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On \ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} \mathrm{M}‐fUnctions� closely related to the distribution

of \mathrm{L}^{\ovalbox{\tt\small REJECT}}/\mathrm{L}‐values *

By

Yasutaka IHARA**

0.1 — When the ground field is the rational number field \mathbb{Q} , the functions M_{ $\sigma$}(z)
and \tilde{M}_{ $\sigma$}(z) of  $\sigma$>1/2 and z\in \mathbb{C} that we are going to construct and study can be

uniquely characterized by the following properties (\mathrm{i})\sim (iii);

(i) as functions of  z
, they are Fourier duals of each other,

(ii) \tilde{M}_{ $\sigma$}(z) is real analytic in ( $\sigma$, z) ,

(iii) (at least) when  $\sigma$>1, M_{ $\sigma$}(z)|dz| gives the density measure for the distribution of

values of the logarithmic derivative

(0.1.1) L'( $\chi$,  $\sigma$+ $\tau$ i)/L( $\chi$,  $\sigma$+ $\tau$ i)

of L‐fUnctions on \mathbb{C} . Here,  $\tau$\in \mathbb{R} is also fixed and  $\chi$ runs over all Dirichlet characters

with prime conductors. (The density measure turns out to be independent of  $\tau$ ; for the

other notations, see §0.2 below.)

We shall work over any global field  K , i.e., either an algebraic number field of

finite degree, or an algebraic function field of one variable over a finite field. These

�‐fUnctions� shall depend on K.

The main purpose of this article is (I) to construct and study these functions, with

more weight on the study of \tilde{M}_{ $\sigma$}(z) , which seems to be of independent interest, and (II)
to establish the above relation (iii) including other cases of K and some other families

of  $\chi$ (Dirichlet characters, or Hecke Grössencharacters on  K); in particular, for some

range of  $\sigma$ including some to the left of  $\sigma$=1 in the function field case. The motivation

of this work came from our previous study related to L^{\ovalbox{\tt\small REJECT}}( $\chi$, 1)/L( $\chi$, 1) [2] [3][4]. The

present paper is for the first stage. Even unconditional results for  $\sigma$=1 in the number

field case require further substantial work. As for the connections with, and differences

from the Bohr‐Jessen type value distribution theories, where  $\chi$=1 and  $\tau$ varies, see

§0.5 below.

�This is a revised version of the Introduction (§1) from the author�s preprint RIMS‐1574 (December
2006; the same title as above) .\mathrm{A} revised version of the preprint containing details will be submitted
for publication elsewhere.
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0.2 − The function M_{ $\sigma$}(z) to be constructed is real valued, \geq 0 , and belongs to C^{\infty},

while \tilde{M}_{ $\sigma$}(z) is complex‐valued, |\tilde{M}_{ $\sigma$}(z)|\leq 1 ,
and real‐analytic. They are the Fourier

transforms of each other in the sense that

(0.2.1) \displaystyle \tilde{M}_{ $\sigma$}(z)=\int_{\mathbb{C}}M_{ $\sigma$}(w)$\psi$_{z}(w)|dw|, M_{ $\sigma$}(z)=\int_{\mathbb{C}}\tilde{M}_{ $\sigma$}(w)$\psi$_{-z}(w)|dw|.
Here, $\psi$_{z} : \mathbb{C}\mapsto \mathbb{C}^{1} is the additive character

(0.2.2) $\psi$_{z}(w)=\exp(i.{\rm Re}(\overline{z}w))

parametrized by z\in \mathbb{C} , and |dw| denotes the self‐dual Haar measure on \mathbb{C} with respect

to the self‐dual pairing $\psi$_{z}(w) of \mathbb{C} ; namely, |dw|=(2 $\pi$)^{-1}dxdy for w=x+iy.

Both are continuous also in  $\sigma$ , and \tilde{M}_{ $\sigma$}(z) is even real‐analytic in  $\sigma$ . They have quite

interesting arithmetic and analytic properties. \tilde{M}_{ $\sigma$}(z) has a convergent Euler product

expansion each of whose \wp‐factor can be expressed explicitly in terms of Bessel functions,

and correspondingly,  M_{ $\sigma$}(z) has a convolution Euler product expansion, each of whose

\wp-‐factor being a certain hyperfunction. Also, \tilde{M}_{ $\sigma$}(z) has an everywhere convergent

power series expansion in z, \overline{z} whose coefficients are some arithmetic Dirichlet series

in  $\sigma$
,

which may be regarded also as a Dirichlet series expansion in  $\sigma$>1/2 whose

coefficients are arithmetic polynomials of z, \overline{z} . Both decay rapidly as |z|\mapsto\infty . Thus,

even when  1/2< $\sigma$<1 in the number field case, where we do not know much about

the zeros of L( $\chi$, s) and hence about the poles of L^{\ovalbox{\tt\small REJECT}}( $\chi$, s)/L( $\chi$, s) ,
and hence bout the

distribution of L'( $\chi$, s)/L( $\chi$, s) near  z=\infty , still, the corresponding function  M_{ $\sigma$}(z) can

be constructed independently and can be proved to be rapidly decreasing with |z|.

0.3 − The symbolical relations among M_{ $\sigma$}(z),\tilde{M}_{ $\sigma$}(z) and L^{f}( $\chi$, s)/L( $\chi$, s) ,
under op‐

timal circumstances are,

(0.3.1) M_{ $\sigma$}(z)=\displaystyle \mathrm{A}\mathrm{v}\mathrm{g}_{ $\chi$}$\delta$_{z}(\frac{L^{\ovalbox{\tt\small REJECT}}( $\chi$,s)}{L( $\chi$,s)}) , \tilde{ $\Lambda$}M_{ $\zeta$ f}(z)=\mathrm{A}\mathrm{v}\mathrm{g}_{ $\chi$}$\psi$_{z}(\frac{L^{ $\gamma$}( $\chi$,s)}{L( $\chi$,s)})9
where \mathrm{A}\mathrm{v}\mathrm{g}_{ $\chi$} means a certain weighted average, $\psi$_{z} is the additive character of \mathbb{C} defined

above (0.2.2), and $\delta$_{z}(w)|dw| is the Dirac delta measure on \mathbb{C} with support at z . In

other words, the first formula of (0.3.1) means that

(0.3.2) \displaystyle \int_{\mathbb{C}}M_{ $\sigma$}(w) $\Phi$(w)|dw|=\mathrm{A}\mathrm{v}\mathrm{g}_{ $\chi$} $\Phi$(\frac{L^{\ovalbox{\tt\small REJECT}}( $\chi$,s)}{L($\chi$_{ $\gamma$}s)})
holds for any test function  $\Phi$ on \mathbb{C} , and the second formula is its special case where

 $\Phi$=$\psi$_{z} . When  $\Phi$(w)=P^{(a,b)}(w)=\overline{w}^{a}.w^{b} (a, b non‐negative integers), again under
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optimal circumstances,

(0.3.3) \displaystyle \mathrm{A}\mathrm{v}\mathrm{g}_{x}P^{(a,b)}(\frac{L^{\ovalbox{\tt\small REJECT}}( $\chi$,s)}{L( $\chi$,s)})=\int_{\mathbb{C}}M_{ $\sigma$}(w)P^{(a,b)}(w)|dw|
=(\displaystyle \frac{2}{i})^{a+b} \partial^{a+b}\overline{\partial z^{a}\partial\overline{z}^{b^{\tilde{M}_{ $\sigma$}(z)}}}|_{z=\mathrm{C}}=(-1)^{a+b}$\mu$_{ $\sigma$}^{(a,b)},

where $\mu$_{ $\sigma$}^{(a,b)} is as defined by (0.4.10) below. The present work is, though logically
independent, in a sense, a continuation of [4] where this value was studied in the special
case K=\mathbb{Q} and s=1.

0.4 − Our main results may be summarized as follows.

Theorem \tilde{N}I(\mathrm{i}) For each non‐archimedean prime \wp of  K , consider the function
of  $\sigma$>0 and z\in \mathbb{C} defined by the convergent series

(0.4.1) \displaystyle \tilde{M}_{ $\sigma$,\wp}(z)=1+\sum_{n=1}^{\infty}\frac{G_{n}(-\frac{i}{2}\prime\sim^{ $\gamma$}\log N(\wp))G_{n}(-\frac{i}{2}\overline{z}\log N(\wp))}{N(\wp)^{2 $\sigma$ n}},
where i= \overline{-1} and

(0.4.2) G_{ $\tau \iota$}(w)=\displaystyle \sum_{k=1}^{n}\frac{1}{k!}\left(\begin{array}{ll}
n & -1\\
k & -1
\end{array}\right)w^{k}.
Then when  $\sigma$>1/2 , the Euler product

(0.4.3) \displaystyle \tilde{M}_{ $\sigma$}(z)=\prod_{\wp}\tilde{M}_{ $\sigma$,\wp}(z)
converges in the following sense. For any R>0 there exists y=y( $\sigma$, R) such that

\tilde{M}_{ $\sigma$,\wp}(z) for N(\wp)>y has no zeros on |z|\leq R and that their product over all these \wp

converges absolutely to a nowhere vanishing function on this disk. This function \tilde{M}_{ $\sigma$}(z)
is real analytic in ( $\sigma$, z) , and as a function of z , belongs to L^{p} for all 1\leq p\leq\infty.

(There are other expressions of each local factor in terms of Bessel functions. As

for the zeros, one can at least show that each local factor has an infinite discrete set of
zeros on the imaginary axis.)
(ii) \tilde{M}_{ $\sigma$}(z) has an everywhere convergent power series expansion

(0.4.4) \displaystyle \tilde{M}_{ $\sigma$}(z)=1+\sum_{a,b=1}^{\infty}(-i/2)^{a+b}$\mu$_{ $\sigma$}^{(a,b)}\frac{z^{a}\overline{z}^{b}}{a!b^{1}},
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and a convergent Dirichlet series expansion on  $\sigma$>1/2

(0.4.5) \displaystyle \tilde{M}_{ $\sigma$}(z)=\sum_{D:integral}\frac{$\lambda$_{D}(z)$\lambda$_{D}(\overline{z})}{N(D)^{2 $\sigma$}},
with positive real constants $\mu$_{ $\sigma$}^{(a,b)} and polynomials $\lambda$_{D}(z) defined below. Here, D runs

over all �integral� divisors of K , i. e., the products of non‐negative powers of non‐

archimedean primes.
The author�s initial definition of \tilde{M}_{ $\sigma$}(z) was by the (formal) power series (0.4.4),

because the only information on the ��would‐be�� density measure function M_{ $\sigma$}(z) was

(0.3.3), by [4] (when s=1 ). Then the Euler product decomposition was found by a

different route, and then the more natural explanation described below (§0.5) was rec‐

ognized. Incidentally, our proof of the fact that the series (0.4.4) converges everywhere

requires an argument where z, \overline{z} are treated as two independent complex variables.

The coefficients $\mu$_{ $\sigma$}^{(a,b)} and $\lambda$_{D}(z) are defined as follows. First, for any integral ideal

D of K , set

(0.4.6)  $\Lambda$(D)=\log N(\wp) . . . ifD=\wp^{r}, r\geq 1 , for some prime divisor \wp,

=0 . . . otherwise.

Then define $\Lambda$_{k}(D)(k\geq 0, k\in \mathbb{Z}) by

(0.4.7) $\Lambda$_{0}(D)=1 . . . ifD=(1)

=0 . . . otherwise,

(0.4.8) $\Lambda$_{k}(D)=\displaystyle \sum_{D=D_{1}\cdot D_{1_{k}}}.. $\Lambda$(D_{1})\cdots $\Lambda$(D_{k}) (k\geq 1)
.

For each D , the following $\lambda$_{D}(z) is a polynomial of z.

(0.4.9) $\lambda$_{D}(z)=\displaystyle \sum_{k=0}^{\infty}(-i/2)^{k}\frac{$\Lambda$_{k}(D)}{k!}z^{k}.
Finally, for each pair (a, b) of non‐negative integers and {\rm Re}(s)>1/2 , we define the

invariant $\mu$_{s}^{(a,b)} by the absolutely convergent Dirichlet series

(0.4.10) $\mu$_{s}^{(a,b)}=\displaystyle \sum_{D}\frac{$\Lambda$_{a}(D)$\Lambda$_{b}(D)}{N(D)^{2s}}.
When s= $\sigma$>1/2 and a, b\geq 1 , this takes a positive real value.
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Theorem M There exists a unique continuous function M_{ $\sigma$}(z) of  $\sigma$>1/2 and z

such that

(0.4.11) \displaystyle \tilde{M}_{ $\sigma$}(z)=\int_{\mathbb{C}}M_{ $\sigma$}(w)$\psi$_{z}(w)|dw|, M_{ $\sigma$}(z)=\int_{\mathbb{C}}\tilde{M}_{ $\sigma$}(w)$\psi$_{-z}(w)|dw|.
It is non‐negative real valued, C^{\infty} in z , and satisfies

(0.4.12) \displaystyle \int_{\mathbb{C}}M_{ $\sigma$}(z)|dz|=1.

As for the connections with the L^{\ovalbox{\tt\small REJECT}}/L‐values, presently, we focus our attention to

the following three families of characters;

(Case A) K is either the rational number field \mathbb{Q} , an imaginary quadratic field, or

a function field of one variable over a finite field given together with an �infinite� prime
divisor \wp_{\infty} of degree 1, which will be considered �  $\zeta$

archimedean� and excluded from the

 L and \tilde{M} , M ‐Euler factors. The character  $\chi$ runs over all Dirichlet characters on  K

with prime conductors normalized by the condition  $\chi$(\wp_{\infty})=1 ;

(Case B) K is a number field having more than one archimedean prime, and  $\chi$

runs over all ��normalized unramified Grössencharacters� of K. (This family forms a

free \mathbb{Z}‐module of rank [K : \mathbb{Q}]-1 );
(Case C) K=\mathbb{Q} and  $\chi$ runs over the characters of the form  N(\wp)^{- $\tau$ i} . This is the

case related to Bohr‐Jessen type theories (§0.5).
For each such family, the average \mathrm{A}\mathrm{v}\mathrm{g}_{ $\chi$} will be suitably defined.

Theorem L\sim M Let  $\sigma$={\rm Re}(s) , and  $\chi$ run over one of the above families. Assume

 $\sigma$>1 in the number field case, and  $\sigma$>3/4 in the function field case. Then

(i)

(0.4.13) \displaystyle \mathrm{A}\mathrm{v}\mathrm{g}_{ $\chi$} $\Phi$(\frac{L^{\ovalbox{\tt\small REJECT}}( $\chi$,s)}{L( $\chi$,s)})=\int_{\mathbb{C}}M_{ $\sigma$}(z) $\Phi$(z)|dz|
holds for any �mild test function  $\Phi$ on \mathbb{C}.

(ii)

(0.4.14) \displaystyle \mathrm{A}\mathrm{v}\mathrm{g}_{ $\chi$}$\psi$_{z}(\frac{L^{r}( $\chi$,s)}{L($\chi$_{\}}s)})=\tilde{M}_{ $\sigma$}(z) ,

(iii)

(0.4.15) \displaystyle \mathrm{A}\mathrm{v}\mathrm{g}_{ $\chi$}P^{(a,b)}(\frac{L^{\ovalbox{\tt\small REJECT}}( $\chi$,s)}{L( $\chi$,s)})=(-1)^{a+b}$\mu$_{ $\sigma$}^{(a,b)},



40 YASUTAKA IHARA

for the polynomials P^{(a,b)}(w)=\overline{w}^{a}w^{b}(a, b\geq 0) .

We expect that Theorem L\sim M should hold for any  $\sigma$>1/2 (at least) in the function

field case.
3 But even in the function field case where the Weil�s Riemann Hypothesis is

valid, the above restriction  $\sigma$>3/4 seems to be the limit of our method. On the other

hand, we have an optimistic point of view for the possibility of having (unconditional)
theory for  $\sigma$\leq 1 also in the number field case, because $\psi$_{z}(L^{\ovalbox{\tt\small REJECT}}( $\chi$, s)/L( $\chi$, s)) makes sense

even at possible zeros of L( $\chi$, s) .

0.5 −We shall now explain the main line of construction of the functions M_{ $\sigma$}(z) and

\tilde{M}_{ $\sigma$}(z) . It is based on the Euler sum expansion of L`/L coming from the Euler product

expansion of L , and the basic geometric idea goes back to a seminal work of Bohr‐Jessen

[1]. Fix s\in \mathbb{C} ,
with  $\sigma$={\rm Re}(s) .

(Local constructions,ì Let  $\sigma$>0 , and P be a finite set of non‐archimedean

primes of K . Put

(0.5.1) T_{P}=\displaystyle \prod_{\wp\in P}\mathbb{C}^{1}
(a torus), and let g_{ $\sigma$,P}:T_{P}\mapsto \mathbb{C} be defined by

(0.5.2) g_{ $\sigma$,P}(t)=\displaystyle \sum_{\wp\in P}g_{ $\sigma$,\wp}(t_{\wp})=\sum_{\wp\in P}\frac{t_{\wp}\log N(\wp)}{t_{\wp}-N(\wp)^{ $\sigma$}}
(t=(t_{\wp})\in T_{P}) . For any abelian character  $\chi$ on  K which is unramified over P , let

(0.5.3) L_{P}( $\chi$, s)=\displaystyle \prod_{\wp\in P}(1- $\chi$(\wp)N(\wp)^{-s})^{-1}
be the partial L‐function. Then L_{P}'( $\chi$, s)/L_{P}( $\chi$, s) can be regarded as a special value

(0.5.4) \displaystyle \frac{L_{P}^{\ovalbox{\tt\small REJECT}}( $\chi$,s)}{L_{P}(x8)}=g_{ $\sigma$,F^{\supset}}($\chi$_{P}.N(F)^{-i $\tau$})
of the rational function g_{ $\sigma$,P} on T_{P} at the point $\chi$_{P}.N(P)^{-i. $\tau$} , where  $\tau$={\rm Im}(s) and

(0.5.5) $\chi$_{P}=( $\chi$(\wp))_{\wp_{9}} N(P)^{-i. $\tau$}=(N(\wp)^{-i. $\tau$})_{\wp}.

The optimal circumstance is where the family of  $\chi$ satisfies the following two conditions:

3Added September18, 2007: As for (iii), this is now a theorem in the recently revised full paper

submitted for publication.
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(UniDistr) $\chi$_{P} is uniformly distributed on T_{P},

(Conv) L_{P}^{\ovalbox{\tt\small REJECT}}( $\chi$, s)/L_{P}( $\chi$, s) converges to L^{\ovalbox{\tt\small REJECT}}( $\chi$, s)/L( $\chi$, s) fast enough, ideally, uni‐

forndy in  $\chi$.

Now, for each family of  $\chi$ that we shall consider, all but finitely many  $\chi$ have conductors

coprime with  I^{2} and the above condition (UniDistr) is satisfied. Therefore, (0.3.1), with

L_{P} in place of L
, must Ue given by the corresponding integrals

(0.5.6) M_{ $\sigma$,P}(z)=\displaystyle \int_{T_{P}}$\delta$_{z}(g_{ $\sigma$,P}(t))d^{\star}t, \tilde{M}_{ $\sigma$,P}(z)=\int_{T_{P}}$\psi$_{z}(g_{ $\sigma$,P}(t))d^{\star}t.
(d^{\star}t : the normalized Haar measure on T_{P} . Note that the contribution of {\rm Im}(s) is

��

averaged away We thus have

(0.5.7) \displaystyle \int_{\mathbb{C}}M_{ $\sigma$,P}(w) $\Phi$(w)|dw|=\mathrm{A}\mathrm{v}\mathrm{g}_{ $\chi$} $\Phi$(\frac{L_{P}'( $\chi$,s)}{L_{P}( $\chi$,s)})
for any continuous function  $\Phi$ on \mathbb{C} . Note here that each M_{ $\sigma$,P}(z) is compactly sup‐

ported. The summation over \wp\in P in (0.5.2) is translated into �the basic product
expansions��

(0.5.8) M_{ $\sigma$,P}(\displaystyle \sim $\gamma$)=*_{\wp\in P}M_{ $\sigma$,\wp}(z) , \tilde{M}_{ $\sigma$,P}(z)=\prod_{\wp\in P}\tilde{M}_{ $\sigma$,\wp}(z) ,

where * denotes the convolution product. Using the simple fact that each g_{ $\sigma$,\wp} maps \mathbb{C}^{1}
to another small circle, we are able to compute each of M_{ $\sigma$,\wp}(z) and \tilde{M}_{ $\sigma$,\wp}(z) explicitly.

(Global constructions) Now let a >1/2 , and set P=P_{y}=\{\wp;N(\wp)\leq y\}.
Then the point is that when  y\mapsto\infty , each  M_{ $\sigma$,P}(z) (resp. \tilde{M}_{ $\sigma$,P}(z) ) converges uniformly
(and also w.r. \mathrm{t} . some other L^{p} topologies) to a not‐everywhere vanishing function

M_{ $\sigma$}(z) (resp. \tilde{M}_{ $\sigma$}(z) ). Thus, these are functions obtained from $\delta$_{z}(L_{P}'( $\chi$, s)/L_{P}( $\chi$, s))
(resp. $\psi$_{z}(L_{P}^{\ovalbox{\tt\small REJECT}}( $\chi$, s)/L_{P}( $\chi$, s by first fixing P and averaging over an infinite family
of characters  $\chi$ and then letting  y\mapsto\infty . This way we can enter the region  1/2<
 $\sigma$<1 unconditionally. The connection between the global objects, $\delta$_{z}(L^{\ovalbox{\tt\small REJECT}}( $\chi$, s)/L( $\chi$, s))
with M_{ $\sigma$}(z) , (resp. $\psi$_{z}(L^{\ovalbox{\tt\small REJECT}}( $\chi$, s)/L( $\chi$, s)) with \tilde{M}_{ $\sigma$}(z) ), can be made when the condition

(Conv) is satisfied at a sufficiently high level. First, when  $\sigma$>1 , this convergence
is uniform; hence the local relation (0.5.7) directly passes over to the global relation

(0.3.2). Secondly, for the family (A) in the function field case, the convergence holds for

any \mathrm{a}/2 but (apparently) not uniformly with respect to  $\chi$ . In this case, by choosing
the intermediate object

(0.5.9) \mathrm{A}_{\mathrm{V}\mathrm{g}_{N(\mathrm{f}_{ $\chi$})\leq m}}($\psi$_{z}(L_{P}^{\ovalbox{\tt\small REJECT}}( $\chi$, s)/L_{P}( $\chi$, s
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where m and P=P_{y} are related by y=(\log m)^{b} ,
with a suitable positive constant b , we

are able to relate the M �s with the L^{\ovalbox{\tt\small REJECT}}/L for  $\sigma$>3/4 . (If ( $\sigma$-1/2)b>1 the convergence

is fast enough, while if (1- $\sigma$)b<1 the distribution is quantitatively uniform enough.)
This is done after some Fourier analysis of the function $\psi$_{z}(g_{ $\sigma$,P}(t)) on T_{P}.

(Relations with Bohr‐Jessen type theories) Bohr‐Jessen studied the distri‐

bution of values of \log $\zeta$( $\sigma$+ $\tau$ i) , where  $\sigma$>1/2 is fixed and  $\tau$\in \mathbb{R} varies [1](\mathrm{c}\mathrm{f}. also

[6][7][10]). Since  $\zeta$( $\sigma$+ $\tau$ i)=L($\chi$_{ $\tau$},  $\sigma$) , where $\chi$_{ $\tau$}(\wp)=N(\wp)^{- $\tau$ i} , this is the same as the

value distribution of \log L($\chi$_{ $\tau$}, s) , where s is fixed and $\chi$_{ $\tau$} runs over this one parameter

family of trivial characters (the Case \mathrm{C} family). Although we started by studying the

�variable  $\chi$ problem� for the Case A family and found the above construction, as was

kindly pointed out by A.Fujii, the basic idea for such construction was essentially the

same as in [1], i.e., goes back to Bohr‐Jessen. Indeed, [1] uses the Euler sum expansion of

\log $\zeta$(s) and the uniform distribution property of $\chi$_{P} on T_{P} , to relate the problem to the

distribution of sum of points on the images of \mathbb{C}^{1} by the mappings t\mapsto-\log(1-p^{- $\sigma$}t) .

Then Jessen‐Wintner [5] gave more general treatments using probability measure the‐

ory including Fourier analysis, and Matsumoto [8][9] generalized this to the case of any

number field K.

In spite of these similarities, there are three major differences.

(I) The directly related�d \log $\zeta$(s) ‐version�� does not seem to have been so seriously

studied. This is probably because of the difficulty in this case to get to the left of  $\sigma$=1.

There are also differences in local structures; the  d\log‐version is in a sense easier, as

the image  g_{ $\sigma$,\wp}(\mathbb{C}^{1}) for this case is a circle; but on the other hand, the center‐shifts

and the metric twists cause some complications by which we cannot directly apply their

theories, e.g. [5]. There are plenty of similarities, but it is still easier to treat this case

directly.

(II) For this one parameter family  $\chi$=$\chi$_{ $\tau$} , the uniform distribution of $\chi$_{P} on T_{P}

holds only when K=\mathbb{Q} . Indeed,  $\chi$(\wp) depends only on N(\wp) . So, the  d\log analogue

of Matsumoto�s distribution measure for  K\neq \mathbb{Q} is different from ours. In the function

field case, the situation is decisively different from the Case A family; all ($\chi$_{ $\tau$})_{P} lie on

a one‐dimensional subtorus of T_{P} , and the image of the global $\zeta$_{K}^{\ovalbox{\tt\small REJECT}}( $\sigma$+ $\tau$ i)/$\zeta$_{K}( $\sigma$+ $\tau$ i)
(  $\sigma$>1/2 : fixed) is a bounded curve.

(III) The Fourier dual appears in [5][9], etc., but mainly for auxiliary purpose to

prove the convergence of the local measure. Those properties of \tilde{M}_{ $\sigma$}(z) as in the above

stated Theorem \tilde{M} (ii), which are obtained by using analytic functions of three complex

variables (s, z_{1}, z_{2}) extending ( $\sigma$, z, z do not seem to have been known.

We hope that the present approach will shed some light to the variable  $\tau$ theory (too).
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0.6 −We have also left untouched various basic questions related to M_{ $\sigma$}(z) , \tilde{M}_{ $\sigma$}(z) ;
for example, their zeros, their values at the central points (such as M_{ $\sigma$}(0) ,

M_{ $\sigma$}($\zeta$_{K}^{\ovalbox{\tt\small REJECT}}(2 $\sigma$)/$\zeta$_{K}(2 $\sigma$))) , determination of the value of

(0.6.1) \displaystyle \int_{\mathbb{C}}M_{ $\sigma$}(z)^{2}|dz|=\int_{\mathbb{C}}|\tilde{M}_{ $\sigma$}(z)|^{2}|dz|.
We hope to be able to discuss these in the near future, together with more applications.
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