
RIMS Kôkyûroku Bessatsu 4

(2007), 235‐247

The geometric Iwasawa conjecture from a viewpoint
of the arithmetic topology

By

Ken‐ichi SUGIYAMA *

Abstract

For a local system on a complete hyperbolic threefold which is compact or of finite volume,
the twisted Alexander polynomial and the Ruelle‐Selberg \mathrm{L}‐functions are defined. Under a

cohomoiogical assumption, we have shown that their order \mathrm{a}\mathrm{r}\perp \mathrm{d} leading constants of the Taylor
expansion at the origin are almost identical. These results may be considered as a solution
of a geometric analogue of the Iwasawa conjecture in the algebraic number theory. We will

interpret these results from a viewpoint of the arithmetic topology.

§1. Introduction

In the conference we have talked a geometric analog of the Iwasawa conjecture. Let

X be a finite CW‐complex of dimension three with a fixed base point x_{0} such that there

is a surjective homomorphism

$\pi$_{1}(X, x_{0})\rightarrow $\epsilon$ \mathbb{Z}

and  $\rho$ a unitary representation of the fundamental group. The kernel of  $\epsilon$ deter‐
mines an infinite cyclic covering  X_{\infty} of X and H.(X_{\infty}, \mathbb{C}) , H.(X_{\infty},  $\rho$) , H\cdot(X_{\infty}, \mathbb{C})
and H^{\cdot}(X_{\infty},  $\rho$) become  $\Lambda$‐modules. Here  $\Lambda$ is the group ring \mathbb{C}[\mathbb{Z}] . Note that it is

isomorphic to the Laurent polynomial ring \mathbb{C}[t, t^{-1}] in a non‐canonical way.

Suppose that all the dimensions of H.(X_{\infty}, \mathbb{C}) and H.(X_{\infty},  $\rho$) are finite. Then

due to Milnor [4] it is known that H^{1}(X_{\infty},  $\rho$) becomes a finite dimensional complex
vector space. The twisted Alexander polynomial A_{ $\rho$}^{1}(t) is defined to be the characteristic

polynomial \det[t-$\tau$^{*}] of the action of a generator  $\tau$\in \mathbb{Z} on H^{1}(X_{\infty},  $\rho$ which generates
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the characteristic ideal \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(H^{1}(X_{\infty},  $\rho$ It will play the same role as the Iwasawa

polynomial in the original Iwasawa theory.

In order to introduce a counterpart of the p‐‐adic zeta function, we assume that  X

admits a hyperbolic structure of a finite volume. Then the Ruelle L‐function R_{ $\rho$}(s) is

defined to be

R_{ $\rho$}(s)=\displaystyle \prod_{ $\gamma$}P_{ $\gamma$}(s)^{-1}, P_{ $\gamma$}(s)=\det[1- $\rho$( $\gamma$)e^{-sl( $\gamma$)}],
where  $\gamma$ runs through the set of prime closed geodesics of  X and l( $\gamma$) denotes its length.
It absolutely convergents if {\rm Re} s is sufficiently large.

When X is compact, Fried has shown it is meromorphically continued on the whole

plane. Moreover if H^{0}(X,  $\rho$) vanishes, he has also shown the order of R_{ $\rho$}(s) at the origin
is 2 \dim H^{1}(X, p) ([1]).

Suppose H^{0}(X_{\infty},  $\rho$) vanishes. In [6], using Fried�s result we have shown that if the

action of $\tau$^{*} on H^{1}(X_{\infty},  $\rho$) is semisimple the identity

(1) 2\mathrm{o}\mathrm{r}\mathrm{d}_{t=1}A_{p}^{1}(t)=\mathrm{o}\mathrm{r}\mathrm{d}_{s=0}R_{ $\rho$}(s) ,

holds, which may be considered as a geometric analog of the Iwasawa main conjecture.

But since the compact case corresponds to a Galois representation which is unramified

everywhere, it is desirable to generalize the result to a non‐compact case. In fact when

X has only one cusp and when  $\rho$ is a unitary character, we have shown the same identity

holds if a certain condition of  $\rho$ at the cusp is satisfied [7].

In this report we will interpret (1) from a viewpoint of the arithmetic topology.

Let  $\gamma$ be a prime closed geodesic of  X such that  $\epsilon$( $\gamma$)\neq 0 . (Such a geodesic will be

mentioned as  $\epsilon$ ‐inert.) Then it is easy to to see that its inverse image in  X_{\infty} becomes

the infinite cyclic covering of  $\gamma$ . Let  X_{\infty}( $\gamma$) be its complement. Then we will show an

identity of fractional ideals of  $\Lambda$ :

\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(H^{1}(X_{\infty}( $\gamma$),  $\rho$))\cdot(\det[1- $\rho$( $\gamma$)t^{-| $\epsilon$( $\gamma$)|}])^{-1}=\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(H^{1}(X_{\infty}, p

This is a partial solution of the geometric Iwasawa conjecture. In fact substituting

t=\displaystyle \exp(\frac{l( $\gamma$)}{| $\epsilon$( $\gamma$)|}s) it shows us that P_{ $\gamma$}(s)^{-1} divides CharA (H^{1}(X_{\infty},  $\rho$)) in \mathbb{C}[[s]] , which also

follows from (1). Moreover a topological Euler system which enjoys the same properties

as the original one([5]) will be constructed and we will show a formal result which should

be compared with [5]Thorem2.3.3.
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§2. A review of our results

Let X be a connected finite CW‐complex with a fixed base point x_{0} and  $\Gamma$ its

fundamental group. Let  $\rho$ be its unitary representation of finite dimension and  V_{ $\rho$} the

representation space. Suppose that there is a surjective homomorphism

(2)  $\Gamma$\rightarrow^{ $\epsilon$}\mathbb{Z}.

By the Galois theory \mathrm{K}\mathrm{e}\mathrm{r} $\epsilon$ determines the infinite cyclic covering  X_{\infty}\rightarrow $\pi$ X . In the

following we will identify the group ring \mathbb{C}[\mathbb{Z}] with the ring  $\Lambda$=\mathbb{C}[t, t^{-1}] of Laurent

polynomials of complex coefficients. (Note that such an isomorphism is not canonical.)
Thus (2) induces a ring homomorphism

\mathbb{C}[ $\Gamma$]\rightarrow $\epsilon \Lambda$.

Let \tilde{X} be the universal covering of X . Then the chain complex (C.(\tilde{X}), \partial) of

complex coefficients is a complex of free \mathbb{C}[ $\Gamma$] ‐module of finite rank and so is the cochain

complex (C\cdot(\tilde{X}), d) .

Following [2] let us consider a complex of finite dimensional vector spaces over \mathbb{C} :

C.(X,  $\rho$)=C.(\tilde{X})\otimes_{\mathbb{C}[ $\Gamma$]}V_{ $\rho$}.
and a complex of free  $\Lambda$‐modules of finite rank:

 C.(X_{\infty},  $\rho$)=C.(\tilde{X})\otimes_{\mathbb{C}[\mathrm{K}\mathrm{e}\mathrm{r} $\epsilon$]}V_{ $\rho$}\simeq C.(\tilde{X})\otimes_{\mathbb{C}[ $\Gamma$]}(V_{ $\rho$}\otimes_{\mathbb{C}} $\Lambda$) .

Similary we set

C^{\cdot}(X,  $\rho$)=C^{\cdot}(\tilde{X})\otimes_{\mathbb{C}[ $\Gamma$]}V_{ $\rho$}
and

C^{\cdot}(X_{\infty},  $\rho$)=C^{\cdot}(\tilde{X})\otimes_{\mathbb{C}[\mathrm{K}\mathrm{e}1 $\epsilon$]}V_{ $\rho$}\simeq C^{\cdot}(\tilde{X})\otimes_{\mathbb{C}[ $\Gamma$]}(V_{ $\rho$}\otimes_{\mathbb{C}}\mathrm{A}) ,

which are the dual complex of C.(X,  $\rho$) over \mathbb{C} and of C.(X_{\infty},  $\rho$) over  $\Lambda$ , respectively.
The homology or cohomology group of each complex will be denoted by

 H.(X,  $\rho$) , H.(X_{\infty},  $\rho$) ,

and

H^{\cdot}(X,  $\rho$) , H^{\cdot}(X_{\infty},  $\rho$) .
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Note that both of H.(X_{\infty},  $\rho$) and H(X_{\infty},  $\rho$) are finitely generated  $\Lambda$‐modules.

Let  Y be a connected subcomplex of X . Suppose that there is a connected sub‐

complex Y_{\infty} of X_{\infty} which is an infinite cyclic covering of Y and that the diagram:

Y_{\infty}\rightarrow X_{\infty}

\downarrow \downarrow
 Y\rightarrow X

induces an isomorphism

\mathrm{G}\mathrm{a}1(Y_{\infty}/Y)\simeq \mathrm{G}\mathrm{a}1(X_{\infty}/X)\simeq \mathbb{Z}.

Then we have a complex of free  $\Lambda$‐modules of finite rank:

 C.(Y_{\infty},  $\rho$)=C.(\ovalbox{\tt\small REJECT})\otimes_{\mathbb{C}[$\pi$_{1}(Y)]}(V_{ $\rho$}\otimes_{\mathbb{C}} $\Lambda$) .

Note that this is a subcomplex of C.(X_{\infty},  $\rho$) whose quotient C.(X_{\infty}, Y_{\infty},  $\rho$) is also a

complex of free  $\Lambda$‐modules of finite rank. Taking the dual over A we have an exact

sequence of bounded complexes of free  $\Lambda$‐modules:

 0\rightarrow C^{\cdot}(X_{\infty}, Y_{\infty},  $\rho$)\rightarrow C^{\cdot}(X_{\infty},  $\rho$)\rightarrow C^{\cdot}(Y_{\infty},  $\rho$)\rightarrow 0.

Thus we have an exact sequence of finitely generated  $\Lambda$‐modules:

(3) \rightarrow H^{q}(X_{\infty}, Y_{\infty},  $\rho$)\rightarrow H^{q}(X_{\infty},  $\rho$)\rightarrow H^{q}(Y_{\infty},  $\rho$)\rightarrow H^{q+1}(X_{\infty}, Y_{\infty},  $\rho$)\rightarrow

Here is an example of  H^{q}(X_{\infty}, Y_{\infty},  $\rho$) .

Let X=D^{2}\times S^{1} , where D^{2} is the two dimensional unit disk and S^{1} is the unit

circle. Let Y=S^{1}\times S^{1} be its boundary. Then the fundamental group of X is an infinite

cyclic group and let

$\pi$_{1}(X)\displaystyle \simeq \mathbb{Z}\frac{ $\rho$}{r}U(n)

be a unitary representation. By the homotopy invariance of cohomology groups and by

the Gysin isomorphism we have

H^{q}(X_{\infty}, Y_{\infty},  $\rho$)=\left\{\begin{array}{l}
V_{ $\rho$}q=2\\
0q\neq 2.
\end{array}\right.
 $\gamma$\in$\pi$_{1}(X) acts on H^{2}(X_{\infty}, Y_{\infty},  $\rho$)\simeq V_{ $\rho$} by  $\rho$( $\gamma$) , which makes it a  $\Lambda$‐module.

In the following, we will always assume that the dimension of  X is three and that all

H.(X_{\infty}, \mathbb{C}) and H.(X_{\infty},  $\rho$) are finite dimensional vector spaces over \mathbb{C} . The arguments

of §4 of [4] shows X_{\infty} is a Riemann surface in the cohomological sense.
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Fact 2.1. ([4])

1 , For i\geq 3, H^{i}(X_{\infty},  $\rho$) vanishes.

2. For 0\leq i\leq 2, H^{i}(X_{\infty},  $\rho$) is a finite dimensional vector space over \mathbb{C} and there is

a perfect pairmg:

H^{i}(X_{\infty},  $\rho$)\times H^{2-i}(X_{\infty},  $\rho$)\rightarrow \mathbb{C}.

The perfect pairing will be referred as the Milnor duality. It is easy to see that it

is preserved by the action of \mathrm{G}\mathrm{a}1(X_{\infty}/X) .

Thus each H^{i}(X_{\infty}, p) is a torsion  $\Lambda$‐module and its characteristic ideal CharA (H^{i}(X_{\infty},  $\rho$))
is generated by

 A_{ $\rho$}^{i}(t)=\det[t-$\tau$^{*}|H^{i}(X_{\infty},  $\rho$
where  $\tau$^{*} is the action of t on H^{i}(X_{\infty},  $\rho$) .

Let h^{q}( $\rho$) be the dimension of H^{q}(X, p) . Then in [6] we have shown the following
results.

Theorem 2.1. Suppose that H^{0}(X_{\infty},  $\rho$) vanishes. Then we have

h^{1}(p)\leq\circ \mathrm{r}\mathrm{d}_{t=1}\mathrm{A}_{ $\rho$}^{1}(t) ,

and the identity holds if the action of$\tau$^{*} on H^{1}(X_{\infty},  $\rho$) is semisimple, Moreover suppose

that all h^{q}( $\rho$) vanish. Then we have

|A_{ $\rho$}^{1}(\perp)|= $\delta$|$\tau$_{\mathbb{C}}^{W}(X, p)|^{-1},
where  $\delta$ is an explicit positive constant. Here  $\tau$_{\mathbb{C}}^{*}(X,  $\rho$) is the Frantz‐Milnor‐Reidemeister

torsion, which is a geometric invariant of a representation. ([3])

When X is a mapping torus we can say more.

Theorem 2.2. ([6]) Let f be an automorphism of a connected finite CW‐complex
of dimension two S and X its mapping torus. Let  $\rho$ be a unitary representation of the

fundamental group of  X which satisfies H^{0}(S,  $\rho$)=0 . Suppose that the surjective ho‐

momorphism

 $\Gamma$\rightarrow $\epsilon$ \mathbb{Z}

is induced by the structure map

X\rightarrow S^{1},
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and that the action of f^{*} on H^{1}(S,  $\rho$) is semisimple. Then the order of A_{ $\rho$}^{1}(t) at t=1

is h^{1}( $\rho$) and we have

\displaystyle \lim_{t\rightarrow 1}|(t-1)^{-h^{1}( $\rho$)}A_{ $\rho$}^{1}(t)|=|$\tau$_{\mathbb{C}}^{*}(X,  $\rho$)|^{-1}
Note that in Theorem 2.2 X_{\infty} is S\times \mathbb{R}.

In order to introduce an analytic object‐the Ruelle L‐function‐ we need a geometric
structure on X . Let X be a connected hyperbolic threefold of finite volume. Thus its

fundamental group may be considered as a torsion‐free cofinite discrete subgroup $\Gamma$_{g} of

PSL_{2}(\mathbb{C}) and let  $\rho$ be its unitary representation. By the one to one correspondence
between the set of loxodromic conjugacy classes of  $\Gamma$_{g} and one of closed geodesics of

X
,

the Ruelle L‐function is defined to be a product of the inverse of the characteristic

polynomials of p( $\gamma$) over prime closed geodesics:

R_{ $\rho$}(s)=\displaystyle \prod_{ $\gamma$}P_{ $\gamma$}(s)^{-1}, P_{ $\gamma$}(s)=\det[1- $\rho$( $\gamma$)e^{-sl( $\gamma$)}].
Here s is a complex number and l( $\gamma$) is the length of  $\gamma$ . It absolutely convergents for  s

whose real part is sufficiently large.

Let X be a compact hyperbolic threefold satisfying H^{0}(X,  $\rho$)=0 . Due to Fried([l]),
it is known that R_{ $\rho$}(s) is meromorphically continued in the whole plane and that its

order at s=0 is 2h^{1}( $\rho$) . Moreover he has shown its absolute value of the leading con‐

stant is equal to |$\tau$_{\mathbb{C}}^{*}(X,  $\rho$)|^{-2}.

In the following we always assume that X admits an infinite cyclic covering X_{\infty}.

(i.e. the first Betti number of X is positive.) Thus combining Fried�s results and

Theorem 2.1 and Theorem 2.2 we obtain the following theorem.

Theorem 2.3. Let X be a compact hyperbolic threefold and  $\rho$ a unitary repre‐

sentaion of the fundamental group.

1. Suppose that  H^{0}(X_{\infty},  $\rho$) vanishes. Then

2h^{1}( $\rho$)=\mathrm{o}\mathrm{r}\mathrm{d}_{s=0}R_{ $\rho$}(s)\leq 2\mathrm{o}\mathrm{r}\mathrm{d}_{t=1}A_{ $\rho$}^{1}(t) ,

and the identity holds if the action of $\tau$^{*} on H^{1}(X_{\infty},  $\rho$) is semisimple. Moreover if
all h^{q}( $\rho$) vanish, we have

|R_{ $\rho$}(0)|=$\delta$_{ $\rho$}|A_{ $\rho$}^{1}(1)|^{2},
where $\delta$_{ $\rho$} is an explicit constant.
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2. Suppose that X is homeomorphic to a mapping torus of an automorphism f of
a compact surface S and that the surjective homomorphism  $\epsilon$ is induced by the

structure map:

 x\rightarrow s^{1}

If H^{0}(S,  $\rho$) vanishes, we have

2h^{1}( $\rho$)=\mathrm{o}\mathrm{r}\mathrm{d}_{s=0}R_{ $\rho$}(s)\leq 2\mathrm{o}\mathrm{r}\mathrm{d}_{t=1}A_{ $\rho$}^{1} (tj ,

and the identiy holds if the action of f^{*} on H^{1}(S,  $\rho$) is semisimple. Moreover if
this condition is satisfied, we have

\displaystyle \lim_{s\rightarrow 0}|s^{-2h^{1}( $\rho$)}R_{ $\rho$}(s)|=\lim_{t\rightarrow 1}|(t-1)^{-h^{1}( $\rho$)}\mathrm{A}_{ $\rho$}^{1}(t)|^{2}
Next we will consider a non‐compact case. Let X be a hyperbolic threefold of

finite volume with one cusp and  $\rho$ a unitary character of the fundamental group. The

fundamental group at the cusp will be denoted by  $\Gamma$_{\infty} . Here is a generalization of Fried�s

results.

Theorem 2.4. ([7][8]) R_{p}(s) is meromorphically continued on the whole plane
and satisfies an analog of the Riemann hypothesis. Moreover it satisfies the following
properties at the origin.

1. Suppose  $\rho$|_{$\Gamma$_{\infty}} is trivial. Then we have

\mathrm{o}\mathrm{r}\mathrm{d}_{s=0}R_{ $\rho$}(s)=2(h^{1}( $\rho$)-2h^{0}( $\rho$)-1) .

2. Suppose  $\rho$|_{$\Gamma$_{\infty}} is nontrivial, then

\mathrm{o}\mathrm{r}\mathrm{d}_{s=0}R_{ $\rho$}(s)=2h^{1}( $\rho$) .

Moreover if h^{1}( $\rho$) vanishes we have

|R_{ $\rho$}(0)|=|$\tau$_{\mathbb{C}}^{*}(X,  $\rho$)|^{-2}

We remark that the error term�� -2 in the RHS of the first identity is caused

by a pathology of the Hodge theory. Note that in the second case the assumption
automatically implies vanishing of h^{0}( $\rho$) . Thus we have

Theorem 2.5. Let X be a hyperbolic threefold of finite volume with one cusp

and  $\rho$ a unitary character of the fundamental group such that  h^{0}( $\rho$) vanishes.
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1. Suppose  $\rho$|_{$\Gamma$_{\infty}} is trivial. Then we have

\mathrm{o}\mathrm{r}\mathrm{d}_{s=0}R_{ $\rho$}(s)+2\leq 2\mathrm{o}\mathrm{r}\mathrm{d}_{t=1}\mathrm{A}_{ $\rho$}^{1}(t) ,

and the identiy holds if the action of $\tau$^{*} on H^{1}(X_{\infty},  $\rho$) is semisimple.

2. Suppose  $\rho$|_{$\Gamma$_{\infty}} is nontrivial. Then we have

\mathrm{o}\mathrm{r}\mathrm{d}_{s=0}R_{ $\rho$}(s)\leq 2\mathrm{o}\mathrm{r}\mathrm{d}_{t=1}A_{p}^{1}(t) ,

and the identiy holds if the action of $\tau$^{*} on H^{1}(X_{\infty},  $\rho$) is semisimple. Moreover if
all h^{q}( $\rho$) vanish we have

|R_{ $\rho$}(0)|=$\delta$_{ $\rho$}|A_{ $\rho$}^{1}(1)|^{2}

In either case if we make a change of variables:

t=s+1,

under a suitable assumption, our theorem implies two ideals in \mathbb{C}[[s]] generated by R_{ $\rho$}(s)
and A_{ $\rho$}^{1}(s)^{2} coincide. Thus our theorem may be considered as a solution of a geometric

analog of the Iwasawa main conjecture.
In particular we may say for each prime closed geodesic  $\gamma$, P_{ $\gamma$}(s)^{-1} divides A_{ $\rho$}^{1} . In

the next section we will explain this phenomenon from a viewpoint of the arithmetic

topology.

§3. An explanation from the arithmetic topology

Let X be a hyperbolic threefold of finite volume and  $\rho$ a unitary representation of

the fundamental group. We assume that  H^{0}(X_{\infty},  $\rho$) vanishes.

Note that  $\epsilon$ induces a map from a set of prime closed geodesics  $\Sigma$_{prim} to \mathbb{Z} . Thus

it is decomposed into two subsets:

$\Sigma$_{prim}^{L}=\{ $\gamma$\in$\Sigma$_{prim}| $\epsilon$( $\gamma$)\neq 0\}

and its complement $\Sigma$_{prim}^{ $\sigma$} . An element of $\Sigma$_{prim}^{ $\sigma$} (resp. $\Sigma$_{prim}^{ $\iota$} ) will be referred as  $\epsilon$ ‐split

(resp.  $\epsilon$ ‐inert). For  $\gamma$\in$\Sigma$_{prim}^{ $\iota$} its  $\epsilon$ ‐inertia degree  m_{ $\epsilon$}( $\gamma$) is defined to be the absolute

value of  $\epsilon$( $\gamma$) .
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Let  $\gamma$\in$\Sigma$_{prim}^{ $\iota$} be of  $\epsilon$‐inertia degree 1. We may regard it as a smooth imbedded
 S^{1} and let C_{\infty} be a connected component of X_{\infty}\times xS^{1} . Thus we have a diagram:

C_{\infty}\rightarrow X_{\infty}
(4)  p\downarrow \downarrow $\pi$

 S^{1}\rightarrow^{ $\gamma$}X.

We claim that C_{\infty} is the universal covering of S^{1} and that the diagram induces an

isomorphism:

\mathrm{G}\mathrm{a}1(C_{\infty}/S^{1})\simeq \mathrm{G}\mathrm{a}1(X_{\infty}/X)\simeq \mathbb{Z}.
In fact (4) implies the diagram:

$\pi$_{1}(C_{\infty}) \rightarrow$\pi$_{1}(X_{\infty})
 p_{*}\downarrow \downarrow

\mathbb{Z}=$\pi$_{1}(S^{1})\rightarrow^{*} $\gamma \pi$_{1}(X)
\downarrow $\epsilon$

\mathbb{Z}_{9}

which satisfies

$\gamma$_{*}(1)= $\gamma$,

If C_{\infty} were not \mathbb{R}
, it should be a circle. In particular the image of p_{*} becomes a nontrivial

subgroup of $\pi$_{1} (S1). But the image of  $\epsilon$\cdot$\gamma$_{*} is a subgroup of \mathbb{Z} which is torsion free,
the above diagram shows that  $\epsilon$( $\gamma$) should be zero. This contradicts to the choice of  $\gamma$.
Moreover since  $\epsilon$‐inertia degree of  $\gamma$ is one,  $\gamma$_{*} gives a splitting of  $\epsilon$ and we have

\mathrm{G}\mathrm{a}1(C_{\infty}/S^{1})^{$\gamma$_{*}}\simeq \mathrm{G}\mathrm{a}1(X_{\infty}/X)\simeq \mathbb{Z}.
Let N( $\gamma$) be a small tubular neighborhood of  $\gamma$ and  N_{\infty}( $\gamma$) its lift to X_{\infty} along C_{\infty} :

N_{\infty}( $\gamma$)=$\pi$^{-1}(N( $\gamma$)) .

We set

X_{\infty}( $\gamma$)=X_{\infty}\backslash N_{\infty}( $\gamma$) .

By the exicision we have

H^{q}(X_{\infty}, X_{\infty}( $\gamma$),  $\rho$)\simeq H^{q}(N_{\infty}, \partial N_{\infty}( $\gamma$),  $\rho$) ,

and the computation of the previous section implies

H^{q}(N_{\infty}, \partial N_{\infty}( $\gamma$),  $\rho$)=\left\{\begin{array}{l}
 $\Lambda$/(\det[t- $\rho$( $\gamma$)])q=2\\
0 q\neq 2.
\end{array}\right.
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Thus the exact sequence (3) and our assumption show the vanishing of H^{0}(X_{\infty}( $\gamma$),  $\rho$)
and an exact sequence of  $\Lambda$‐modules:

 0\rightarrow H^{1}(X_{\infty},  $\rho$)\rightarrow H^{1}\mathrm{R}\mathrm{e}\mathrm{s}(X_{\infty}( $\gamma$),  $\rho$)\rightarrow $\Lambda$/(\det[t- $\rho$( $\gamma$)])\rightarrow 0.

In particular we know the dimension of H^{1}(X_{\infty}( $\gamma$),  $\rho$) is finite and we have an identity
of fractional ideals of  $\Lambda$ :

CharA (H^{1}(X_{\infty},  $\rho$))=\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(H^{1}(X_{\infty}( $\gamma$),  $\rho$))\cdot(\det[1- $\rho$( $\gamma$)t^{-1}])^{-1}

More generally let  $\gamma$ be an element of  $\Sigma$_{prim}^{ $\iota$} . Then the subgroup

m_{ $\epsilon$}( $\gamma$)\mathbb{Z}\subseteq \mathbb{Z}=\mathrm{G}\mathrm{a}1(X_{\infty}/X)

determines a cyclic covering X_{m_{ $\epsilon$}( $\gamma$)} of X with degree m_{ $\epsilon$}( $\gamma$) . Note that X_{\infty} is its infinite

cyclic covering satisfying

\mathrm{G}\mathrm{a}1(X_{\infty}/X_{rn_{ $\epsilon$}( $\gamma$)})=m_{ $\epsilon$}( $\gamma$)\mathbb{Z},

and that  $\gamma$ lifts to a smooth embedded  S^{1} in X_{m_{\mathrm{e}}( $\gamma$)} which is mapped to \pm m_{ $\epsilon$}( $\gamma$) by

$\pi$_{1}(X_{m.( $\gamma$)})\rightarrow \mathrm{G}\mathrm{a}1(X_{\infty}/X_{m_{ $\epsilon$}( $\gamma$)})=m_{ $\epsilon$}( $\gamma$)\mathbb{Z}.

Now the previous argument shows the vanishing of H^{0}(X_{\infty}( $\gamma$),  $\rho$) and an exact se‐

quence:

0\rightarrow H^{1}(X_{\infty},  $\rho$)\rightarrow H^{1}(X_{\infty}( $\gamma$){\rm Res},  $\rho$)\rightarrow $\Lambda$/(\det[t^{m_{\mathrm{e}}( $\gamma$)}- $\rho$( $\gamma$)])\rightarrow 0

and

CharA (H^{1}(X_{\infty},  $\rho$))=\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r} $\Lambda$(H^{1}(X_{\infty}( $\gamma$),  $\rho$))\cdot(\det[1- $\rho$( $\gamma$)t^{-m_{ $\epsilon$}( $\gamma$)}])^{-1}

Thus we have proved the following theorem.

Theorem 3.1. Suppose H^{0}(X_{\infty},  $\rho$) vanishes. Then for  $\gamma$\in$\Sigma$_{prim}^{ $\iota$}, H^{0}(X_{\infty}( $\gamma$),  $\rho$)
also vanishes and we have an exact sequence of  $\Lambda$ ‐modules:

(5)  0\rightarrow H^{1}(X_{\infty},  $\rho$)\rightarrow H^{1}\mathrm{R}\mathrm{e}\mathrm{s}(X_{\infty}( $\gamma$),  $\rho$)\rightarrow $\Lambda$/(\det[t^{m_{\mathrm{e}}( $\gamma$)}- $\rho$( $\gamma$)])\rightarrow 0.

In particular the dimension of H^{1}(X_{\infty}( $\gamma$),  $\rho$) is finite and we have an identity of frac‐
tional ideals of  $\Lambda$ :

\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r} $\Lambda$(H^{1}(X_{\infty},  $\rho$))=\mathrm{C}\mathrm{h}\mathrm{a}x_{ $\Lambda$}(H^{1}(X_{\infty}( $\gamma$),  $\rho$))\cdot(\det[1- $\rho$( $\gamma$)t^{-m_{ $\epsilon$}( $\gamma$)}])^{-1}
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Note that the Euler factor P_{ $\gamma$}(s) of the Ruelle \mathrm{L}‐function is given by

P_{ $\gamma$}(s)=\det[1- $\rho$( $\gamma$)t^{- $\gamma$ n_{\mathrm{e}}( $\gamma$)}]|_{t=\exp[\frac{l( $\gamma$)\mathrm{s}}{m_{ $\epsilon$}( $\gamma$)}]}.
Since we have

\displaystyle \exp(\frac{l( $\gamma$)}{m_{ $\epsilon$}( $\gamma$)}s)-1=\frac{l( $\gamma$)s}{m_{ $\epsilon$}( $\gamma$)}+O(s^{2}) ,

localizing at s=t-1
, the fact that (\det[1- $\rho$( $\gamma$)t^{-m_{ $\epsilon$}( $\gamma$)}])^{-1} divides \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(H^{1}(X_{\infty},  $\rho$))

implies the divisibility of A_{ $\rho$}^{1} by P_{ $\gamma$}(s)^{-1} in \mathbb{C}[[s]] for  $\gamma$\in$\Sigma$_{prim}^{ $\iota$}.

We can formulate this fact in terms of an analog of the Euler system([5]).

First of all we remark that using the homology exact sequence:

\rightarrow H_{q}(X_{\infty}( $\gamma$),  $\rho$)\rightarrow H_{q}(X_{\infty},  $\rho$)\rightarrow H_{q}(X_{\infty}, X_{\infty}( $\gamma$),  $\rho$)\rightarrow H_{q-1}(X_{\infty}( $\gamma$),  $\rho$)\rightarrow

and by the isomorphism

 H_{q}(X_{\infty}, X_{\infty}( $\gamma$),  $\rho$)\simeq H_{q}(D^{2}, S^{1},  $\rho$)

derived from the excision and the homotopy invariance of the homology group one may
check that the dimension of H.(X_{\infty}( $\gamma$), \mathbb{C}) and H.(X_{\infty}( $\gamma$),  $\rho$) are finite. Taking the

dual of (5) over \mathbb{C} , the Milnor duality shows an exact sequence of  $\Lambda$‐modules:

 0\rightarrow $\Lambda$/(\det[t^{rn_{ $\epsilon$}( $\gamma$)}- $\rho$( $\gamma$)])\rightarrow H^{1}(X_{\infty}( $\gamma$),  $\rho$)^{\mathrm{C}}\rightarrow^{\mathrm{o}\mathrm{r}}H^{1}(X_{\infty},  $\rho$)\rightarrow 0.
Let us fix a nonzero element c_{\infty} of H^{1}(X_{\infty},  $\rho$) and choose its any lift c^{\ovalbox{\tt\small REJECT}}( $\gamma$)_{\infty} to

H^{1}(X_{\infty}( $\gamma$),  $\rho$) . Then

c( $\gamma$)_{\infty}=F_{ $\gamma$}(t)c^{f}( $\gamma$)_{\infty}, F_{ $\gamma$}(t)=\det[t^{m_{\mathrm{e}}( $\gamma$)}- $\rho$( $\gamma$)]

is independent of a choice of the lift and satisfies

\mathrm{C}\mathrm{o}\mathrm{r}(c( $\gamma$)_{\mathfrak{c} $\omega$})=F_{ $\gamma$}(t)c_{\infty}.

More generally, for elements \{$\gamma$_{1}, \cdots, $\gamma$_{N}\} of $\Sigma$_{prim}^{ $\iota$} , we set

X_{\infty}($\gamma$_{1}\cdot\cdot$\gamma$_{N})=X_{\infty}\backslash N_{\infty}($\gamma$_{1})\cup $\Lambda$\cdot\cdot\cup N_{\infty}($\gamma$_{N}) .

Using Theorem 3.1, an induction argument shows that we have an exact sequence of

 $\Lambda$‐modules:

 0\rightarrow $\Lambda$/(F_{$\gamma$_{N}}(t))\rightarrow H^{1}(X_{\infty}($\gamma$_{1} . . . $\gamma$_{N})_{)} $\rho$)^{\mathrm{C}}\rightarrow^{\mathrm{o}\mathrm{r}}H^{1}(X_{\infty}($\gamma$_{1} . . . $\gamma$_{N-1}),  $\rho$)\rightarrow 0.
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Therefore we can successively choose an element c_{\infty}($\gamma$_{1} . . . $\gamma$_{N}) of H^{1}(X_{\infty}($\gamma$_{1} . . . $\gamma$_{N}),  $\rho$)
so that

Cor (c_{\infty}($\gamma$_{1}\cdots$\gamma$_{N}))=F_{$\gamma$_{N}}(t)c_{\infty}($\gamma$_{1} . . . $\gamma$_{N-1}) .

Thus \{c_{\infty}($\gamma$_{1} . . . $\gamma$_{N})\} has the same property as the Euler system [5] §2.1. If we apply the

co‐restriction map �Cor� N‐times to c_{\infty}($\gamma$_{1} . . . $\gamma$_{N}) , we obtain an element d_{\infty}($\gamma$_{1} $\gamma$_{N})
of H^{1}(X_{\infty},  $\rho$) which satisfies

d_{\infty}($\gamma$_{1} . . . $\gamma$_{N})=\displaystyle \prod_{i=1}^{N}F_{$\gamma$_{\mathrm{t}}}(t)\cdot c_{\infty}.
Now our solution of the geometric Iwasawa conjecture is formally described in the

following way.

If two elements c and c
� of H^{1}(X_{\infty},  $\rho$) have a relation:

c^{\ovalbox{\tt\small REJECT}}=f\cdot c, f\in $\Lambda$,

f^{-1} will be denoted by ind_{ $\Lambda$}(c, c^{\ovalbox{\tt\small REJECT}}) . (Note that in fact since H^{1}(X_{\infty},  $\rho$) is a torsion

 $\Lambda$‐module it is formally defined.) In particular our topological Euler system gives the

 $\epsilon$‐inert part of the Euler product:

 ind_{ $\Lambda$}(c_{\infty}, d_{\infty}(\displaystyle \prod_{ $\gamma$\in$\Sigma$_{pr^{\backslash }im}^{ $\iota$}} $\gamma$))=\prod_{ $\gamma$\in$\Sigma$_{prinx}}F_{$\gamma$_{i}}^{-1}\in \mathbb{C}[[s]].
The following statement is a formal reformulation of Theorem 3.1, which should be

compared with [5] Theorem 2.3.3.

Theorem 3.2. (formal) In \mathbb{C}[[s]], ind_{ $\Lambda$}(c_{\infty}, d_{\infty}(\displaystyle \prod_{ $\gamma$\in$\Sigma$_{pi_{?7l}}^{$\iota$_{7}}}. $\gamma$)) divides

\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}_{ $\Lambda$}(H^{1}(X_{\infty},  $\rho$
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