The geometric Iwasawa conjecture from a viewpoint of the arithmetic topology

By

Ken-ichi SUGIYAMA*

Abstract

For a local system on a complete hyperbolic threefold which is compact or of finite volume, the twisted Alexander polynomial and the Ruelle-Selberg L-functions are defined. Under a cohomological assumption, we have shown that their order and leading constants of the Taylor expansion at the origin are almost identical. These results may be considered as a solution of a geometric analogue of the Iwasawa conjecture in the algebraic number theory. We will interpret these results from a viewpoint of the arithmetic topology.

§1. Introduction

In the conference we have talked a geometric analog of the Iwasawa conjecture. Let X be a finite CW-complex of dimension three with a fixed base point x_0 such that there is a surjective homomorphism

$$\pi_1(X, x_0) \xrightarrow{\epsilon} \mathbb{Z}$$

and ρ a unitary representation of the fundamental group. The kernel of ϵ determines an infinite cyclic covering X_{∞} of X and $H_{\cdot}(X_{\infty}, \mathbb{C})$, $H_{\cdot}(X_{\infty}, \rho)$, $H^{\cdot}(X_{\infty}, \mathbb{C})$ and $H^{\cdot}(X_{\infty}, \rho)$ become Λ -modules. Here Λ is the group ring $\mathbb{C}[\mathbb{Z}]$. Note that it is isomorphic to the Laurent polynomial ring $\mathbb{C}[t, t^{-1}]$ in a non-canonical way.

Suppose that all the dimensions of $H_{\cdot}(X_{\infty}, \mathbb{C})$ and $H_{\cdot}(X_{\infty}, \rho)$ are finite. Then due to Milnor [4] it is known that $H^{1}(X_{\infty}, \rho)$ becomes a finite dimensional complex vector space. The twisted Alexander polynomial $A^{1}_{\rho}(t)$ is defined to be the characteristic polynomial det $[t - \tau^{*}]$ of the action of a generator $\tau \in \mathbb{Z}$ on $H^{1}(X_{\infty}, \rho)$, which generates

²⁰⁰⁰ Mathematics Subject Classification(s): 11F32, 11M36, 57M25, 57M27

Supported in part by the Grants-in-Aid for Scientific Reseach, JSPS

^{*}Department of Mathematics and Informatics, Faculty of Science, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan. E-mail : sugiyama@math.s.chiba-u.ac.jp

^{© 2007} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

KEN-ICHI SUGIYAMA

the characteristic ideal $\operatorname{Char}_{\Lambda}(H^1(X_{\infty}, \rho))$. It will play the same role as the Iwasawa polynomial in the original Iwasawa theory.

In order to introduce a counterpart of the *p*-adic zeta function, we assume that X admits a hyperbolic structure of a finite volume. Then the Ruelle L-function $R_{\rho}(s)$ is defined to be

$$R_
ho(s) = \prod_\gamma P_\gamma(s)^{-1}, \quad P_\gamma(s) = \det[1-
ho(\gamma)e^{-sl(\gamma)}],$$

where γ runs through the set of prime closed geodesics of X and $l(\gamma)$ denotes its length. It absolutely convergents if Re s is sufficiently large.

When X is compact, Fried has shown it is meromorphically continued on the whole plane. Moreover if $H^0(X, \rho)$ vanishes, he has also shown the order of $R_{\rho}(s)$ at the origin is $2 \dim H^1(X, \rho)$ ([1]).

Suppose $H^0(X_{\infty}, \rho)$ vanishes. In [6], using Fried's result we have shown that if the action of τ^* on $H^1(X_{\infty}, \rho)$ is semisimple the identity

(1)
$$2 \operatorname{ord}_{t=1} A_{\rho}^{1}(t) = \operatorname{ord}_{s=0} R_{\rho}(s),$$

holds, which may be considered as a geometric analog of the Iwasawa main conjecture. But since the compact case corresponds to a Galois representation which is unramified everywhere, it is desirable to generalize the result to a non-compact case. In fact when X has only one cusp and when ρ is a unitary character, we have shown the same identity holds if a certain condition of ρ at the cusp is satisfied [7].

In this report we will interpret (1) from a viewpoint of the arithmetic topology. Let γ be a prime closed geodesic of X such that $\epsilon(\gamma) \neq 0$. (Such a geodesic will be mentioned as ϵ -inert.) Then it is easy to to see that its inverse image in X_{∞} becomes the infinite cyclic covering of γ . Let $X_{\infty}(\gamma)$ be its complement. Then we will show an identity of fractional ideals of Λ :

$$\operatorname{Char}_{\Lambda}(H^{1}(X_{\infty}(\gamma),\,\rho))\cdot(\det[1-\rho(\gamma)t^{-|\epsilon(\gamma)|}])^{-1}=\operatorname{Char}_{\Lambda}(H^{1}(X_{\infty},\,\rho)).$$

This is a partial solution of the geometric Iwasawa conjecture. In fact substituting $t = \exp(\frac{l(\gamma)}{|\epsilon(\gamma)|}s)$ it shows us that $P_{\gamma}(s)^{-1}$ divides $\operatorname{Char}_{\Lambda}(H^1(X_{\infty}, \rho))$ in $\mathbb{C}[[s]]$, which also follows from (1). Moreover a topological Euler system which enjoys the same properties as the original one([5]) will be constructed and we will show a formal result which should be compared with [5]**Thorem 2.3.3**.

§2. A review of our results

Let X be a connected finite CW-complex with a fixed base point x_0 and Γ its fundamental group. Let ρ be its unitary representation of finite dimension and V_{ρ} the representation space. Suppose that there is a surjective homomorphism

(2)
$$\Gamma \xrightarrow{\epsilon} \mathbb{Z}.$$

By the Galois theory Ker ϵ determines the infinite cyclic covering $X_{\infty} \xrightarrow{\pi} X$. In the following we will identify the group ring $\mathbb{C}[\mathbb{Z}]$ with the ring $\Lambda = \mathbb{C}[t, t^{-1}]$ of Laurent polynomials of complex coefficients. (Note that such an isomorphism is not canonical.) Thus (2) induces a ring homomorphism

$$\mathbb{C}[\Gamma] \xrightarrow{\epsilon} \Lambda.$$

Let \tilde{X} be the universal covering of X. Then the chain complex $(C_{\cdot}(\tilde{X}), \partial)$ of complex coefficients is a complex of free $\mathbb{C}[\Gamma]$ -module of finite rank and so is the cochain complex $(C^{\cdot}(\tilde{X}), d)$.

Following [2] let us consider a complex of finite dimensional vector spaces over \mathbb{C} :

$$C_{\cdot}(X, \rho) = C_{\cdot}(X) \otimes_{\mathbb{C}[\Gamma]} V_{\rho}.$$

and a complex of free Λ -modules of finite rank:

$$C_{\cdot}(X_{\infty}, \rho) = C_{\cdot}(X) \otimes_{\mathbb{C}[\operatorname{Ker}\epsilon]} V_{\rho} \simeq C_{\cdot}(\tilde{X}) \otimes_{\mathbb{C}[\Gamma]} (V_{\rho} \otimes_{\mathbb{C}} \Lambda).$$

Similary we set

$$C^{\cdot}(X, \rho) = C^{\cdot}(X) \otimes_{\mathbb{C}[\Gamma]} V_{\rho}$$

and

$$C^{\cdot}(X_{\infty}, \rho) = C^{\cdot}(\tilde{X}) \otimes_{\mathbb{C}[\operatorname{Ker}\epsilon]} V_{\rho} \simeq C^{\cdot}(\tilde{X}) \otimes_{\mathbb{C}[\Gamma]} (V_{\rho} \otimes_{\mathbb{C}} \Lambda),$$

which are the dual complex of $C_{\cdot}(X, \rho)$ over \mathbb{C} and of $C_{\cdot}(X_{\infty}, \rho)$ over Λ , respectively. The homology or cohomology group of each complex will be denoted by

$$H_{\cdot}(X,\,
ho),\,H_{\cdot}(X_{\infty},\,
ho),$$

and

$$H^{\cdot}(X, \rho), H^{\cdot}(X_{\infty}, \rho).$$

Note that both of $H_{\cdot}(X_{\infty}, \rho)$ and $H^{\cdot}(X_{\infty}, \rho)$ are finitely generated Λ -modules.

Let Y be a connected subcomplex of X. Suppose that there is a connected subcomplex Y_{∞} of X_{∞} which is an infinite cyclic covering of Y and that the diagram:

$$\begin{array}{ccc} Y_{\infty} \to X_{\infty} \\ \downarrow & \downarrow \\ Y \to X \end{array}$$

induces an isomorphism

$$\operatorname{Gal}(Y_{\infty}/Y) \simeq \operatorname{Gal}(X_{\infty}/X) \simeq \mathbb{Z}.$$

Then we have a complex of free Λ -modules of finite rank:

$$C_{\cdot}(Y_{\infty}, \rho) = C_{\cdot}(Y) \otimes_{\mathbb{C}[\pi_1(Y)]} (V_{\rho} \otimes_{\mathbb{C}} \Lambda).$$

Note that this is a subcomplex of $C_{\cdot}(X_{\infty}, \rho)$ whose quotient $C_{\cdot}(X_{\infty}, Y_{\infty}, \rho)$ is also a complex of free Λ -modules of finite rank. Taking the dual over Λ we have an exact sequence of bounded complexes of free Λ -modules:

$$0 \to C^{\cdot}(X_{\infty}, Y_{\infty}, \rho) \to C^{\cdot}(X_{\infty}, \rho) \to C^{\cdot}(Y_{\infty}, \rho) \to 0.$$

Thus we have an exact sequence of finitely generated Λ -modules:

$$(3) \longrightarrow H^{q}(X_{\infty}, Y_{\infty}, \rho) \to H^{q}(X_{\infty}, \rho) \to H^{q}(Y_{\infty}, \rho) \to H^{q+1}(X_{\infty}, Y_{\infty}, \rho) \to H^{q+1}(X_{\infty}, Y_{\infty}, \rho) \to H^{q+1}(X_{\infty}, Y_{\infty}, \rho) \to H^{q+1}(X_{\infty}, Y_{\infty}, \rho) \to H^{q}(Y_{\infty}, \rho)$$

Here is an example of $H^q(X_{\infty}, Y_{\infty}, \rho)$.

Let $X = D^2 \times S^1$, where D^2 is the two dimensional unit disk and S^1 is the unit circle. Let $Y = S^1 \times S^1$ be its boundary. Then the fundamental group of X is an infinite cyclic group and let

$$\pi_1(X) \simeq \mathbb{Z} \xrightarrow{\rho} U(n)$$

be a unitary representation. By the homotopy invariance of cohomology groups and by the Gysin isomorphism we have

$$H^q(X_{\infty}, Y_{\infty}, \rho) = \begin{cases} V_{\rho} & q = 2\\ 0 & q \neq 2. \end{cases}$$

 $\gamma \in \pi_1(X)$ acts on $H^2(X_{\infty}, Y_{\infty}, \rho) \simeq V_{\rho}$ by $\rho(\gamma)$, which makes it a Λ -module.

In the following, we will always assume that the dimension of X is three and that all $H_{\cdot}(X_{\infty}, \mathbb{C})$ and $H_{\cdot}(X_{\infty}, \rho)$ are finite dimensional vector spaces over \mathbb{C} . The arguments of §4 of [4] shows X_{∞} is a Riemann surface in the cohomological sense.

 $\mathbf{238}$

Fact 2.1. ([4])

- 1. For $i \geq 3$, $H^i(X_{\infty}, \rho)$ vanishes.
- 2. For $0 \leq i \leq 2$, $H^i(X_{\infty}, \rho)$ is a finite dimensional vector space over \mathbb{C} and there is a perfect pairing:

$$H^i(X_{\infty}, \rho) \times H^{2-i}(X_{\infty}, \rho) \to \mathbb{C}.$$

The perfect pairing will be referred as the Milnor duality. It is easy to see that it is preserved by the action of $Gal(X_{\infty}/X)$.

Thus each $H^i(X_{\infty}, \rho)$ is a torsion Λ -module and its characteristic ideal $\operatorname{Char}_{\Lambda}(H^i(X_{\infty}, \rho))$ is generated by

$$A^i_
ho(t) = \det[t- au^* \,|\, H^i(X_\infty,\,
ho)],$$

where τ^* is the action of t on $H^i(X_{\infty}, \rho)$.

Let $h^q(\rho)$ be the dimension of $H^q(X, \rho)$. Then in [6] we have shown the following results.

Theorem 2.1. Suppose that $H^0(X_{\infty}, \rho)$ vanishes. Then we have

 $h^1(\rho) \le \operatorname{ord}_{t=1} A^1_{\rho}(t),$

and the identity holds if the action of τ^* on $H^1(X_{\infty}, \rho)$ is semisimple. Moreover suppose that all $h^q(\rho)$ vanish. Then we have

$$|A^{1}_{\rho}(1)| = \delta |\tau^{*}_{\mathbb{C}}(X,\rho)|^{-1},$$

where δ is an explicit positive constant. Here $\tau^*_{\mathbb{C}}(X, \rho)$ is the Frantz-Milnor-Reidemeister torsion, which is a geometric invariant of a representation.([3])

When X is a mapping torus we can say more.

Theorem 2.2. ([6]) Let f be an automorphism of a connected finite CW-complex of dimension two S and X its mapping torus. Let ρ be a unitary representation of the fundamental group of X which satisfies $H^0(S, \rho) = 0$. Suppose that the surjective homomorphism

 $\Gamma \xrightarrow{\epsilon} \mathbb{Z}$

is induced by the structure map

 $X \rightarrow S^1$,

KEN-ICHI SUGIYAMA

and that the action of f^* on $H^1(S, \rho)$ is semisimple. Then the order of $A^1_{\rho}(t)$ at t = 1is $h^1(\rho)$ and we have

$$\lim_{t \to 1} |(t-1)^{-h^1(\rho)} A^1_{\rho}(t)| = |\tau^*_{\mathbb{C}}(X,\rho)|^{-1}.$$

Note that in **Theorem 2.2** X_{∞} is $S \times \mathbb{R}$.

In order to introduce an analytic object -the Ruelle L-function- we need a geometric structure on X. Let X be a connected hyperbolic threefold of finite volume. Thus its fundamental group may be considered as a torsion-free cofinite discrete subgroup Γ_g of $PSL_2(\mathbb{C})$ and let ρ be its unitary representation. By the one to one correspondence between the set of loxodromic conjugacy classes of Γ_g and one of closed geodesics of X, the Ruelle L-function is defined to be a product of the inverse of the characteristic polynomials of $\rho(\gamma)$ over prime closed geodesics:

$$R_
ho(s)=\prod_\gamma P_\gamma(s)^{-1}, \, P_\gamma(s)=\det[1-
ho(\gamma)e^{-sl(\gamma)}].$$

Here s is a complex number and $l(\gamma)$ is the length of γ . It absolutely convergents for s whose real part is sufficiently large.

Let X be a compact hyperbolic threefold satisfying $H^0(X, \rho) = 0$. Due to Fried([1]), it is known that $R_{\rho}(s)$ is meromorphically continued in the whole plane and that its order at s = 0 is $2h^1(\rho)$. Moreover he has shown its absolute value of the leading constant is equal to $|\tau_{\mathbb{C}}^*(X, \rho)|^{-2}$.

In the following we always assume that X admits an infinite cyclic covering X_{∞} . (i.e. the first Betti number of X is positive.) Thus combining Fried's results and **Theorem 2.1** and **Theorem 2.2** we obtain the following theorem.

Theorem 2.3. Let X be a compact hyperbolic threefold and ρ a unitary representation of the fundamental group.

1. Suppose that $H^0(X_{\infty}, \rho)$ vanishes. Then

$$2h^1(\rho) = \operatorname{ord}_{s=0} R_{\rho}(s) \le 2\operatorname{ord}_{t=1} A^1_{\rho}(t),$$

and the identity holds if the action of τ^* on $H^1(X_{\infty}, \rho)$ is semisimple. Moreover if all $h^q(\rho)$ vanish, we have

$$|R_{\rho}(0)| = \delta_{\rho} |A_{\rho}^{1}(1)|^{2},$$

where δ_{ρ} is an explicit constant.

2. Suppose that X is homeomorphic to a mapping torus of an automorphism f of a compact surface S and that the surjective homomorphism ϵ is induced by the structure map:

$$X \to S^1$$
.

If $H^0(S, \rho)$ vanishes, we have

$$2h^{1}(\rho) = \operatorname{ord}_{s=0} R_{\rho}(s) \leq 2\operatorname{ord}_{t=1} A_{\rho}^{1}(t),$$

and the identity holds if the action of f^* on $H^1(S, \rho)$ is semisimple. Moreover if this condition is satisfied, we have

$$\lim_{s \to 0} |s^{-2h^1(\rho)} R_{\rho}(s)| = \lim_{t \to 1} |(t-1)^{-h^1(\rho)} A_{\rho}^1(t)|^2.$$

Next we will consider a non-compact case. Let X be a hyperbolic threefold of finite volume with one cusp and ρ a unitary character of the fundamental group. The fundamental group at the cusp will be denoted by Γ_{∞} . Here is a generalization of Fried's results.

Theorem 2.4. ([7] [8]) $R_{\rho}(s)$ is meromorphically continued on the whole plane and satisfies an analog of the Riemann hypothesis. Moreover it satisfies the following properties at the origin.

1. Suppose $\rho|_{\Gamma_{\infty}}$ is trivial. Then we have

$$\operatorname{ord}_{s=0} R_{\rho}(s) = 2(h^1(\rho) - 2h^0(\rho) - 1).$$

2. Suppose $\rho|_{\Gamma_{\infty}}$ is nontrivial, then

$$\operatorname{ord}_{s=0} R_{\rho}(s) = 2h^{1}(\rho).$$

Moreover if $h^1(\rho)$ vanishes we have

$$|R_{\rho}(0)| = |\tau^*_{\mathbb{C}}(X, \rho)|^{-2}.$$

We remark that the "error term" -2 in the RHS of the first identity is caused by a pathology of the Hodge theory. Note that in the second case the assumption automatically implies vanishing of $h^0(\rho)$. Thus we have

Theorem 2.5. Let X be a hyperbolic threefold of finite volume with one cusp and ρ a unitary character of the fundamental group such that $h^0(\rho)$ vanishes. 1. Suppose $\rho|_{\Gamma_{\infty}}$ is trivial. Then we have

$$\operatorname{ord}_{s=0} R_{\rho}(s) + 2 \leq 2 \operatorname{ord}_{t=1} A_{\rho}^{1}(t),$$

and the identity holds if the action of τ^* on $H^1(X_{\infty}, \rho)$ is semisimple.

2. Suppose $\rho|_{\Gamma_{\infty}}$ is nontrivial. Then we have

$$\operatorname{ord}_{s=0} R_{\rho}(s) \leq 2\operatorname{ord}_{t=1} A_{\rho}^{1}(t),$$

and the identity holds if the action of τ^* on $H^1(X_{\infty}, \rho)$ is semisimple. Moreover if all $h^q(\rho)$ vanish we have

$$|R_{\rho}(0)| = \delta_{\rho} |A_{\rho}^{1}(1)|^{2}.$$

In either case if we make a change of variables:

$$t = s + 1,$$

under a suitable assumption, our theorem implies two ideals in $\mathbb{C}[[s]]$ generated by $R_{\rho}(s)$ and $A^{1}_{\rho}(s)^{2}$ coincide. Thus our theorem may be considered as a solution of a geometric analog of the Iwasawa main conjecture.

In particular we may say for each prime closed geodesic γ , $P_{\gamma}(s)^{-1}$ divides A_{ρ}^{1} . In the next section we will explain this phenomenon from a viewpoint of the arithmetic topology.

$\S 3$. An explanation from the arithmetic topology

Let X be a hyperbolic threefold of finite volume and ρ a unitary representation of the fundamental group. We assume that $H^0(X_{\infty}, \rho)$ vanishes.

Note that ϵ induces a map from a set of prime closed geodesics Σ_{prim} to \mathbb{Z} . Thus it is decomposed into two subsets:

$$\Sigma_{prim}^{\iota} = \{ \gamma \in \Sigma_{prim} \, | \, \epsilon(\gamma) \neq 0 \}$$

and its complement Σ_{prim}^{σ} . An element of Σ_{prim}^{σ} (resp. Σ_{prim}^{ι}) will be referred as ϵ -split (resp. ϵ -inert). For $\gamma \in \Sigma_{prim}^{\iota}$ its ϵ -inertia degree $m_{\epsilon}(\gamma)$ is defined to be the absolute value of $\epsilon(\gamma)$.

242

Let $\gamma \in \Sigma_{prim}^{\iota}$ be of ϵ -inertia degree 1. We may regard it as a smooth imbedded S^1 and let C_{∞} be a connected component of $X_{\infty} \times_X S^1$. Thus we have a diagram:

(4)
$$\begin{array}{c} C_{\infty} \to X_{\infty} \\ p \downarrow \quad \downarrow \pi \\ S^{1} \xrightarrow{\gamma} X. \end{array}$$

We claim that C_{∞} is the universal covering of S^1 and that the diagram induces an isomorphism:

$$\operatorname{Gal}(C_{\infty}/S^1) \simeq \operatorname{Gal}(X_{\infty}/X) \simeq \mathbb{Z}.$$

In fact (4) implies the diagram:

$$\begin{array}{ccc} \pi_1(C_{\infty}) & \to \pi_1(X_{\infty}) \\ p_* \downarrow & \downarrow \\ \mathbb{Z} = \pi_1(S^1) \xrightarrow{\gamma_*} & \pi_1(X) \\ & \downarrow \epsilon \\ & \mathbb{Z}, \end{array}$$

which satisfies

$$\gamma_*(1) = \gamma.$$

If C_{∞} were not \mathbb{R} , it should be a circle. In particular the image of p_* becomes a nontrivial subgroup of $\pi_1(S^1)$. But the image of $\epsilon \cdot \gamma_*$ is a subgroup of \mathbb{Z} which is torsion free, the above diagram shows that $\epsilon(\gamma)$ should be zero. This contradicts to the choice of γ . Moreover since ϵ -inertia degree of γ is one, γ_* gives a splitting of ϵ and we have

$$\operatorname{Gal}(C_\infty/S^1) \stackrel{\gamma_*}{\simeq} \operatorname{Gal}(X_\infty/X) \simeq \mathbb{Z}.$$

Let $N(\gamma)$ be a small tubular neighborhood of γ and $N_{\infty}(\gamma)$ its lift to X_{∞} along C_{∞} :

$$N_{\infty}(\gamma) = \pi^{-1}(N(\gamma)).$$

We set

$$X_{\infty}(\gamma) = X_{\infty} \setminus N_{\infty}(\gamma).$$

By the exicision we have

$$H^q(X_{\infty}, X_{\infty}(\gamma), \rho) \simeq H^q(N_{\infty}, \partial N_{\infty}(\gamma), \rho),$$

and the computation of the previous section implies

$$H^q(N_\infty,\partial N_\infty(\gamma),\,
ho)= egin{cases} \Lambda/(\det[t-
ho(\gamma)]) & q=2\ 0 & q
eq 2. \end{cases}$$

Thus the exact sequence (3) and our assumption show the vanishing of $H^0(X_{\infty}(\gamma), \rho)$ and an exact sequence of Λ -modules:

$$0 \to H^1(X_{\infty}, \rho) \xrightarrow{\operatorname{Res}} H^1(X_{\infty}(\gamma), \rho) \to \Lambda/(\operatorname{det}[t - \rho(\gamma)]) \to 0.$$

In particular we know the dimension of $H^1(X_{\infty}(\gamma), \rho)$ is finite and we have an identity of fractional ideals of Λ :

$$\operatorname{Char}_{\Lambda}(H^{1}(X_{\infty}, \rho)) = \operatorname{Char}_{\Lambda}(H^{1}(X_{\infty}(\gamma), \rho)) \cdot (\det[1 - \rho(\gamma)t^{-1}])^{-1}.$$

More generally let γ be an element of Σ_{prim}^{ι} . Then the subgroup

$$m_{\epsilon}(\gamma)\mathbb{Z}\subseteq\mathbb{Z}=\mathrm{Gal}(X_{\infty}/X)$$

determines a cyclic covering $X_{m_{\epsilon}(\gamma)}$ of X with degree $m_{\epsilon}(\gamma)$. Note that X_{∞} is its infinite cyclic covering satisfying

$$\operatorname{Gal}(X_{\infty}/X_{m_{\epsilon}(\gamma)}) = m_{\epsilon}(\gamma)\mathbb{Z},$$

and that γ lifts to a smooth embedded S^1 in $X_{m_{\epsilon}(\gamma)}$ which is mapped to $\pm m_{\epsilon}(\gamma)$ by

$$\pi_1(X_{m_{\epsilon}(\gamma)}) \to \operatorname{Gal}(X_{\infty}/X_{m_{\epsilon}(\gamma)}) = m_{\epsilon}(\gamma)\mathbb{Z}.$$

Now the previous argument shows the vanishing of $H^0(X_{\infty}(\gamma), \rho)$ and an exact sequence:

$$0 \to H^1(X_{\infty}, \rho) \stackrel{\text{Res}}{\to} H^1(X_{\infty}(\gamma), \rho) \to \Lambda/(\det[t^{m_{\epsilon}(\gamma)} - \rho(\gamma)]) \to 0$$

 and

$$\operatorname{Char}_{\Lambda}(H^{1}(X_{\infty}, \rho)) = \operatorname{Char}_{\Lambda}(H^{1}(X_{\infty}(\gamma), \rho)) \cdot (\det[1 - \rho(\gamma)t^{-m_{\epsilon}(\gamma)}])^{-1}.$$

Thus we have proved the following theorem.

Theorem 3.1. Suppose $H^0(X_{\infty}, \rho)$ vanishes. Then for $\gamma \in \Sigma_{prim}^{\iota}$, $H^0(X_{\infty}(\gamma), \rho)$ also vanishes and we have an exact sequence of Λ -modules:

(5)
$$0 \to H^1(X_{\infty}, \rho) \xrightarrow{\text{Res}} H^1(X_{\infty}(\gamma), \rho) \to \Lambda/(\det[t^{m_{\epsilon}(\gamma)} - \rho(\gamma)]) \to 0.$$

In particular the dimension of $H^1(X_{\infty}(\gamma), \rho)$ is finite and we have an identity of fractional ideals of Λ :

$$\operatorname{Char}_{\Lambda}(H^{1}(X_{\infty},\rho)) = \operatorname{Char}_{\Lambda}(H^{1}(X_{\infty}(\gamma),\rho)) \cdot (\det[1-\rho(\gamma)t^{-m_{\epsilon}(\gamma)}])^{-1}$$

Note that the Euler factor $P_{\gamma}(s)$ of the Ruelle L-function is given by

$$P_{\gamma}(s) = \det[1 - \rho(\gamma)t^{-m_{\epsilon}(\gamma)}]|_{t = \exp[\frac{l(\gamma)s}{m_{\epsilon}(\gamma)}]}.$$

Since we have

$$\exp(rac{l(\gamma)}{m_\epsilon(\gamma)}s)-1=rac{l(\gamma)s}{m_\epsilon(\gamma)}+O(s^2),$$

localizing at s = t - 1, the fact that $(\det[1 - \rho(\gamma)t^{-m_{\epsilon}(\gamma)}])^{-1}$ divides $\operatorname{Char}_{\Lambda}(H^{1}(X_{\infty}, \rho))$ implies the divisibility of A^{1}_{ρ} by $P_{\gamma}(s)^{-1}$ in $\mathbb{C}[[s]]$ for $\gamma \in \Sigma^{\iota}_{prim}$.

We can formulate this fact in terms of an analog of the Euler system([5]).

First of all we remark that using the homology exact sequence:

$$\rightarrow H_q(X_{\infty}(\gamma),\,\rho) \rightarrow H_q(X_{\infty},\,\rho) \rightarrow H_q(X_{\infty},X_{\infty}(\gamma),\,\rho) \rightarrow H_{q-1}(X_{\infty}(\gamma),\,\rho) \rightarrow H_{q-1}(X_{\infty}(\gamma),\,\rho) \rightarrow H_q(X_{\infty},\,\rho) \rightarrow$$

and by the isomorphism

$$H_q(X_\infty, X_\infty(\gamma), \,
ho) \simeq H_q(D^2, S^1, \,
ho)$$

derived from the excision and the homotopy invariance of the homology group one may check that the dimension of $H(X_{\infty}(\gamma), \mathbb{C})$ and $H(X_{\infty}(\gamma), \rho)$ are finite. Taking the dual of (5) over \mathbb{C} , the Milnor duality shows an exact sequence of Λ -modules:

$$0 \to \Lambda/(\det[t^{m_{\epsilon}(\gamma)} - \rho(\gamma)]) \to H^1(X_{\infty}(\gamma), \rho) \stackrel{\mathrm{Cor}}{\to} H^1(X_{\infty}, \rho) \to 0.$$

Let us fix a nonzero element c_{∞} of $H^1(X_{\infty}, \rho)$ and choose its any lift $c'(\gamma)_{\infty}$ to $H^1(X_{\infty}(\gamma), \rho)$. Then

$$c(\gamma)_{\infty} = F_{\gamma}(t)c'(\gamma)_{\infty}, \quad F_{\gamma}(t) = \det[t^{m_{\epsilon}(\gamma)} - \rho(\gamma)]$$

is independent of a choice of the lift and satisfies

$$\operatorname{Cor}(c(\gamma)_{\infty}) = F_{\gamma}(t)c_{\infty}.$$

More generally, for elements $\{\gamma_1, \dots, \gamma_N\}$ of Σ_{prim}^{ι} , we set

$$X_{\infty}(\gamma_1 \cdots \gamma_N) = X_{\infty} \setminus N_{\infty}(\gamma_1) \cup \cdots \cup N_{\infty}(\gamma_N).$$

Using **Theorem 3.1**, an induction argument shows that we have an exact sequence of Λ -modules:

$$0 \to \Lambda/(F_{\gamma_N}(t)) \to H^1(X_{\infty}(\gamma_1 \cdots \gamma_N), \rho) \xrightarrow{\operatorname{Cor}} H^1(X_{\infty}(\gamma_1 \cdots \gamma_{N-1}), \rho) \to 0.$$

KEN-ICHI SUGIYAMA

Therefore we can successively choose an element $c_{\infty}(\gamma_1 \cdots \gamma_N)$ of $H^1(X_{\infty}(\gamma_1 \cdots \gamma_N), \rho)$ so that

$$\operatorname{Cor}(c_{\infty}(\gamma_{1}\cdots\gamma_{N}))=F_{\gamma_{N}}(t)c_{\infty}(\gamma_{1}\cdots\gamma_{N-1}).$$

Thus $\{c_{\infty}(\gamma_1 \cdots \gamma_N)\}$ has the same property as the Euler system [5] §2.1. If we apply the co-restriction map "Cor" *N*-times to $c_{\infty}(\gamma_1 \cdots \gamma_N)$, we obtain an element $d_{\infty}(\gamma_1 \cdots \gamma_N)$ of $H^1(X_{\infty}, \rho)$ which satisfies

$$d_{\infty}(\gamma_1\cdots\gamma_N)=\prod_{i=1}^N F_{\gamma_i}(t)\cdot c_{\infty}.$$

Now our solution of the geometric Iwasawa conjecture is formally described in the following way.

If two elements c and c' of $H^1(X_{\infty}, \rho)$ have a relation:

$$c'=f\cdot c,\quad f\in\Lambda,$$

 f^{-1} will be denoted by $ind_{\Lambda}(c,c')$. (Note that in fact since $H^1(X_{\infty}, \rho)$ is a torsion Λ -module it is *formally* defined.) In particular our *topological Euler system* gives the ϵ -inert part of the Euler product:

$$ind_{\Lambda}(c_{\infty}, d_{\infty}(\prod_{\gamma \in \Sigma_{prim}^{\iota}} \gamma)) = \prod_{\gamma \in \Sigma_{prim}^{\iota}} F_{\gamma_i}^{-1} \in \mathbb{C}[[s]].$$

The following statement is a formal reformulation of **Theorem 3.1**, which should be compared with [5] **Theorem 2.3.3**.

Theorem 3.2. (formal) In $\mathbb{C}[[s]]$, $ind_{\Lambda}(c_{\infty}, d_{\infty}(\prod_{\gamma \in \Sigma_{prim}^{\iota}} \gamma))$ divides $\operatorname{Char}_{\Lambda}(H^{1}(X_{\infty}, \rho))$.

References

- [1] D. Fried. Analytic torsion and closed geodesics on hyperbolic manifolds. *Inventiones Math.*, 84:523–540, 1986.
- [2] P. Kirk and C. Livingston. Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants. Topology, 38(3):635-661, 1999.
- [3] J. Milnor. Whitehead torsion. Bull. Amer. Math. Soc., 72:358-426, 1966.
- [4] J. Milnor. Infinite cyclic coverings. In J. G. Hocking, editor, Conference on the Topology of Manifolds, pages 115-133. PWS Publishing Company, 1968.
- [5] K. Rubin. Euler Systems. Number 147 in Ann. of Math. Stud. Princeton Univ. Press, 2000.

246

- [6] K. Sugiyama. An analog of the Iwasawa conjecture for a compact hyperbolic threefold. to appear in J. Reine Angew. Math.
- [7] K. Sugiyama. An analog of the Iwasawa conjecture for a complete hyperbolic threefold of a finite volume. Preprint, May 2006.
- [8] K. Sugiyama. On a special value of the Ruelle L-function. Preprint, May 2006.

.