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On the applications of Shimura’s mass formula

By

Manabu MURATA*

Abstract

We explain how to compute the mass of the genus of maximal lattices for quadratic form of
the sum of squares by applying Shimura’s mass formula when the basic field is a real quadratic
field (Section 1), and consider its applications in special cases (Section 2). This paper is also
a survey on [Mu] to which several examples are added.

§1. Shimura’s mass formula for computation

To apply Shimura’s mass formula in [S99a, Theorem 5.8] to the case treated below,
we first recall some basic facts following [S].

Let V be the row vector space F™ over a real quadratic field F' of dimension n and
¢ the identity matrix 1, of size n (n > 1). Forz, y € V, we set o(z, y) = zp-ty = z-ty
and p[zr] = ¢(z, z) = = - tx. We define

G={yeGLy(F) |vp -ty =9}, Gi={yeG|det(p)=1},

which are written as G¥, G¥ in [S99a] and [Mu], and also as 0% (V), SO¢(V) in [S].

Let G be the adelization of G. For a g-lattice L in V, which is a finitely generated
g-submodule in V' containing a basis of V, and a € G4, we denote by La the g-lattice
in V such that (La), = Ly, for any finite prime v of F. Here g is the ring of integers of
F and L, is the localization of L at v. We call {La | @ € Gao} (resp. {La | o € G}) the
genus (resp. class) of L with respect to G; we also call it the G-genus (resp. G-class)
of L. Tt is known that the genus of L consists of finitely many classes (cf. [S, Lemma
9.21(iv) and (v)]) *

Let {L;}2_; be a complete set of representatives for G-classes in the G-genus of L.
Then we set

h
m(L)=> [[;: 17",
i=1
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where I'; = {y € G | Lyy = L;}. This is independent of the choice of {L;}?_;. We call
m(L) the mass of the genus of L with respect to G. Similarly for G, we can define the
mass of the genus of L with respect to G and denote it by m4 (L). It should be noted
that my (L) = 2m(L) (cf. [S99a, Lemma 5.6(1)]).

For each finite prime v of F, there exists o, € GL,(F,) such that

0 01,
(1-1) Qyp * tav = 06,0
1,0 0

with an anisotropic symmetric matrix 6, € GLy, (F,) of size ¢,. Here F, is the v-
completion of F', and we say that 6, is anisotropic if 8,[z] = 0 = z = 0. In this paper,
we call a matrix as in the right-hand side of (1.1) a Witt decomposition for ¢ over F,
(cf. [S, Lemma 1.3]). Then n = 2r, +t, and t, is determined only by ¢ and v. We call
t, the core dimension of ¢ at v. It is known that ¢, < 4 for every finite prime v (cf. [S,
Theorem 7.6(ii)]).

For a g-lattice L, we set

L={zecV|20(x,y) €g for every y € L}.

Then L is a g-lattice in V, and L C L if ¢[L] C g. Let e be the product of all finite
primes v satisfying Ly, # L.

Let L be a g-mazimal lattice with respect to ¢, that is, a g-lattice L in V which is
maximal among g-lattices on which the values @[] are contained in g. It is known that
the genus of L consists of all g-maximal lattices (cf. [S, §9.7]) ¢ Then, by applying an
exact formula due to Shimura in [S99a, Theorem 5.8] to our case, m4 (L) can be given
as follows:

Theorem 1.1.  Let L be a g-mazimal lattice with respect to ¢. Then

1]
m (L) =2D%7 [{DY((2k - @m)*)¢p(2k)} - (£ - I* [T 0
k=1 vle
) 272 if n is odd,
D};/2((n/2 — DI(2r)~"/2)2L(n/2, Yr/F) if nis even.

Here p = (n—1)/2 and D is the discriminant of F'; if n is even, then K = F(,/(=1)"/?),
Yk is the Hecke character of F corresponding to K/F, and we set Yx/r = 1 when
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K = F; )\, is given as follows:

1 ifty, =1,
s\ 2-1 ifty =2 and 0, # ty,
» =
2711+ %) (1 - q‘ll)_n) ifty =3,

27 (1 +go) 1= s ™1 - ™) ift, =4,

where g, is the norm of the prime ideal at v; ¢, is the mazimal order of K, = F,( =1)
and 0, is the different of K, relative to F, when t, = 2.

We note that the case where ¢, = 2, 9, = t,, and M, # M, in [S99a, Theorem 5.8]
cannot be possible in our quadratic space (F", 1,), because of det(6,) = £ det(yp) = +1
modulo {a? | a € F¥}.

By virtue of Theorem 1.1, we can reduce the calculation of m(L) to the following
two arguments:

One is to compute the special values of the Dedekind zeta function of F' and the
L-function of F' associated to the Hecke character of F' corresponding to F( —1)/F.
These values can be obtained by calculating values of the Riemann zeta function and
Dirichlet L-functions, since F( —1)/Q is an abelian extension.

The other is to find all finite primes v satisfying L, # L,. The index [I:,, : L,] can
be computed by using [S99a, (3.2.1)], which needs a Witt decomposition for 1, over F,.
To determine this, we first take an anisotropic matrix 6, of a Witt decomposition for
1, over Q, for a rational prime p. Then the size of 6, is < 4. After that, we decompose
fp on F, for v lying above p. It should be noted that this method is useful only when
the quadratic form in question is given by a matrix with entries in Q.

To get a numerical example of the mass, let us consider the case where F = Q( )
and ¢ = 14. Then the quadratic form over Q given by ¢ = 14 is equivalent to the norm
form (3 of the quaternion algebra By over Q which is ramified only at 2 and the infinite
prime. In other words, 14 is the matrix that represents 8 with respect to a suitable
Q-basis of By; see §2 below. Thus we first consider a Witt decomposition for 3 over
Qp. It can be verified that the core dimension at v of the norm form of a quaternion
algebra A is 4 if A is ramified at v, and it is 0 if A is unramified at v. From this fact,
the core dimension of 3 at p is 4 if p = 2, otherwise 0. Next we consider 3 as the norm
form of B = By ®q F and ask whether 3 is decomposed over F, for v lying above 2.
Now, it is known that a quaternion algebra over a nonarchmedean local field splits over
an arbitrary quadratic extension of the local field (cf. [D, VII, §2, Satz 4]). Since 2
remains prime in F, B splits at 2 (as an algebra), and consequently B is unramified
at every finite prime. This implies that the core dimension ¢, of the norm form g, or
rather, of ¢ is 0 for every prime v. Then by virtue of [S99a, (3.2.1)], [L, : L,] = 1
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holds for an arbitrary v. Hence we have [L : L] = 1 and ¢ = g. Combining this with
¢r(2) = ¢(2)L(2, x) (x is the Dirichlet character of F'), by Theorem 1.1, we obtain the
mass of the genus of maximal lattices as follows:

m(L) =27 'my (L) = 5°(2m)"3(p(2)? = 27°- 372 572,

From the above argument, for a finite prime v dividing 2 of an arbitrary real
quadratic field F', we can verify that

B®r F, 2 (By ®q Q2) ®q, F»

. ) Bo®q Q2 if 2 splits in F,
M, (Fy) otherwise.

Since t, = 0 for the other primes v, we then find a Witt decomposition for 14 over F,

and the core dimension ¢, for each prime v of F. A Witt decomposition for 1, over F,

for an arbitrary n» and v was given in [Mu, Lemma 3.3]. By combining that lemma with
calculations of L-values, Theorem 1.1 can be stated in a simpler form as follows:

Theorem 1.2.  ([Mu, Theorem 3.6]) Let F = Q( ‘m) with a squarefree positive
integer m, and let L be a g-mazimal lattice with respect to . Let x, X', and X" be
the Dirichlet characters corresponding to F/Q, Q( —1)/Q, and Q( '—m)/Q, respec-
tively. Also let By, and B,y be the k-th Bernoulli number and k-th generalized Bernoulli
number associated with a Dirichlet character 1.

(1) Ifn=0 (mod 8), then

[(n=1)/2]
m(L) =n"2Bnj2Bnsa,x | |1 (4k)*BzkBak,x | -
k=1

(2) Ifn==+1 (mod 8), then

(n—1)/2
m(L)= [] (4%)~®BaxBak,x-
k=1

(3) Ifn =42 (mod 8), then

[(n-1)/2]
m(L) = n_an/2,x’ n/2,x" H (4k)_2BZIcBZk, X
k=1

272 ifm=1 (mod8),
1 fm=3 (mod 4),

21 otherwise.
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(4) Ifn=+3 (mod 8), then

(n=1)/2
m(L)=| [ (4%)7*BakBax,y
k=1

_ {2"2 -3722"1-1)? fm=1 (mod 8),

1 otherwise.

(6) Ifn=4 (mod8), then

[(n—-1)/2]
m(L) =n"2Bpn/2Bn/2,x ( 1T (4k)_2BZk:BZk:,x>
. k=1

{2-2.3—2(2n/2—1-1)2(2n/2-1)2 Fm=1 (mod8),

1 otherwise.

These are analogues of the formulas for m (L) in the case where F' = Q and p = 1,
in [S99a, Examples 5.16] to the case of real quadratic fields.

§2. Applications of the mass formula

We set again F = Q( '5). As applications of the mass formula, we shall determine
the number h of G-classes of the G-genus of maximal lattices in V' = F™ with respect
to o =1, forn=2, 3, 4, 5, 6. For a fixed g-lattice L in V and ¢ € g, we set

I(L)={yeG|Ly=1L},
n(L> Q) = {.CU €L l 90["17] = Q}7 N(L> Q) = #TL(L, Q)‘

We first explain the case of n = 4, which was treated in [Mu, §4]. In this case, we
consider a g-lattice L defined by

r -

1 0 0 0
aq

4
0 1 0 0
(2.1) L=Zgai=g4a,a= =
i=1 1/2(1+¢€)/2¢/2 0

o 12 1/2 1/21/2)

with e = (1+ 5)/2. This is a g-maximal lattice with respect to ¢, since [L : L] = 1 by
using elementary divisors. Then the order of I'(L) becomes 26 . 32 . 52 as shown below.
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While, we have seen that m(L) = 276.372.572, Hence, from the definition of the mass,
the genus of L consists of one class.

We are going to see that [['(L) : 1] = 2%-32.5% by a different way from that given in
[Mu, §4]. Since there exists v € I'(L) such that det(y) = —1, it is sufficient to show that
[T4(L): 1] = 253252, where I'; (L) = G4 NT(L). First, as mentioned in §1, ¢ = 14
can be considered as the norm form [ of the quaternion algebra B = By ®q F' over F.
More precisely, the £ is defined by 8(z, y) = 27 Trg,r(zy*) and B[z] = Np,p(z) = zz*
for z, y € B. Here ¢ is the main involution of B, Trp,r(x) is the reduced trace, and
Ng/r(x) is the reduced norm of z. The quaternion algebra By can be written in the
form

By=Q+Qa+ Qb+ Qab

with a, b € By such that a®> = »* = —1 and ba = —ab. By the isomorphism £ :
@ = (x1, T2, T3, T4) — T1 + T2a + z3b + z4ab of F* onto B = By ®q F, we have
14[z] = Blz€] = 23 +22 + 23 +23. Then the mapping v — £ 1€ gives an isomorphism
of G onto the special orthogonal group SO(8) of 3. Hence if we set 0 = L&, then

T4 (L) 2Ty (o) = {r € SO(B) | o7 = o},

and so we consider the order of I'} (o) instead of I' (L). It can be seen that o is a
maximal order in B.

The following Lemma 2.1 is fundamental to observe I';(0) (cf. [S99a, Lemma 1.5]).
Lemma 2.1.
SO(B) = {7s,y | @, y € B such that Np;r(z) = Np/r(y)},
where Ty, s defined by 27, 4 =y~ 'zz for z € B.
In view of Lemma 2.1, we set 7, = 7 , and

FO={T:I:,y€SO(ﬁ)Ix)y€°X}) F1={Tzlz€Bx}7
I'*(0) = {z € B | zo = oz}

Also we set n(o, q) = {z € 0 | Ng;p(x) = ¢} and N(o, q) = #n(o, q) for g € g.

Lemma 2.2. Let the notation be as in above. Then the following three assertions
hold:

(1) [Po : Fo ﬂl"l] = N(O, 1)

(2) ToNTy =oX/g*.
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() T4(0)/To = (T'+(0) NT1)/(To NT1) 2 T*(0)/F*0*.

Proof. The mapping 7, , — zy~* leads the assertion (1). Noticing that 7, = Ty
if and only if zy~! € g* for =, y € 0*, and considering the homomorphism 7, zg*,
we have the isomorphism of (2). The last assertion (3) follows from the two mappings
Ty — ToLlp and 7, — zF X 0%, O

From Lemma, 2.2, we have
[C+(0) : ] =N(o, )T (0) : F*0*][o™ : g*].
Furthermore, by virtue of the formula [E, (16)], we have
[[*(o) : F*0*] = 2"hpH (o).

Here r is the number of all finite primes which are ramified in B and hp is the class
number of F; H(o) is the class number of the two-sided o-ideals of B and satisfies
H(o) < h(B) for the class number h(B) of B. (We do not explain it here; for a more
detailed explanation, the reader is referred to Eichler’s article [E, §4].) We know that
hgp =1andr =0 when F = Q( 5), because B = B, ®Q F' is unramified at every finite
prime as observed in §1. Moreover, it is known that A(B) = 1 (cf. [P, §9, TABELLE
2]), and so H(o0) = 1. Consequently we have [I*(0) : F*0*] = 1. Since

0* = u zg™

w€n(a, 1)/ZX
by Np/q(e) = —1, we have [0* : g*] = 271N (o, 1). Thus we obtain
[TC4(0): 1] =27 N(o, 1)2
Now, using the basis of L given before, we see that
N(o,1)=N(L,1)=120=2%.3.5
(cf. [Mu, §4]). Hence the order of T'; (L) is
Ci(o):1]=2"1.26.32.52=25.32.52

Let us add further examples for n = 2, 3, 5, 6, which are not in [Mu].

If n = 2, then ¢ can be identified with the norm form of the quadratic extension
F( =1)/F and

h
E-F =my(L),
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where k., is the number of G -classes in the G..-genus of maximal lattices with respect
to ¢ and w is the order of the group of all roots of unity in F( —I). Moreover, a
complete set of representatives for G -classes of the G-genus of maximal lattices can
be described in terms of the ideal classes of F( '—I). These facts follow immediately
from the results on the two-dimensional quadratic spaces in [S99b, §6.1]. By Theorem
1.2, we have m, (L) = 2m(L) = 272. This together with w = 4 shows that h, = 1.
Since k < hy (cf. [S, Lemma 9.23(i)]), we have h = 1. We note that L = g* is a
g-maximal lattice of F? with respect to 15 because of [L : L] = 2%,

Let n = 3. We use the notation in the case n = 4 before. Then ¢ can be identified
with the restriction 8° of the norm form of the quaternion algebra B = By ®q F to
T ={z e B|z* = —z}and SO(B°) is generated by 7 for x € B* ([S99a, Lemma 1.4}).
Furthermore, by the results on the three-dimensional quadratic spaces treated in [S,
§12.2], 0N T is a g-maximal lattice in T with respect to ° and ¢ is the unique maximal
order in B containing g and oNT. It can be verified from these facts that L = (oNT)¢™*
is a g-maximal lattice in F® with respect to 13 and T (L) = T (6 NT) = Ty (o) NT;.
Thus

[[4(L): 1] = [0* : g¥] =27'N(o, 1) = 60.

As clearly —13 & ' (L), we have [['(L) : 1] = 120. While Theorem 1.2 in this case
shows that m(L) = 273 .3~! .57, Hence we have h = 1. We note that all ONT
for maximal orders © in B that are not mutually same type form a complete set of
representatives for the classes of the genus of maximal lattices with respect to 3°, and
thus A is the type number of B; see [S, §12.2]. We also note that L can be written in
the form g3a with

1 0 0
(2.2) a=1| 0 10
—-€/2(1—-¢)/21/2

If n = 5, then h = 1. This example and the result on (F®, 15) presented below
are due to T.Hiraoka and the author. To determine h, we follow the method explained
in [Mu, §4]. Let L, be the maximal lattice with respect to 14 given in (2.1). Then
L = L, + ges is a g-maximal lattice in F'® with respect to 15 because of [L: L) =22
Here {e;} is the standard basis of F® and F* is embedding into F® in a natural way. It
can be seen that for v = *[ty; --- tys] € Ms(F), v belongs to I'(L) if and only if

v €n(L, 1) (1 <i<5), vty =0 (i #J),
(23) 2—1(71 + (1 + 6)72 + 573) € TL(L, 1+ 5)’
2_1(’71 +92 + 93 +74) € n(L, 1).
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We also see that n(L, 1) = n(Ly, 1)U {=es}; all elements of n(Ly, 1) were given in [Mu,
§4]. Then we can verify that

Y 0
(2.4) (L) = { [ J €(L) |y €T(Ly), 6= :1:1} .
0

To show this, let v € I'(L) and +; be the ith row vecter of 7. Suppose v; = es with
some 1 < i< 4. Then 27 1(y; + -+ +4) must be belonging to L, but it is impossible
in our choice of L. Hence 7; # es and so v; € n(Ly, 1) for every 1 < ¢ < 4. Thus we
have 75 = +es. At the same time, in view of [Mu, (4.3)], *[ty1 ---tv4] € T(L4), which
proves (2.4). Here we should remark that in [Mu, page 142, line 9], “y € I';” should be
read “y € I'”. As a consequence, we have

[D(L): 1) = 2[[(Ly) : 1] = 27 - 32 . 52,

By Theorem 1.2, m(L) = 277 .32 . 572, which implies h = 1.
Let n = 6. Then we find three maximal lattices L = gba, I’ = gb¢/, L = gla
with respect to 1 given by .

a40 ’
= , O
01,

0
1

"

I}
| pu—— |
o &
& o
| WO —

00 1 00
1/21/21/21/2 0

00001 0
| 0 0 1/21/21/21/2]

"o_

1 0 0 0 O
0 0 0 0 O
0
0

where 4 is the matrix in (2.1) and a3 is in (2.2). Let us compute the order of " for I' =
(L), T'(L"), T'(L"). In each cases, there is a suitable necessary and sufficient condition
for v € I" such as (2.3). We will use the condition without a detailed explanation. First,
the order of I'(L) becomes 23[T'(L4) : 1], which can be handled in the similar manner as
in the case n = 5. Next we see that

core{[]. 1] o).
0 v 0
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where L3 is the lattice in F'3 given in (2.2). This follows from the fact that every element
of n(L/, 1) can be written in the form [z 0 0 0] or [0 0 0 z] with = € n(Ls, 1). Then
[D(L') : 1] = 2[T(Lg) : 1] = 27 - 82 - 52. Finally, we look at n(L”, 1) = n(27'g% 1) N L".
Then it can be verified that n(L"”, 1) = n(Lo, 1), where Lo = Z%¢o/. From this, it follows
that (L") = T'(Lg). Since the order of T'(Lo) is known, we have [[(L") : 1] = 2° - 6L.
Consequently these maximal lattices are not mutually same class, and

D) : 17 + D) : 7+ ML) : )P =2710.371 . 570,

This coincides with the mass by Theorem 1.2. Therefore we conclude A = 3. We note
that the order of I'(L') can be computed by applying [Ma, Theorem 1.4.6] to L'.
Summing up these results, we have

Theorem 2.3. Let F = Q( 5), ¢ = 1,, and let h(n) be the number of classes
of the genus of g-mazimal lattices with respect to . Then h(n) =1 for 2<n <35, and
h(6) = 3.

We shall end this paper with the following remark: The above applications of
the mass formula provided the examples that we can determine the class number h
of the genus. However we can not always determine h in this way. For example, if
F=Q( '@) and ¢ = 1g, then for a maximal lattice L with respect to ¢, Theorem 1.2
shows :

3%.101 - 2203 - 199403
210 .5 )
In view of the definition of the mass, we find that & > 200000000. It seems that it is

almost impossible to determine h by the way explained above, though we are interested
how these classes can be found.

m(L) =
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