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Kronecker limit formula for real quadratic fields and
Shintani invariant

By

Shuji YAMAMOTO*

Abstract

We report on a result on Shintani’s ray class invariant obtained in [5].

§1. Shintani invariant

Let K be a real quadratic field. We denote by Clik(f) the narrow ray class group
of K modulo an ideal f C Ok, and associate the partial zeta function

((s,2)= > N@™

aeC,aCOx

with each ray class € € Clg(f), where N(a) is the norm of a. T. Shintani [2, 4] stud-
ied analytic expressions of the values ¢(0,€) and ¢’(0,€), and recognized the number
theoretic significance of the values

X(€) := exp(—¢'(0,€) + ¢'(0,€¢,¢3)),

now called Shintani invariants. Here €; and €5 are the ray classes ‘representing the
signatures’, defined by

€ =[(m)] € Clg(f), p1€1+f, 1 <0, pf >0,
€ = [(p2)] € Cli(f), pa€1+F, pa >0, puy <0

(we regard K as a subfield of R, and denote the conjugate of z € K by z'). The
great importance of Shintani invariants in the arithmetic of K is expressed by the
Stark-Shintani conjecture that, roughly speaking, states that the invariants X (<) are
algebraic units and generate the class fields of K.
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Shintani also gave a formula which can be regarded as an analogue of the Kronecker
limit formula for real quadratic fields. His formula expresses X () by means of a certain
special function. That function, now called the double sine function (see [1]), is defined
by

S(w,2) = exp(—(é(O,w, z) + Cé(oaw, l+w-— z)) (w,z>0),
where
Ca(syw,2) = Z (z4+pw+q)~°
p,q=0

is Barnes’ double zeta function.

Theorem 1.1 (Shintani’s formula). If ¢ denotes the totally positive fundamen-
tal unit of K, we have '

(1.1) x(@) =[] 8(,2)8(,#)

2€R
with a finite subset R of K.
§2. An example

The following example was given in [2]:
FK=Q(5),f=(4—- 5) and € = [Og] € Clk(f), then the totally positive

fundamental unit is € = +2 , and we have

X(¢)
2.1) _%<3+2 ’5+ /3 %2—1)

=5(e, 5 )s(e ) (e TS (6 D)6 )
0« s(e )¢ S s(e, s 2o (. )

The equation (2.1) was obtained from the relative class number formula for a
quadratic extension over K, which works only in rather special cases, while (2.2) is
a consequence of the general formula (1.1). This situation suggests the following prob-
lem:

Deduce the equation (2.1) from the expression (2.2) by exploiting the properties
of the double sine function.
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To the author’s knowledge, any solution to this problem is unknown. On the other
hand, we can show that

a0 (5 (0 o o B ) -

by using only the following properties of S (see [5, Proposition 3.3.1]):

(2.4) S(w,z) =8S(1/w, z/w),
(2.5) S(w, z) = 2sin(72)S(w, z + w) = 2sin(rz/w)S(w, z + 1),
(2.6) S(w, 2) = 2sin(7rz)S(‘1S,/("; - iz ;“’) (i 0 <w < 1).

To prove (2.3), we rewrite the values S(¢',ze’ + y) for (z,y) = ({I,%),
(3 i) as
11’11
S(e—-l,y(s—l)+x+y)
S(l-¢,(1-a)(l—¢)+z+y)

Sle-1Lyle—1)+z+y—1)
S(l-¢,(1-z)(1-¢)+z+y-1)

(z+y<1),
S(eze' +y) =

(x+y>1)

by using (2.5) and (2.6) (note that 1/¢’ = ¢). For example, we have

, Te' +9 _ 8(6—1a 11( 1)+11)
(2.7) ‘9(5’ 11 ) CS(-e f-+g)
) B +3y _ S(e-LfEe-1)+F)
(2.8) S(Ea 11 )_8(1_5,11(1—6’)“‘%).

Then, since (¢ — 1)(1 — ¢’) = 1, the formula (2.4) implies that the numerator of
(2.7) and the denominator of (2.8) are equal. All factors of the product in (2.3) cancel
out similarly.

§3. General result

To state a result in [5] of which the cancellation (2.3) is a consequence, we have to
introduce some notations.

Let a ray class € € Clg(f) be given. We choose the following data:
e a C Ok is a representative of €.

e b is a fractional ideal which satisfies that bNQ = Z and belongs to the narrow ideal
class [a7'f] € Clx(Ok) of a™1f.
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o we K satisfles that b=Z 4+ Zw and 0 < v’ < 1 < w.
e z € K is a totally positive element such that b = (z)a™'f.
By the condition 0 < w’ < 1 < w, w has the purely periodic continued fraction expansion

1

w=bg —

by — s
' 1

0 —

bm-—l -

where by, ... ,bm—1 are integers greater than or equal to 2. We define by for k € Z by
the periodicity by = bx+m, and put

wi = by, —

bs1 — -
+1 7

bk+m—1 - b

Then, if we define a sequence {Ai}rez by Ao =1 and Agwy = Ag—1, it is easy to show
by induction that Ag_; and Ay spans b over Z for each k € Z. Hence there is a unique
pair (xx,yk) of rational numbers such that

0<zp<1l, 0<yp<l, zpdp_1+yrAr=2z (modb).

We put zx = Tkwk + ys. We call the sequence {(wk,zx)} the decomposition data
associated with €, because of the following formula [5, Proposition 2.1.4]..

Proposition 3.1. We have

((s,€) = Z(M> Z Nk/o(zs + pwe + )77,

k=1 IEN(f) P,g=0
where D is the discriminant of K.
Remark 3.2.

(1) The sequence {wy} has the period m, while {2} has thé period rm where r is the
index of the subgroup

{ueOf|u>0, u=1 (modf)}

in the group of totally positive units.
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(2) When we begin with another choice of the data a, b, w and 2z, the indices of
{(wk, 2c) } are shifted, i.e. the new data {(w,(cl) , z,(cl))} can be written as (w,(cl), z,(cl) )=
(Whko s Zk+ko) With some constant kg. In other words, the decomposition data is
determined by € up to shift of indices.

Now we can state the generalization of the cancellation (2.3).

Theorem 3.3. Let {(wk,zk)} be the decomposition data associated with ¢ €
Clk(f), and m and rm the periods of the sequences {wj} and {z} respectively (see
Remark 3.2 (1)).

(1) We have a product expression X (€) = X;(¢)X5(€), where

X1(@) = [T Srsz),  Xa(€) = ] S(wh, 7).
k=1 k=1

(2) We have the relations

X1(€) = X1 (€¢;) = Xy (e¢y) 7L,
X2(€) = X5(€€;) " = X,p(€ey).

In the case considered in §2, i.e. when K = Q( 5) and § = (4 — '5), the ray class

N 5
€y € Clg(f) is trivial because the unit yu; = — ! +2 5) satisfies that u; € 1+,
p1 < 0 and 3 > 0 . Hence, by applying Theorem 3.3(2), we obtain X5(€) = 1 for any

¢ e Clk(f).

Although Theorem 3.3(1) is a variant of Shintani’s formula (1.1), it seems more
convenient to use our decomposition data constructed from the continued fraction. In
fact, the proof of Theorem 3.3(2) is based on a beautiful relation of the data associated
with classes € and €C,, which is a result of the continued fraction theory. We remark
that such a relation was obtained and used by Zagier [6] when f = Oy, the case in which
the quantities z; don’t appear explicitly since z, = wy, for all k. Once such a relation
is established, the relations (2) can be shown by rewriting the expressions (1) in a way
similar to that given in §2. See [5] for details.

References

[1] N. Kurokawa, S. Koyama, Multiple sine functions, Forum Math., 15 (2003), 839-876.
(2] T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ.
Tokyo, 24 (1977), 167-199.



50 SHUJI YAMAMOTO

[3] T. Shintani, On special values of L-functions of algebraic number fields (Japanese), Sug-
aku, 29 (1977), 204-216.

[4] T. Shintani, On certain ray class invariants of real quadratic fields, J. Math. Soc. Japan,
30 (1978), 139-167.

[5] S. Yamamoto, On Kronecker limit formulas for real quadratic fields, preprint.

[6] D. Zagier, A Kronecker limit formula for real quadratic fields, Math. Ann., 213 (1975),
153-184.



