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On unramified pro‐p Galois groups over

cyclotomic \mathbb{Z}_{p}‐extensions — A survey

By

YASUSHI MIZUSAWA*

Abstract

For a fixed prime number p , we denote by k_{\infty} the cyclotomic \mathbb{Z}_{P^{\ovalbox{\tt\small REJECT}}} extension of a given
number field k . We expect that the Galois group G(k_{\infty}) of the maximal unramified pro‐p‐
extension over k_{\infty} would provide good information about the Galois groups of p‐class field
towers of number fields. In this paper, we will give an overview of some topics on G(k_{\infty})
together with an announcement of some results in p=2 case.

§1. Introduction

Let p be a fixed prime number and \mathbb{Z}_{p} the ring of p‐adic integers. For a given
finite extension k of the field \mathbb{Q} of rational numbers, we denote by k_{\infty} the cyclotomic
\mathbb{Z}_{p} ‐extension of the number field k . The Galois group  $\Gamma$=\mathrm{G}\mathrm{a}1(k_{\infty}/k) is isomorphic to

the additive group of \mathbb{Z}_{p} and has a topological generator  $\gamma$ . The main object of this

paper is the Galois group

 G(k_{\infty})=\mathrm{G}\mathrm{a}1(\overline{L}(k_{\infty})/k_{\infty})
of the maximal unramified pro‐p‐extension \tilde{L}(k_{\infty}) of k_{\infty} . By choosing a suitable section

 $\Gamma$\mapsto \mathrm{G}\mathrm{a}1(\overline{L}(k_{\infty})/k): $\gamma$\mapsto\overline{ $\gamma$} of the natural exact sequence

1\rightarrow G(k_{\infty})\rightarrow \mathrm{G}\mathrm{a}1(\overline{L}(k_{\infty})/k)\rightarrow $\Gamma$\rightarrow 1

(which splits since  $\Gamma$ is a free pro‐p group) such that 7 is an element of the inertia

subgroup of a prime lying above  p , we define an action of  $\Gamma$ on  G(k_{\infty}) via the left

conjugations by \tilde{ $\gamma$} , i.e., we define a continuous homomorphism

 $\phi$: $\Gamma$\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}G(k_{\infty})
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such that  $\phi$( $\gamma$)(g)= $\gamma$ g=\tilde{ $\gamma$}g\tilde{ $\gamma$}^{-1} for g\in G(k_{\infty}) . Then, the Galois group G(k_{\infty}) is

a \mathrm{p}\mathrm{r}\mathrm{o}-p- $\Gamma$ operator group with  $\phi$ (cf. [15] p.216, [23] I.l). To know the unramified pro‐

 p Galois group G(k_{\infty}) as a \mathrm{p}\mathrm{r}\mathrm{o}-p\leftrightarrow $\Gamma$ operator group is almost equivalent to knowing

\mathrm{G}\mathrm{a}1(\tilde{L}(k_{\infty})/k)\simeq G(k_{\infty})\rangle\triangleleft $\Gamma$ as a pro‐p group.

For each integer  n\geq 0 , we denote by k_{n} the n‐th layer of k_{\infty} , i.e., the cyclic

subextension of degree p^{n} over k . We are also interested in the Galois group G(k_{n})=

\mathrm{G}\mathrm{a}1(\tilde{L}(k_{n})/k_{n}) of the maximal unramified pro‐p‐extension \tilde{L}(k_{n}) of k_{n} . To borrow the

words of Wingberg [23], the unramified pro‐p Galois group is �one of the most mysterious

objects in algebraic number theory� The sequence of unramified  p\leftrightarrow‐extensions associated

to the commutator series of  G(k_{n}) is a classic object called p‐‐class field tower of k_{7\supset}.

Especially, the abelianization of G(k_{n}) is the Galois group of the Hilbert p‐‐class field

L(k_{n}) over k_{7?} , and the metabelian quotient of G(k_{7\mathrm{t}}) is deeply related to the capitulation

problem on the p‐‐Sylow subgroup A(k_{n})(\simeq \mathrm{G}\mathrm{a}1(L(k_{n})/k_{n})) of the ideal class group of

k_{n}.

If n is sufficiently large, there is a surjective homomorphism G(k_{\infty})\rightarrow G(k_{n})
induced from the restriction mapping. Then, we can regard G(k_{n}) as a quotient of

G(k_{\infty}) ,
and the structure of G(k_{n}) is reflected by the relations of pro‐p group G(k_{\infty}) and

the action of  $\Gamma$ . By the induced projective system, we have an isomorphism  G(k_{\infty})\simeq

\mathrm{k}^{\mathrm{m}G(k_{n})}.
In this paper, we investigate the Galois group G(k_{\infty}) by expecting that its structure

as a \mathrm{p}\mathrm{r}\mathrm{o}-p- $\Gamma$ operator group would give good information about the Galois groups  G(k_{n})
of p‐‐class field towers of k_{n} . As the grounds of the expectations, we shall see some topics

on the Galois groups G(k_{\infty}) and G(k_{n}) in the next section. In the third section, we will

see some examples of explicitly presented (abelian or metabelian) G(k_{\infty}) .
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gratitude to Professor Ki‐ichiro Hashimoto for giving him an opportunity of talking at

the conference and submitting this article. The author also thanks to Doctor Satoshi
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§2. Related topics

2.1. From abelian Iwasawa theory. By the action of  $\Gamma$ induced from  $\phi$ , the

abelianization  X(k_{\infty}) of G(k_{\infty}) is considered as an Iwasawa module, i.e., a module over

the complete group ring \mathbb{Z}_{p}[[ $\Gamma$]] . The module X(k_{\infty}) is identified with the Galois group

of the maximal unramified abelian pro‐p‐extension L(k_{\infty}) of k_{\infty} , and it is proven by
Iwasawa that X(k_{\infty}) is finitely generated and torsion as a \mathbb{Z}_{p}[[ $\Gamma$]] ‐module. Then, we can

define the Iwasawa invariants  $\lambda$= $\lambda$(X(k_{\infty}))=\dim_{\mathbb{Q}_{p}}(X(k_{\infty})\otimes_{\mathbb{Z}_{p}}\mathbb{Q}_{p}) ,  $\mu$= $\mu$(X(k_{\infty}))
and the characteristic polynomial

P(T)=\det((1+T)id- $\gamma$|X(k_{\infty})\otimes_{\mathbb{Z}_{p}}\mathbb{Q}_{p})
of the Iwasawa module X(k_{\infty}) , where \mathbb{Q}_{p} denotes the field of p‐adic numbers (not p‐th
layer of \mathbb{Z}_{p}‐extension \mathbb{Q}_{\infty} of \mathbb{Q} !). Based on the analogy with Alexander polynomial of

a knot, it is pointed out in [14] that the Iwasawa polynomial P(T) is also obtained in

the words of pro‐p Fox differential calculus if we have a presentation of \mathrm{G}\mathrm{a}1(\overline{L}(k_{\infty})/k)
explicitly.

For the cyclotomic \mathbb{Z}_{p} ‐extensions of any finite extensions of \mathbb{Q} , the vanishing of

 $\mu$‐invariants is conjectured by Iwasawa. Since  $\mu$=0 is equivalent to the finiteness of

the rank of X(k_{\infty}) as a \mathbb{Z}_{p} ‐module, we can put this claim in the words about G(k_{\infty}) as

follows:

\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} $\mu$=0^{\ovalbox{\tt\small REJECT}} �

conjecture. The Galois group G(k_{\infty}) is finitely generated as a pro‐p

group, i.e., the generator rank d(G(k_{\infty}))=\dim_{\mathrm{F}_{p}}H^{1}(G(k_{\infty}), \mathbb{Z}/p\mathbb{Z})<\infty.

Ferrero and Washington [3] proved that this conjecture is true if k is an abelian

extension over \mathbb{Q} . This is an advantage of treating cyclotomic \mathbb{Z}_{p} ‐extensions,

Further, if k is a certain CM‐field, the Iwasawa polynomial P(T) is deeply re‐

lated to the p‐adic L‐fUnctions by the theorems of Mazur and Wiles [10] [22], namely
�Iwasawa�s main conjecture�� Especially, if k is an imaginary quadratic field with the

associated Dirichlet character  $\chi$ ( \neq $\omega$ the Teichmüller character), we have a power series

 f(T)\in \mathbb{Z}_{p}[[T]] constructed from Stickelberger elements such that (f(T))=(2P(T)) as

a principal ideal of \mathbb{Z}_{p}[[T]] and the Kubota Leopoldt�s p‐adic L‐function L_{P}(s,  $\omega \chi$)=
f( $\kappa$( $\gamma$)^{s}-1) , where  $\kappa$ :  $\Gamma$\rightarrow \mathbb{Z}_{p}^{\times} is the restricted cyclotomic character.

2.2. Nonabelian Iwasawa type formulae. We define the lower central series

of G(k.) by putting C^{(1)}(k.)=G(k.) and C^{(i+1)}(k.)=[C^{(i)}(k.), G(k.)] for i\geq 1

inductively. The bracket means a topologically closed commutator subgroup. We also

put the quotients X^{(i)}(k.)=C^{(i)}(k.)/C^{(i+1)}(k_{\mathrm{o}}) for i\geq 1.
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In [18], Ozaki defined the i‐th Iwasawa module as the quotient X^{(i)}(k_{\infty}) with the

action of  $\Gamma$ induced from  $\phi$ , and showed some basic properties. Especially, for each

 i\geq 1,  X^{(i)}(k_{\infty})\simeq Km  X^{(i)}(k_{n}) with respect to the restriction mappings. Note that

X^{(1)}(k_{\infty})=X(k_{\infty}) . If  $\mu$=0 , the i‐th Iwasawa module X^{(i)}(k_{\infty}) is a finitely generated
torsion \mathbb{Z}_{p}[[ $\Gamma$]] ‐module with  $\mu$(X^{(i)}(k_{\infty}))=0 for each i\geq 1 . Then, the i‐th Iwasawa

 $\lambda$‐invariant is defined as  $\lambda$^{(i)}= $\lambda$(X^{(i)}(k_{\infty}))=\dim_{\mathbb{Q}_{p}}(X^{(i)}(k_{\infty})\otimes_{\mathbb{Z}_{\mathrm{p}}}\mathbb{Q}_{p}) .

By considering the structure of X^{(i)}(k_{\infty}) and putting \displaystyle \overline{ $\lambda$}^{(i)}=\sum_{j=1}^{\mathrm{t}}$\lambda$^{(j)} , Ozaki gave

the following nonabelianization of Iwasawa�s formula.

Theorem 2.1 (Ozaki [18]). Assume that  $\mu$=0 , and fix any i\geq 1 . Then, there

exists an integer \tilde{ $\nu$}^{(i)} such that

\#(G(k_{7 $\tau$})/C^{(i+1)}(k_{n}))=p^{\overline{ $\lambda$}^{(i)}n+\tilde{ $\nu$}^{(i)}}

for all sufficiently large n.

Here, for each i , we denote by n_{0}^{($\iota$')} the minimal non‐negative integer such that the

above formula holds for all n\geq n_{0}^{(i)}
The p‐‐group G(k_{n})/C^{(i+1)}(k_{? $\gamma$}) is the maximal nilpotency‐class‐i quotient of G(k_{n}) .

For i=1 , the formula above is well known as the Iwasawa�s class number formula

(\# A(k_{n})=p^{ $\lambda$ n+ $\mu$ p^{n}+ $\nu$}(n\gg 0) with  $\mu$=0 since G(k_{$\eta$_{j}})/C^{(2)}(k_{\mathrm{n}})\simeq \mathrm{A}(k_{n}) . In the case

that i=2 ,
the asymptotic version \#(G(k_{n})/C^{(3)}(k_{n}))=p^{\overline{ $\lambda$}^{(2)}n+o(1)}(n\rightarrow\infty has

been proven by Fujii [5] under a certain condition.

The Ozaki�s formula implies that the Galois groups  G(k_{r $\iota$}) of p‐class field towers also

behave well Iwasawa‐theoretically, i.e., the action of  $\Gamma$ on  G(k_{\infty}) controls the behavior

of G(k_{n}) . Toward a nonabelianization of Iwasawa�s main conjecture, Ozaki [17] asked

that �What kind of p‐adic functions relate to X^{(i)}(k_{\infty}) and G(k_{\infty}) ?�� We are also

interested in how p‐adic L‐fUnctions relate to them.

2.3. Freeness and infinite  p\leftrightarrow‐class field towers. Based on the property that

the Galois groups of  p‐class field towers are finitely presented, Golod and Shafarevich [7]
gave a criterion for the infiniteness of p‐‐class field towers. When the p‐‐class field tower

is infinite, we are interested in the cohomological dimension of the Galois group.

On the other hand, Ozaki [17] gave the following problem:

Problem 2.2. Is the Galois group G(k_{\infty}) always finitely presented as a pro‐p

group �? Especially, the relation rank  r(G(k_{\infty}))=\dim_{\mathrm{F}_{\mathrm{p}}}H^{2}(G(k_{\infty}), \mathbb{Z}/p\mathbb{Z})<\infty �?

Though the general answer of this problem is not clear yet, Fujii and Okano [6]
showed that \# G(k_{n})=\infty for sufficiently large  n if \infty>d(G(k_{\infty}))^{2}\gg 4r(G(k_{\infty})) ,

based on the idea of Wingberg [23]. Especially, they investigated the consequences

under the assumption that G(k_{\infty}) is a free pro‐p group, i.e., r(G(k_{\infty}))=0.
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Theorem 2.3 (Fujii‐Okano [6]). Let p be odd_{J} and k a CM‐field with the maxi‐

mal totally real subfield k^{+} , and S the set of primes of k_{\infty} lying above p.

(1) Assume that \# S=1, \#\mathrm{A}(k^{+})=1 and \dim_{\mathrm{F}_{\mathrm{p}}}(3A(k)/3pA(k))\geq 2 . If G(k_{\infty})
is a free pro‐p group, then \# G(k_{n})=\infty for all  n\geq 1.

(2) Assume that X(k_{\infty}^{+})\simeq \mathbb{Z}/p\mathbb{Z},  $\lambda$\geq 1+2\prime\overline{1+ $\delta$+\# S} where  $\delta$=1 or 0 according
to whether k contains a primitive p‐th root $\zeta$_{p} of unity or not. If G(k_{\infty}') is a free pro‐p

group for k_{\infty}^{\ovalbox{\tt\small REJECT}}=k_{\infty}L(k_{\infty}^{+}) , then \# G(k_{n})=\infty for all suficiently large  n and G(k_{n}) has

an element of order p . (Especially, the cohomological dimension of G(k_{n}) is infinite.)

For each odd p , by using the result of [25], we can find infinitely many imaginary
abelian extensions k of degree 2p satisfying the assumptions of (2) except for the freeness

of G(k_{\infty}^{\ovalbox{\tt\small REJECT}}) . In general, the freeness of G(k_{\infty}) seems to be very delicate. Though the

freeness for some CM fields k (e.g., p‐th cyclotomic field k=\mathbb{Q}($\zeta$_{p}) ) were treated in

[23] (and [17] etc we have to pay attention to the pointing out (final Remark of [19])
and the results (announced in [20]) by Sharifi. Unfortunately, it seems that we have no

concrete example of nonabelian free G(k_{\infty}) yet.
If G(k_{\infty}) is a nonabelian free pro‐p group, we can see that $\lambda$^{(i)} tends to infinity

as  i\rightarrow\infty . It is a considerable problem to find examples such that $\lambda$^{(i)} (or \overline{ $\lambda$}^{(i)} ) are

unbounded as i\rightarrow\infty.

2.4. p‐adic analyticity and finite p‐class field towers. For any finite dimen‐

sional vector space V_{p} over \mathbb{Q}_{p} and any linear continuous representation  $\rho$ :  G(k_{n})\rightarrow
 GL(V_{p}) , it is conjectured (as a part of the conjecture by Fontaine and Mazur [4]) that

the image of  $\rho$ is finite. In other words, this claim asserts that:

Fontaine‐Mazur conjecture. The Galois group of  p‐class field tower has no

infinite p‐‐adic analytic quotient.

Since any finitely generated p=adic analytic pro‐p group has an open powerful sub‐

group, we can replace the word p‐‐adic analytic� with �powerful� in the statement of

this conjecture. As a weak version of this conjecture, we are also interested in the prob‐
lem that whether the Galois group G(k_{n}) itself can be infinite p‐adic analytic (resp.
powerful) or not. For this problem, Wingberg [24] proved the following by considering
the Galois group G(k_{\infty}) .

Theorem 2.4 (Wingberg [24]). Assume that p is odd and k is a CM‐field con‐

taining $\zeta$_{p} , and that  $\mu$=0 for k_{\infty} . If n is suficiently large and G(k_{\mathcal{T}\mathrm{L}}) is powerful, then

\# G(k_{n})<\infty.

On the other hand, under the assumption that both  $\mu$=0 conjecture and

Fontaine‐Mazur conjecture hold, we can easily show the following by the properties
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of p‐adic analytic pro‐p groups.

Proposition 2.5. Assume that  $\mu$=0 for k_{\infty} and G(k_{\infty}) is p ‐adic analytic. If

Fontaine‐Mazur conjecture (in the sense above) holds for G(k_{n}) , then \# G(k_{n})<\infty.

Proof. Put H=\mathrm{G}\mathrm{a}1(\tilde{L}(k_{n})/k_{\infty}\cap\overline{L}(k_{n})) . Then H is an open subgroup of G(k_{n})
and isomorphic to a quotient of G(k_{\infty}) . Since G(k_{\infty}) has finite rank in the sense of

[2] Definition3.12 (cf. [2] Theorem3.13, Corollary8.33), H is also a pro‐p group of finite

rank (cf. [2] Exercise3.1). Therefore, G(k_{n}) is p‐adic analytic. Since G(k_{7l}) has no

infinite p‐adic analytic quotient, G(k_{n}) must be finite. \square 

The border between finite cases and infinite cases is one of the main theme in the

study of p‐‐class field towers. While the freeness of G(k_{\infty}) provides criteria for infiniteness

of G(k_{n}) (Theorem 2.3, etc Proposition 2.5 implies that the p‐‐adic analyticity of

G(k_{\infty}) provides criteria for finiteness of G(k_{n}) . Then, for G(k_{\infty}) , what is the border

area between nearly free cases and p‐adic analytic cases? It seems to be interesting

problem to characterize number fields k with p‐adic analytic G(k_{\infty}) (including the

cases that G(k_{\infty}) becomes finite).

2.5. Greenberg�s conjecture. For any totally real number field k , it is conjec‐

tured that \# X(k_{\infty})<\infty by Greenberg [8]. Since  X(k_{\infty})=X^{(1)}(k_{\infty})\simeq \mathrm{b}^{\mathrm{m}X^{(1)}}(k_{n}) ,

this claim is equivalent to that  $\lambda$= $\mu$=0 , i.e., X^{(1)}(k_{\infty})\simeq X^{(1)}(k_{n}) for all  n\gg O.

Since any finite unramified  p‐extension of k_{\infty} is also the cyclotomic \mathbb{Z}_{p}‐extension of a

certain totally real number field (which is actually a finite unramified p‐extension of k_{n}

for some n), we can extend this conjecture as follows:

Greenberg�s conjecture (nonabelianized version). If k is a totally real num‐

ber field, any open subgroup of G(k_{\infty}) has finite abelianization (i.e., G(k_{\infty}) satisfies

FIFA).

Let us call this property FIFA due to Boston [1]. The positive answers of this

conjecture and Problem 2.2 imply that G(k_{\infty}) is similar to the Galois groups of p‐‐class
field towers if k is totally real. From this point of view, Ozaki gave the following problem

as a strong version of Greenberg�s conjecture.

Problem 2.6. If k is a totally real number field, G(k_{\infty})\simeq G(k_{n}) for n\gg 0/?

This claim is equivalent to that  $\lambda$= $\mu$=0 and n_{0}^{(i)} is bounded as  i\rightarrow\infty . If  G(k_{\infty})
is finite, this claim holds immediately. The finiteness of G(k_{\infty}) is equivalent to the

existence of a finite extension K over k such that \# X(K_{\infty})=1 (i.e.,  $\lambda$= $\mu$=\mathrm{v}=0 for

K_{\infty}) . The abelian p‐extensions K of \mathbb{Q} with trivial X(K_{\infty}) are completely characterized
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by Yamamoto ([25] etc It is also a considerable problem to characterize all finite

(especially, p- ) extensions K of \mathbb{Q} with trivial X(K_{\infty}) .

If G(k_{\infty})\simeq G(k_{n}) for some n\gg 0,  $\phi$ is not injective since  $\phi$($\gamma$^{p^{n}})=1 . On the other

hand, if  $\phi$ is not injective,  $\Gamma$^{p^{n}} acts on G(k_{\infty}) trivially for all n\gg 0 . Then, under the

assumption that k is totally real and Leopoldt�s conjecture holds for p and all subfields
of \tilde{L}(k_{\infty}) , we can show that G(k_{\infty}) satisfies FIFA by using Proposition 1 of [8]. The

injectivity of  $\phi$ in the totally real case seems to be considerable as a problem between

Greenberg�s conjecture and Problem 2.6.

For an imaginary quadratic field  k in which p splits, the unique \mathbb{Z}_{p}^{\oplus 2} ‐extension \overline{k} of

k is unramified over k_{\infty} . It is conjectured (as Greenberg�s generalized conjecture) that

the abelianization of \mathrm{G}\mathrm{a}1(\tilde{L}(k_{\infty})/\overline{k}) is pseudo‐null as a \mathbb{Z}_{p}[[\mathrm{G}\mathrm{a}1(\overline{k}/k)]] ‐module. If this

is true, G(k_{\infty}) is not a nonabelian free pro‐p group (cf. [17] etc On the other hand,
we can find many examples for which \tilde{L}(k_{\infty})=\overline{k} , i.e., G(k_{\infty})\simeq \mathbb{Z}_{p} (not FIFA!) but

\#{\rm Im} $\phi$=1 . (The arrow \Rightarrow* above depends on the totally reality of k. )

§3. Explicitly presented examples

3.1. Abelian examples. If X(k_{\infty}) is a \mathbb{Z}_{p}‐module of rank 1, then  G(k_{\infty})\simeq
 X(k_{\infty}) , i.e., G(k_{\infty}) is also a cyclic pro‐p group. In the case that X(k_{\infty}) is not cyclic,
it is not a trivial problem whether G(k_{\infty}) is abelian or not. The abelianity of G(k_{\infty})
is equivalent to the vanishing of second Iwasawa module X^{(2)}(k_{\infty}) . As an easiest case,
we can show the following with nontrivial examples.

Proposition 3.1. Let p be odd and k a CM‐field containing $\zeta$_{p} , and assume that

 $\mu$=0 . If  $\lambda$=1 , then G(k_{\infty})\simeq \mathbb{Z}_{p}\oplus \mathbb{Z}/p^{m}\mathbb{Z} with some m\geq 0.

Proof Put X^{+}=X(k_{\infty}^{+}) for the maximal real subfield k^{+} of k , and let X^{-} be the

minus part of X(k_{\infty}) . Since p is odd, X(k_{\infty})\simeq X^{+}\oplus X^{-} Since  $\mu$=0, X^{-} is a free

\mathbb{Z}_{p}‐module ([21] Corollary 13.29). By Leopoldt�s Spiegelungssatz ([21] Theorem 10.11),
we know that  $\lambda$(X^{+})\leq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}X^{+}\leq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}X^{-}= $\lambda$(X^{-}) . Since  $\lambda$(X^{+})+ $\lambda$(X^{-})= $\lambda$=1
by our assumption, we know that G(k_{\infty}^{+})\simeq X^{+}\simeq \mathbb{Z}/p^{m}\mathbb{Z} with some m\geq 0 and

X^{-}\simeq \mathbb{Z}_{p} . Then, K_{\infty}^{+}=\tilde{L}(k_{\infty}^{+}) is an unramified finite cyclic p‐extension of k_{\infty}^{+} . Put
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I$\zeta$_{\infty}=k_{\infty}K_{\infty}^{+} . Note that K_{\infty} is the cyclotomic \mathbb{Z}_{p}‐extension of a certain CM‐field

K
, and that \# X(K_{\infty}^{+})=1 . By Kida�s formula [9], we know that  $\mu$(X(K_{\infty}))=0 and

 $\lambda$(X(K_{\infty}))=1 . Since G(K_{\infty})\simeq X(K_{\infty})\simeq \mathbb{Z}_{p} , we can see that \tilde{L}(k_{\infty})=\tilde{L}(K_{\infty})=
L(k_{\infty}) . Therefore, G(k_{\infty})\simeq X(k_{\infty})\simeq \mathbb{Z}_{p}\oplus \mathbb{Z}/p^{m}\mathbb{Z}. \square 

By using the result of Yamamoto [25], Kida�s formula [9] and Proposition 3.1, we

can easily find infinitely many abelian sextic fields k containing \mathbb{Q}(\overline{-3}) such that

G(k_{\infty})\simeq \mathbb{Z}_{3}\oplus \mathbb{Z}/3\mathbb{Z} in p=3 case.

For odd p and k=\mathbb{Q}((_{p} ), it is announced by Sharifi [20] that G(k_{\infty}) is abelian

if p<1000 (and there exists p>1000 such that G(k_{\infty}) is nonabelian!). Especially,

G(k_{\infty})\simeq \mathbb{Z}_{p}^{\oplus 2} for p=157 , and G(k_{\infty})\simeq \mathbb{Z}_{p}^{\oplus 3} for p=461 . Further, for odd p , Okano [16]
characterized an imaginary quadratic field k with noncyclic abelian G(k_{\infty}) as follows:

Theorem 3.2 (Okano [16]). For odd p and an imaginary quadratic field k,

G(k_{\infty}) is noncyclic abelian if and only if  $\lambda$=2 and A(k) is generated by the ideal

classes containing some power of a prime ideal above p . Then, G(k_{\infty})\simeq \mathbb{Z}_{p}^{\oplus 2}

For odd p and imaginary quadratic fields k , the abelianity of G(k_{\infty}) and the pow‐

erfulness of G(k_{\infty}) are equivalent (cf. [24] Proposition 2.1). Also in p=2 case, all imag‐

inary quadratic fields k with abelian G(k_{\infty}) are characterized by Ozaki and author [13].
Especially, the following case is related with the Iwasawa polynomial P(T) .

Theorem 3.3 ([13]). For p=2 and an imaginary quadratic field k=\mathbb{Q}(\overline{-q})
with a prime number q\equiv 15 (mod32), G(k_{\infty}) is abelian if and only if  P(-1)\equiv
 1 (mod4). Then, G(k_{\infty})\simeq \mathbb{Z}_{2}^{\oplus 3}

On the other hand, as a corollary of the results of Gen Yamamoto (p=2 version

of [25]), we can find infinitely many real quadratic fields k with G(k_{\infty})\simeq(\mathbb{Z}/2\mathbb{Z})^{\oplus 2}
(cf. \mathrm{e}.\mathrm{g}., [11] ).

3.2. Metabelian examples in p=2 case. Throughout this subsection, we put

p=2 and denote commutators by [x, y]=x^{-1}y^{-1} xy. For an imaginary quadratic field

k with  $\lambda$=1 ,
we can obtain an explicit presentation of G(k_{\infty}) which is not necessarily

abelian.

Theorem 3.4 ([12]). Let p=2 and k=\mathbb{Q}(\overline{-m}) be an imaginary quadratic

field with positive squarefree integer m\equiv 1 (mod4), and put a real quadratic field

K^{+}=\mathbb{Q}(\overline{m}) . If  $\lambda$=1 for k_{\infty} , then

G(k_{\infty})=\langle a, b|[a, b]=a^{-2}, a^{2^{N+1}}=1\rangle^{\mathrm{p}\mathrm{r}\mathrm{o}-2}
where 2^{N} is the order of G(K_{\infty}^{+}) which is finite cyclic.
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Corollary 3.5. X^{(i)}(k_{\infty})\simeq \mathbb{Z}/2\mathbb{Z} for 2\leq i\leq N+1 , and \# X^{(i)}(k_{\infty})=1 for
N+2\leq i . Especially, \tilde{ $\lambda$}^{(i)}=1, $\lambda$^{(i)}=0 for all i\geq 2 and \displaystyle \sup\{n_{0}^{(i)}\}<\infty.

In Theorem 3.4, the metacyclic G(k_{\infty}) is nonabelian if and only if N\geq 1 , and such

cases exist. For example, N=1 if m=13 . 29.

Further, we have the following as an example of nonmetacyclic metabelian G(k_{\infty}) .

Theorem 3.6 ([12]). Let p=2 and k=\mathbb{Q}(\overline{-q_{1}q_{2}}) an imaginaw quadratic
field with prime numbers q_{1}\equiv 3 (mod8), q_{2}\equiv 7 (mod16). Then, we have a presentation

G(k_{\infty})=\langle a, b, c|[a, b]=a^{-2}, [b, c]=a^{2}, [a, c]=1\rangle^{\mathrm{p}\mathrm{r}\mathrm{o}-2}
such that  $\gamma$ a=a,  $\gamma$ b=bc, $\gamma$_{C}=a^{C_{1}}b^{-C_{\mathrm{O}}}c^{1-C_{1}}

, where C_{1}, C_{0}\in \mathbb{Z}_{2} are the coeficients
of the Iwasawa polynomial P(T)=T^{2}+C_{1}T+C_{0}.

Corollary 3.7. X^{(i)}(k_{\infty})\simeq \mathbb{Z}/2\mathbb{Z} for all i\geq 2 . Especially, \overline{ $\lambda$}^{(i)}=2, $\lambda$^{(i)}=0
for all i\geq 2 and \displaystyle \sup\{n_{0}^{(i)}\}=\infty.

The Galois group G(k_{\infty}) in Theorem 3.6 is 2‐adic analytic, especially a Poincaré

pro‐2 group of dimension 3. According to Proposition 2.5 and Fontaine‐Mazur conjec‐
ture, the Galois groups G(k_{n}) of 2‐class field towers should be finite. In fact, G(k_{n}) are

finite since G(k_{\infty}) is metabelian. Further, by using the explicit action of  $\gamma$ on  G(k_{\infty}) , we

can calculate the presentations of G(k_{n}) for n\geq 1 under some assumptions as follows.

(It is well known that G(k) is abelian.)

Corollary 3.8 ([12]). If (q_{1}/q_{2})=-1, i.e_{f}q_{1} is not quadratic residue modulo

q_{2} , then

G(k_{1})=\langle a, b, c|[a, b]=a^{-2}, [b, c]=a^{2}=b^{2}=c^{2}, [a, c]=a^{4}=1\rangle.
Further, if (q_{1}/q_{2})=-1 and C_{1}\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} 4)_{i}

G(k_{n})=\langle a, b, c|[a, b\mathrm{J}=a^{-2}, [b, c]=a^{2}, [a, c]=a^{2^{n\{-1}}=b^{2^{n+1}}=c^{2^{n}}=1\rangle
for all  n\geq 2.

For all pairs (q_{1}, q_{2}) with q_{1}q_{2}<5000 , one can see that P(T)\equiv T^{2}+(1+(q_{1}/q_{2}))T+
(1-(q_{1}/q_{2_{\mathrm{z}}})) (mod4) by the numerical computation of Stickelberger elements. Then,
one can expect that always C_{1}\equiv 0 (mod4) if (q_{1}/q_{2})=-1 , but it is not clear yet.

Under the stronger assumptions that (q_{1}/q_{2})=-1 and C_{1}\equiv 0 (mod4), there

is another proof of the metabelianity of G(k_{\infty}) of Theorem 3.6. It is parallel to the

proof (of if‐part) of Theorem 3.3, which is based on the calculation of \mathrm{G}\mathrm{a}1(L(k_{n})/\mathbb{Q})
�

and the decomposition subgroups of some primes. By putting K=k(\overline{-1}, \overline{-q_{1}}) and
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F=\mathbb{Q}(\overline{-1}, \overline{-q_{1}}) , one can see that \mathrm{G}\mathrm{a}1(L(K_{r $\iota$})/F) has a presentation which is very

similar to the presentation of \mathrm{G}\mathrm{a}1(L(k_{n})/\mathbb{Q}) in the proof of Theorem 3.3.

Finally, concerning Greenberg�s conjecture, we remark that there are infinitely

many real quadratic fields k with finite dihedral G(k_{\infty}) in p=2 case (cf. [11]).
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