=\langle v_{0} ,
. . .

, v_{n}\rangle\in K, p^{-1}( $\sigma$) is the iterated mapping cylinder

M(f_{v_{0}v_{1}}, \ldots, f_{v_{n-1}v_{n}}) ,
and p|p^{-1}( $\sigma$) is the natural projection M(f_{v_{0}v_{1}}, \ldots, f_{v_{n-1}v_{n}})

\rightarrow $\sigma$ coming from the iterated mapping cylinder structure.

If we apply the functor \mathrm{L}^{h} to the sequence of maps above, consider the iterated

mapping cylinder of spectra, and glue all the pieces corresponding to the simplices of K,
then we should get a desired spectral sheaf \mathrm{L}^{h}(p) . This spectral sheaf is not suitable for

directly defining the assembly map, and we need to fatten the fibers without changing
the fiber homotopy type of the sheaf. Again let  $\sigma$ be a simplex of  K

,
and let D( $\sigma$) denote

the dual cone of  $\sigma$ in  K
,

i.e. the union of all simplices of the barycentric subdivision of

K which intersect  $\sigma$ in exactly the barycenter of  $\sigma$ [  5 , p.256]. Then \mathcal{U}=\{D(v)|v\in K^{(0)}\}
is a covering of X and its nerve is K itself. Let us define the boundary \partial D( $\sigma$) of D( $\sigma$)
by \displaystyle \partial D( $\sigma$)=\bigcup_{ $\tau$> $\sigma$}D( $\tau$) . Then D( $\sigma$) is the cone on \partial D( $\sigma$) .

Now define the \triangle‐set version of the spectral sheaf \mathrm{L}^{h}(p) by:

\{\mathrm{L}_{n}^{h}(p)=(\coprod_{ $\sigma$\in K}\mathrm{L}_{n}^{h}(p^{-1}(D( $\sigma$)))\otimes $\sigma$)/\sim\},
where a simplex  $\sigma$\in K is given the obvious \triangle‐set structure, \displaystyle \bigotimes denotes the geometric

product of two \triangle‐sets, and the equivalence relation \sim is generated by: a simplex in

\mathrm{L}_{n}^{h}(p^{-1}(D(d_{j} $\sigma$)))\otimes d_{j} $\sigma$ is identified with its image in \mathrm{L}_{n}^{h}(p^{-1}(D( $\sigma$)))\otimes $\sigma$.
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Denition 3.2. The homology spectrum \mathbb{H}(K;\mathrm{L}^{h}(p)) is an  $\Omega$‐spectrum of \triangle-

sets defined by

\displaystyle \mathbb{H}(K;\mathrm{L}^{h}(p))=\mathrm{h}\mathrm{o}\lim_{n\rightarrow\infty}$\Omega$^{n}(|\mathrm{L}_{-n}^{h}(p)|/s_{-n}(|K|)) ,

where s_{-n}:|K|\rightarrow|\mathrm{L}_{-n}^{h}(p)| is the 0‐section.

Instead of directly using the homology defined above, we use �cycles� to define

the controlled assembly maps. For this purpose, we fix an embedding of K into the

boundary \partial\triangle^{m+1} of the standard (m+1) ‐simplex. Here m+1 is the number of vertices

of K ; since the vertices are ordered, we identify K^{(0)} with the vertices of the standard

m‐simplex \triangle^{m}=\langle 0 , 1, . . .

,  m\rangle which is a face of \triangle^{m+1} . Geometrically we identify these

vertices with the points (0, . . .

, 0,1,0, . . .

, 0) in \mathbb{R}^{m+2} . This fixes the metric of X=|K|.
If  $\sigma$ is a simplex in  K

,
then we use [m+1]- $\sigma$ to denote the complement of the vertices

of  $\sigma$ in [m+1]=\{0, 1, . . . , m+1\}.

Denition 3.3. An \mathcal{L}^{h}-n‐cycle in (K,p) is a function N:K\rightarrow \mathcal{L}^{h} such that

(1) if  $\sigma$=\langle v_{0} ,
. . .

, v_{k}\rangle(v_{0}<\cdots<v_{k}) is a k‐simplex of K
,

then N( $\sigma$) is an (n-k)-
dimensional ([m+1]- $\sigma$)-\mathrm{a}\mathrm{d} in \mathcal{L}^{h}(p^{-1}(D( $\sigma$))) ,

and

(2) these satisfy the compatibility condition; i.e. the functorial image of N( $\sigma$) in

\mathcal{L}^{h}(p^{-1}(D(d_{j} $\sigma$))) is equal to (-1)^{j}\partial_{v_{j}}N(d_{j} $\sigma$) for j=0 ,
. . .

,
k.

The pieces N(v)' \mathrm{s}(v\in K^{(0)}) in an \mathcal{L}^{h}-n‐cycle N in (K,p) can be glued together
to produce an \emptyset-\mathrm{a}\mathrm{d} ( =\mathrm{a} special [0]-\mathrm{a}\mathrm{d} ) of dimension n in \mathcal{L}^{h}(E) . This process is called

the assembly.
The next step is to introduce a bordism‐type theory \mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}^{h}}(K, p) of cycles.

Denition 3.4. An A‐ad of dimension n in \mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}^{h}}(K,p) is a function N :

K\rightarrow \mathcal{L}^{h} such that

(1) if  $\sigma$=\langle v_{0} ,
. . .

, v_{k}\rangle(v_{0}<\cdots<v_{k}) is a k‐simplex of K
,

then N( $\sigma$) is an (n-k)-
dimensional ([m+1]- $\sigma$)\sqcup A-\mathrm{a}\mathrm{d} in \mathcal{L}^{h}(p^{-1}(D( $\sigma$))) ,

and

(2) these satisfy the compatibility condition; i.e. the functorial image of N( $\sigma$) in

\mathcal{L}^{h}(p^{-1}(D(d_{j} $\sigma$))) is equal to (-1)^{j}\partial_{v_{j}}N(d_{j} $\sigma$) for j=0 ,
. . .

,
k

Quinn verified that this is a bordism‐type theory. Thus we can take its bordism

spectrum, which we denote by \mathbb{H}(\mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}^{h}}(K, p)) . It is a \triangle‐set whose  j‐simplex is a

[j]-\mathrm{a}\mathrm{d}N of dimension -n+j in \mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}^{h}}(K, p) such that the ([m+1]- $\sigma$)\sqcup[j]-\mathrm{a}\mathrm{d}N( $\sigma$)
is special in [j] ,

i.e. \partial_{0}\ldots\partial_{j}N( $\sigma$)=0 . See [5, p.223] for an explanation of the — sign
of n.

The \mathcal{L}^{-\infty} ‐versions of these are defined in the same way.
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Quinn uses  $\Omega$ instead of \mathbb{H} in the notation; but our notation is not too inappropriate,
because he showed that it is actually a homology:

Theorem 3.5 (Representation Theorem [5]). There are homotopy equivalences

of spectra

\mathbb{H}(\mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}^{h}}(K,p))\rightarrow \mathbb{H}(K;\mathrm{L}^{h}(p)) ,

\mathbb{H}(\mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}-\infty}(K,p))\rightarrow \mathbb{H}(K;\mathrm{L}^{-\infty}(p))

We will use this cycle description of homology to define the controlled assembly

maps. In [9], I tried to define the (controlled) assembly maps by glueing pieces on

simplices of a triangulation of PL manifolds. Unfortunately the proof of the glueing
lemma over manifolds [9, Theorem 2.10] is incorrect, because the induction argument

using the dual cones fails. If we use the cycle description, this local problem does not

occur because each piece already lies over the dual cones and there are no difficulties

in glueing these pieces. Furthermore there is no need to assume that the space is a

manifold; we can directly handle polyhedrons. When we consider the metric control

using the map p ,
we should note that glueing increases radii. But there is a universal

constant C_{1} such that an object obtained from two objects with radius \leq $\delta$ by a single

glueing operation has radius \leq C_{1} $\delta$ . This constant is universal in the sense that it

does not depend on the dimension. This can be observed using the explicit formulas

concerning the union operation given in the note I wrote with the help of A. Ranicki

during my stay in Edingburgh [10]. If we repeat glueing then the radius may become

large, but if we fix the simplicial complex  K
,

then we have an estimate of the radius of

the union. A j‐simplex N of \mathbb{H}_{n}(\mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{J}}(K,p)) is said to have radius \leq $\epsilon$ if  N( $\sigma$) has

radius \leq $\epsilon$ for each  $\sigma$\in K . The assembly a(N) of such an N is the union of all N(v) �s

along faces.

We have the following:

Lemma 3.6 (Glueing of \mathcal{L}^{h}- cycles / \mathcal{L}^{-\infty} ‐cycles). Let \mathcal{J} be either \mathcal{L}^{h} or \mathcal{L}^{-\infty},
and \mathrm{J} be \mathrm{L}^{h} or \mathrm{L}^{-\infty}

, accordingly. Fix a simplicially stratied fibration p : E\rightarrow|K|
as above. Assembly denes a \triangle ‐map a : \mathbb{H}_{n}(\mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{J}}(K,p))\rightarrow \mathrm{J}_{-n}(E) . Furthermore,
there exists a positive constant C which depends only on K such that if N has radius

\leq $\epsilon$ , then  a(N) has radius \leq C $\epsilon$.

Thus, the ordinary assembly maps are defined using this assembly process:

a : \mathbb{H}(K;\mathrm{L}^{h}(p))\simeq \mathbb{H}(\mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}^{h}}(K,p))\rightarrow a\mathrm{L}^{h}(E)
a : \mathbb{H}(K;\mathrm{L}^{-\infty}(p))\simeq \mathbb{H}(\mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}-\infty}(K,p))\rightarrow a\mathrm{L}^{-\infty}(E)

To define the controlled assembly maps, we need to make the radii of the pieces arbi‐

trarily small. This squeezing problem will be discussed in the next section.
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To prove the characterization theorem, we need the stable splitting lemma. The

proof given for �the stable splitting lemma over manifolds� [9, Theorem 2.11] uses the

same inductive argument on dual cones as above, so it is incorrect. But the following
stable splitting into a cycle is correct.

Lemma 3.7 (Stable splitting lemma). Fix an integer k and a finite ordered sim‐

plicial complex K. Then there exist positive constants  $\delta$ and  C which depend only on k

and K such that the following holds: If

(i) p:E\rightarrow|K| is a simplicially stratied fibration,

(ii) x is a [j]-ad of dimension n in \mathcal{L}^{-\infty}(|K|, p) which has real dimension \leq k and

radius \leq $\epsilon$\leq $\delta$ ,
and

(iii)  N is a [j-1]-ad of dimension n-1 in \mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}^{-\infty}}(K,p) such that \partial_{j}x=a(N) ,

then there exists a [j]-adM of dimension n in \mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}^{-\infty}}(K,p) and a [j]\sqcup[1]-ady of
dimension n+1 in \mathcal{L}^{-\infty}(E) satisfy ing:

(1) \partial_{j}M=N,

(2) y is special in [1]=\{0' ,
1

(3) y has real dimension \leq Ck and radius \leq C $\epsilon$ ,
and

(4) \partial_{0'}y=x and \partial_{1'}y=a(M) .

Proof. In the case of \mathcal{L}^{-\infty} ,
we can use �the stable splitting lemma for geometric

quadratic Poincaré pairs� [9, Lemma 2.5] to split a sufficiently controlled object into

pieces, each lying over a neighbourhood of D(v) ,
since each boundary \partial D(v) is bicollared

in |K| . Furthermore, since the control map p is simplicially stratified, each p^{-1}(\partial D(v))
is also bicollared, so we can retract each piece into the corresponding subset p^{-1}(D(v)) .

If a part of the boundary is already split, then we can use the given one there [9, Remark

2.12]. \square 

Remarks. (1) In the statement of [9, Lemma 2.5] mentioned above and in the rest

of the paper [9], there are expressions like Y^{ $\epsilon$} and Y^{- $\epsilon$} for a subset Y of a metric space

X and a positive number  $\epsilon$ without any explanations. These are Quinn�s notations for

the  $\epsilon$‐neighborhood of  Y in X and the subset X-(X-Y)^{ $\epsilon$} , respectively, used in [4]
and also in its sequels.

(2) Since we need to use stabilizations, this does not hold in the \mathcal{L}^{h} case.

(3) Note that the cobordism y between the original object x and the assembled object

a(M) is less controlled than the original x
,

but it is still �under control�
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§4. Squeezing and controlled assembly maps

In this section, we describe the squeezing technique on cycles, and use it to define

controlled assembly maps. The argument in the \mathcal{L}^{-\infty} case is exactly the same as the

\mathcal{L}^{h} case; so we discuss only the \mathcal{L}^{h} case. Everything in this section holds true when we

replace \mathcal{L}^{h} and \mathrm{L}^{h} by \mathcal{L}^{-\infty} and \mathrm{L}^{-\infty}
, respectively.

Theorem 4.1. Fix a simplicially stratied fibration p:E\rightarrow|K| . Then there

exists a positive number C which depends only on K such that the following holds. For

any \mathcal{L}-n ‐cycle N of radius \leq $\delta$ in (K,p) and for any  $\epsilon$>0 ,
there is a special [1]-adH

of dimension n+1 in \mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}}(K,p) satisfy ing:

(1) \partial_{0}H=N,

(2) \partial_{1}H has radius \leq $\epsilon$ , and

(3)  H has radius \leq C $\delta$.

Proof. We construct H (and M=\partial_{1}H ) inductively. Let m+1 be the number of

vertices of K as before.

First consider the top dimensional simplices of K
,

and let  $\sigma$ be one of them. The

dual cone  D( $\sigma$) of  $\sigma$ in  K is a single point \hat{ $\sigma$} (the barycenter of  $\sigma$ ), and hence  N( $\sigma$) has

radius 0 . So we set M( $\sigma$)=N( $\sigma$) and set H( $\sigma$) to be the trivial ([m+1]- $\sigma$)\sqcup[1]-\mathrm{a}\mathrm{d}
in \mathcal{L}(p^{-1}(\hat{ $\sigma$})) such that \partial_{0}H( $\sigma$)=\partial_{1}H( $\sigma$)=N( $\sigma$) . This is the first step of a finite

induction.

Assume inductively that we have constructed M( $\tau$) �s and H( $\tau$) �s for simplices  $\tau$ of

dimension >k ,
where

(1) M( $\tau$) is an (n-\dim $\tau$) ‐dimensional ([m+1]- $\tau$)-\mathrm{a}\mathrm{d} in \mathcal{L}^{h}(p^{-1}(D( $\tau$))) of radius

\leq $\epsilon$,

(2) H( $\tau$) is an (n-\dim $\tau$+1) ‐dimensional ([m+1]- $\tau$)\sqcup[1]-\mathrm{a}\mathrm{d} in \mathcal{L}^{h}(p^{-1}(D( $\tau$))) which

is special in [1] and has radius \leq C $\delta$,

(3) \partial_{0}H( $\tau$)=N( $\tau$) and \partial_{1}H( $\tau$)=M( $\tau$) ,
and

(4) these satisfy the compatibility condition required for cycles and special [1]-\mathrm{a}\mathrm{d}\mathrm{s} of

cycles.

The radius assumptions given in (1) and (2) above is actually not sufficient for the next

step. We will modify these later.

Let  $\sigma$ be a  k‐simplex of K . The union \displaystyle \bigcup_{ $\tau$> $\sigma$}H( $\tau$) is a cobordism between \displaystyle \bigcup_{ $\tau$> $\sigma$}N( $\tau$)
and \displaystyle \bigcup_{ $\tau$> $\sigma$}M( $\tau$) . Define N'( $\sigma$) by glueing \displaystyle \bigcup_{ $\tau$> $\sigma$}H( $\tau$) to N( $\sigma$) :

N'( $\sigma$)=N( $\sigma$)\displaystyle \cup\bigcup_{ $\tau$> $\sigma$}H( $\tau$) .
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Its radius is \leq C'C $\delta$ for some  C'\geq 1 which depends only on K
,

and its boundary

\displaystyle \bigcup_{ $\tau$> $\sigma$}M( $\tau$) has radius \leq C' $\epsilon$ . Let  L be a large integer, and triangulate the interval

[0, L] using integer points. This triangulation defines a 1‐dimensional geometric module

symmetric Poincaré [2]-\mathrm{a}\mathrm{d} on [0, L] ,
which we denote by $\sigma$^{*}[0, L]. 2 We tensor it with

the [1]-\mathrm{a}\mathrm{d}(N'( $\sigma$);\cup M( $\tau$)) to obtain a geometric module quadratic Poincaré [2]-\mathrm{a}\mathrm{d} on

p^{-1}(D( $\sigma$))\times[0, L] :

(N'( $\sigma$)\otimes$\sigma$^{*}[0, L];N'( $\sigma$)\otimes 0, N''( $\sigma$)) ,

where N''( $\sigma$)=(N'( $\sigma$)\otimes L)\cup(\cup M( $\tau$)\otimes$\sigma$^{*}[0, L]) . This can be also viewed as a [3]-\mathrm{a}\mathrm{d}

y=(N'( $\sigma$)\otimes$\sigma$^{*}[0, L];N( $\sigma$), \cup H( $\tau$), N''( $\sigma$))

Observe that the radial deformation retraction \{r_{t}\} of D( $\sigma$) to the barycenter \hat{ $\sigma$}

is covered by a canonical strong deformation retraction \{\tilde{r}_{t}\} of p^{-1}(D( $\sigma$)) to p^{-1}(\hat{ $\sigma$}) ,

because p is simplicially stratified. We elongate \tilde{r} into a map

f:p^{-1}(D( $\sigma$))\times[0, L]\rightarrow p^{-1}(D( $\sigma$))\times[0, L] ; (e, t)\mapsto(\tilde{r}_{t/L}(e), t)

Now set

(H( $\sigma$);N( $\sigma$), \cup H( $\tau$), M( $\sigma$))

to be the functorial image of y by the composite map

-------\rightarrow----\rightarrow p^{-1}(D( $\sigma$))\times (\mathrm{D}( $\sigma$)) \mathrm{E} .

H( $\sigma$) has radius \leq C'C $\delta$ , and, if  L is sufficiently large, then M( $\sigma$) has radius at most

that of \displaystyle \bigcup_{ $\tau$> $\sigma$}M( $\tau$) ,
which is \leq C' $\epsilon$ . This will be called the Alexander trick of level  L.

Thus in order to accomplish the desired radius condition for M
,

we needed to start

by squeezing into a much smaller object at each stage. For the radius condition for H,
we need to replace C by a bigger number. \square 

Proposition 4.2. There exists a constant C>0 which depends only on K such

that the following holds. If N is a j ‐simplex of \mathbb{H}_{n}(\mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}^{h}}(K,p)) whose radius is\leq $\delta$,

then, for any  $\epsilon$>0 ,
there exist a j ‐simplex M of \mathbb{H}_{n}(\mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}^{h}}(K,p)) and a \triangle ‐map

 f : \triangle^{j}\otimes[0, 1]\rightarrow \mathrm{L}_{-n}^{h}(|K|,p, C $\delta$) satisfy ing:

(1) a(M) is a j ‐simplex of \mathrm{L}_{-n}^{h}(|K|,p,  $\epsilon$)

(2) f(\triangle^{j}\otimes 0)=a(N) ,
and

(3) f(\triangle^{j}\otimes 1)=a(M) .

Furthermore, we can arrange so that M and f are natural with respect to taking faces.
2This $\sigma$^{*} is not related to the simplex  $\sigma$ of  K ; it is Ranicki�s notation for a symmetric object.
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Proof. We use an inductive application of �Alexander tricks� similar to those

used in the proof of Theorem 4.1. It will produce a sufficiently small j‐simplex M of

\mathbb{H}_{n}(\mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}^{h}}(K, p)) such that a(M) has radius \leq $\epsilon$ ,
and  a(N) and a(M) are cobordant,

i.e. there is a [j]\sqcup[1]-\mathrm{a}\mathrm{d} connecting a(N) and a(M) . By using Lemma 2.1, we can replace
this with a \triangle‐map, which is essentially unique by Lemma 2.2. The extra requirement
on naturality can be established by using the same level for all the simplices at each

inductive step. \square 

Now we may define the L^{h} ‐version of the controlled assembly map of Theorem 1.1:

A_{n}:\mathbb{H}_{n}(K;\mathrm{L}^{h}(p))\rightarrow \mathrm{L}_{-n}^{h}(|K|;p) ,

where p:E\rightarrow|K| is a simplicially stratified fibration and K is finite.

Define \overline{ $\epsilon$}_{0} to be the diameter of K
,

and choose a sequence \overline{ $\epsilon$}_{1}, \overline{ $\epsilon$}_{2}, \overline{ $\epsilon$}_{3} ,
. . . monotone

decreasing to 0 such that \overline{ $\epsilon$}_{i}>C\overline{ $\epsilon$}_{i+1} ,
where C is the constant given in Proposition 4.2.

Pick a j‐simplex N=N_{0} of \mathbb{H}_{n}(\mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}}(K, p Its radius is certainly smaller

than or equal to \overline{ $\epsilon$}_{0} . Apply Proposition 4.2 to get a new j‐simplex N_{1} whose assembly

a(N) has radius \leq\overline{ $\epsilon$}_{2} (this is not a typo). Continue applying Proposition 4.2 to

the new j‐simplices to get a sequence N_{0}, N_{1}, N_{2} ,
. . . and \triangle‐maps  f_{i} : \triangle\otimes[i, i+1]\rightarrow

\mathrm{L}_{-n}(|K|, p, C\overline{ $\epsilon$}_{i+1}) connecting a(N) and a(N) such that the radius of a(N) is \leq\overline{ $\epsilon$}_{i+1}
for i\geq 1 . Since C\overline{ $\epsilon$}_{i+1}<\overline{ $\epsilon$}_{i} ,

we get a \triangle‐map from \triangle^{j}\otimes[0, \infty ) \rightarrow \mathrm{L}_{-n}^{h}(E) such that

the image of \triangle^{j}\otimes[i, \infty ) lies in \mathrm{L}_{-n}^{h}(|K|, p, \overline{ $\epsilon$}_{i}) ,
i.e. aj‐simplex of \mathrm{L}_{-n}^{h}(|K|;p) . We may

assume that these match up to define a \triangle‐map

 A_{n} : \mathbb{H}_{n}(\mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}^{h}}(K,p))\rightarrow \mathrm{L}_{-n}^{h}(|K|;p)
The composition with the homotopy equivalence of Theorem 3.5 is the desired map A.

Obviously, the standard assembly map a factors through it.

As mentioned at the beginning of the section, the arguments work equally well in

the \mathcal{L}^{-\infty} case.

§5. Proof of the characterization theorem

By Theorem 3.5, it suffices to show that the controlled assembly map below is a

homotopy equivalence:

A : \mathbb{H}_{-n}(\mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}-\infty}(K,p))\rightarrow \mathrm{L}_{n}^{-\infty}(|K|;p)

For convenience, we changed the sign for n.

First we show that A maps into every component. Let x be a 0‐simplex of

\mathrm{L}_{n}^{-\infty}(|K|;p) ; it is a map from [0, \infty ) to \mathrm{L}_{n}^{-\infty}(E) such that  x[i, \infty ) \subset \mathrm{L}_{n}^{-\infty}(X, p, $\epsilon$_{i})^{(k)}
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for some integer k and a sequence $\epsilon$_{0}, $\epsilon$_{1} ,
. . . monotone decreasing to 0 . Note that x and

another map x' defined by x'(t)=x(t+1 is in the same connected component. This

can be observed using Lemma 2.1 or by directly constructing a 1‐simplex connecting
them.

x(1) x[1 ,
2 ] x(2)

x' :

x :

x(0) x[0 ,
1 ] x(1)

x[2 , 3 ] x(3)

x[1 ,
2 ] x(2)

Choose i large so that  $\epsilon$ is quite small compared with the  $\delta$ posited in Lemma 3.7.

Another map  x^{(i)} defined by x'(t)=x(t+i is in the same connected component,

repeating the argument above. So we may assume from the beginning that $\epsilon$_{0}\ll $\delta$.

Then, by applying the absolute version of Lemma 3.7 to the x(i)' \mathrm{s} ,
we get 0‐simplices

N_{i} of \mathbb{H}_{-n}(\mathrm{C}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}^{\mathcal{L}^{-\infty}}(K, p)) and 1‐simplices y_{i} of \mathrm{L}_{n}^{-\infty}(E) connecting x(i) and a(N_{i}) .

We may assume that the unions y_{i}\cup x[i, i+1]\cup y_{j+1} have radius \leq $\delta$ ,
so we can apply the

relative version of Lemma 3.7 to these to obtain special [1]-\mathrm{a}\mathrm{d}\mathrm{s}M_{i} of cycles connecting

N_{i} and N_{j} . We can use the triangulation argument that the sequence

a(N_{0}) , a(M_{0}) , a(N_{1}) , a(M_{1}) , a(N_{2}) ,
. . .

is in the same connected component as x . Thus we may assume from the very beginning
that x is equipped with such a splitting into cycles. Note that we still do not know that

x is in the image of the controlled assembly map A
,
because the sequence is not obtained

by successive application of Alexander tricks.

Now we would like to show that x and A(N) are in the same connected component.

x(0) x(1)=a(N_{1}) x(2)=a(N_{2})

Let us define $\epsilon$_{i} to be \displaystyle \max\{$\epsilon$_{i}, \overline{ $\epsilon$}_{i}\} ,
where \overline{ $\epsilon$}_{i} �s are the numbers that were used

during the definition of the controlled assembly map A . Since x(0) and A(N)(0) are
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both a(N_{0}) ,
there is a trivial cobordism y_{0} between them. Take the union of y_{0}, x[0 ,

1 ],
and A(N_{0})[0 ,

1 ] ,
and apply the Alexander trick used to define A(N)(1) to it. Then we

obtain a 1‐simplex y_{1} connecting x(1) and A(N)(1) and \mathrm{a}^{((}2 ‐cell� z_{0} of radius \leq C^{3}\hat{ $\epsilon$}_{0}
which fills in the rectangle as suggested by the picture below.

\overline{ $\epsilon$}_{0} \overline{ $\epsilon$}_{0} \overline{ $\epsilon$}_{1} \overline{ $\epsilon$}_{1} \overline{ $\epsilon$}_{2}

The dashed line indicates the squeezed piece.
The second step is to apply the squeezing to the union of y_{1}, x[1 ,

2 ] ,
and A(N_{0})[1 ,

2],
as shown in the picture below:

\overline{ $\epsilon$}_{0} \overline{ $\epsilon$}_{0} \overline{ $\epsilon$}_{1} \overline{ $\epsilon$}_{1} \overline{ $\epsilon$}_{2}

$\epsilon$_{0} $\epsilon$_{0} $\epsilon$_{1} $\epsilon$_{1} $\epsilon$_{2}

Continuing this process, we can find 1‐simplices y�s connecting x(i) and A(N)(i) and

find ( (2‐cells� z_{i} �s of radius \leq C^{2}\hat{ $\epsilon$}_{i} which fill in the rectangles

y_{i}\cup x[i, i+1]\cup y_{i+1}\cup A(N_{0})[i, i+1].

Now use Lemma 2.1 to show that x and A(N) are in the same connected component.

Next we show that the relative homotopy groups $\pi$_{j}(A) of A vanish for all j . The

proof is quite the same as the previous part. The only difference is that we need to

use Lemma 2.2, instead of Lemma 2.1, to construct a relative homotopy. An element of

$\pi$_{j}(A) is represented by a \triangle‐map

 x:\triangle^{j}\otimes[0, \infty)\rightarrow \mathrm{L}_{n}^{-\infty}(E)

such that  x|d_{i}\triangle^{k}\otimes[0, \infty ) =0 for i<j, x|d_{j}\triangle^{j}=A(N) for some [j-1]-\mathrm{a}\mathrm{d}N of

cycles, and the image of x(\triangle^{j}\otimes[i, \infty)) is contained in \mathrm{L}_{n}^{-\infty}(X, p, $\epsilon$_{i})^{(k)} for some k

and a sequence \{$\epsilon$_{i}\} . As before, we may assume that  $\epsilon$_{0}\ll $\delta$ by changing  x using a

relative homotopy. Then we can use the relative splitting lemma and we may assume
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that x is split. Now we can use the Alexander tricks and the Lemma 2.2 to show that x

represents the trivial element in the relative homotopy group. This completes the proof
of Theorem 1.1.
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