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Massera type theorems in hyperfunctions with

reexive Banach values

By

Yasunori OKADA *

Abstract

For some classes of periodic linear ordinary differential equations and functional equations,
it is known that the existence of a bounded solution in the future implies the existence of

a periodic solution. They are called the Massera type phenomena. Being interested in such

results, we introduced the notion of bounded hyperfunctions at infinity, and studied the Massera

type phenomena for hyperfunction solutions to periodic linear functional equations.
In this article, we continue this study, and after recalling the terminologies, we will observe

the Massera type phenomena in the settings of hyperfunctions with reflexive Banach values.

§1. Introduction

In 1950, Massera studied in [6] the existence of periodic solutions to periodic ordi‐

nary differential equations. In the linear case, he gave the result that for a 1‐periodic
linear ordinary differential equations of normal form with continuous coefficients, the

existence of a bounded solution in the future implies that the existence of a 1‐periodic
solution. After Massera, many generalizations appeared in the case of periodic linear

functional equations. The author studied in [7] such phenomena in the framework of hy‐

perfunctions. We introduced a notion of bounded hyperfunctions at infinity and classes

of operators, and gave the following result. (We recall relevant terminologies later.)

Theorem 1.1. Let E be a sequentially complete Hausdorff locally convex space,

K a closed interval in \mathbb{R}
,

and  $\omega$ a positive number. Consider an  $\omega$ ‐periodic operator  P

of type K on a strip domain \mathrm{D}^{1}+i ] -d, d[for^{E}\mathscr{O}_{L^{\infty}} with some d>0 and an  $\omega$ ‐periodic
 E ‐valued hyperfunction f . Assume that E satisfies the sequential Montel property (M).
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Then the equation Pu=f has an  $\omega$ ‐periodic  E ‐valued hyperfunction solution if and

only if it has an E\mathrm{B}_{L^{\infty}} ‐solution in a neighborhood of+\infty.

It is known that many useful function spaces appearing in the study of differential

equations admit the sequential Montel property. But there are also many useful spaces

which do not. For example, infinite dimensional Banach spaces never admit it. Therefore

we are interested in the problem if we can observe similar phenomena for the case that

E does not admit the sequential Montel property, for example, the case that E is a

Banach space.

The purpose of this article is to give a partial answer. First, in the section 2, we

briefly recall the notion of bounded hyperfunctions at infinity and that of operators of

type K
,

which we introduced in [7]. In the section 3, we study some functional analytic

properties of the spaces of holomorphic functions taking values in a reflexive locally
convex space. After these preparations, we give our main result in the section 4, that

is, a Massera type theorem in a reflexive Banach valued case. (See Theorem 4.4.)

§2. Bounded hyperfunctions at innity and operators

We recall the notion of bounded hyperfunctions at infinity and that of operators

of type K
,

introduced in [7]. The definition of bounded hyperfunctions is similar to the

original cohomological definitions of hyperfunctions and Fourier hyperfunctions given
in the one‐dimensional case in Sato [8]. Refer also to Sato [9], Kawai [5], Sato‐Kawai‐

Kashiwara [10], and Kaneko [4], for hyperfunctions, Fourier hyperfunctions, and related

topics.
In this section, E denotes a sequentially complete Hausdorff locally convex space

over \mathbb{C} . We denote by \mathcal{N}(E) the family of continuous seminorms of E.

§2.1. Sheaf  E\mathscr{B}_{L}\infty of  E‐valued bounded hyperfunctions

In this subsection, we define the sheaf E\mathscr{B}_{L^{\infty}} of E‐valued bounded hyperfunctions
at infinity on a compactification \mathrm{D}^{1}:=[-\infty, +\infty]=\mathbb{R}\sqcup\{\pm\infty\} of R. In the scalar case

(that is, the case E=\mathbb{C} ), the space of the global sections of our sheaf can be identified

with the space  B_{L}\infty of bounded hyperfunctions due to Chung‐Kim‐Lee [2].
We consider the following diagram

\mathbb{C}=\mathbb{R}+i\mathbb{R} \mapsto \mathrm{D}^{1}+i\mathbb{R}
\cup \cup

\mathbb{R}=]-\infty, +\infty[\mapsto \mathrm{D}^{1}=[-\infty, +\infty]

and identify \mathbb{C} with an open subset \mathbb{R}+i\mathbb{R} in \mathrm{D}^{1}+i\mathbb{R} . Let E\mathscr{O} be the sheaf of E‐

valued holomorphic functions on \mathbb{C} . Refer to Bochnak‐Siciak [1] for the properties of
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holomorphic functions taking values in a sequentially complete Hausdorff locally convex

space.

Denition 2.1. We define the sheaf  E\mathscr{O}_{L}\infty of  E‐valued bounded holomorphic
functions at infinity on \mathrm{D}^{1}+i\mathbb{R} ,

as the sheaf associated with the presheaf given by the

correspondence

\mathrm{D}^{1}+i\mathbb{R}^{\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{n}}\supset U\mapsto\{f\in E\mathscr{O}(U\cap \mathbb{C});f is bounded

For a compact set L\subset U ,
a continuous seminorm p\in \mathcal{N}(E) ,

and a section  f\in

 E\mathscr{O}(U\cap \mathbb{C}) ,
we use the notation

(2.1) \displaystyle \Vert f\Vert_{L,p}:=\sup_{w\in L\cap \mathbb{C}}p(f(w)) .

Then, the space E\mathscr{O}_{L}\infty(U) can be written as

(2.2) E\mathscr{O}_{L^{\infty}}(U) :=\{f\in E\mathscr{O}(U\cap \mathbb{C});\Vert f\Vert_{L,p}<+\infty, \forall L\Subset U, \forall p\in \mathcal{N}(E)\},
and is endowed with a locally convex topology by the family of seminorms \Vert\cdot\Vert_{L,p} with

L\subset U and p\in \mathcal{N}(E) . We sometimes use \mathscr{O}_{L}\infty instead of \mathbb{C}\mathscr{O}_{L}\infty for the scalar case

(E=\mathbb{C}) ,
and \Vert f\Vert_{L} instead of \Vert f\Vert_{L,|\cdot|} for f\in \mathscr{O}_{L}\infty(U) .

Note that E\mathscr{O}_{L}\infty|_{\mathbb{C}}=E\mathscr{O} , that is, E\mathscr{O}_{L}\infty(U)=EO(U) for U\subset \mathbb{C}.

Denition 2.2 (Sheaf of E‐valued bounded hyperfunctions at infinity). We de‐

fine the sheaf  E\mathscr{B}_{L}\infty of  E‐valued bounded hyperfunctions at infinity on \mathrm{D}^{1} as the sheaf

associated with the presheaf

(2.3) \mathrm{D}^{1}\supset $\Omega$
open

\displaystyle \mapsto\lim_{\vec{U}}\frac{E\mathscr{O}_{L^{\infty}}(U\backslash  $\Omega$)}{E\mathscr{O}_{L^{\infty}}(U)},
where U runs through complex neighborhoods of  $\Omega$

,
that is, open sets in \mathrm{D}^{1}+i\mathbb{R}

including  $\Omega$ as a closed subset.

We also write  E\mathscr{B}_{L}\infty|_{\mathbb{R}} by E\mathscr{B}
,

and sometimes abbreviate \mathbb{C}\mathscr{B}_{L}\infty and \mathbb{C}\mathscr{B} as \mathscr{B}_{L}\infty
and \mathscr{B}

, respectively. These notations are compatible with the sheaf \mathscr{B} of usual hyper‐
functions due to Sato, and with the sheaf E\mathscr{B} of E‐valued hyperfunctions introduced by
Ion‐Kawai [3] when E is a Fréchet space.

A section of  E\mathscr{B}_{L}\infty on a compact set admits a boundary value representation. In

the sequel, we use the conventions  B_{d}:= ] -d, d[ and \dot{B}_{d}:=B_{d}\backslash \{0\} for d>0 . We cite

the following proposition, which is a part of [7, Proposition 2.3].

Proposition 2.3. For a compact set K\subset \mathrm{D}^{1} ,
we have

(2.4) E\displaystyle \mathscr{B}_{L^{\infty}}(K)=\lim_{ $\Omega$\vec{d>},0}\frac{E\mathscr{O}_{L^{\infty}}( $\Omega$+i\dot{B}_{d})}{E\mathscr{O}_{L^{\infty}}( $\Omega$+iB_{d})},
where  $\Omega$ runs through open neighborhoods of  K in \mathrm{D}^{1}.
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§2.2. Operators of type K

We recall the notion of operators of type K in [7, §3].

Denition 2.4. Let U\subset \mathrm{D}^{1}+i\mathbb{R} be an open set and K a closed interval [a, b]\subset
\mathbb{R} . We admit the case a=b

, i.e., K=\{a\} . A family P=\{P_{V} :  E\mathscr{O}_{L}\infty(V+K)\rightarrow
 E\mathscr{O}_{L}\infty(V)\}_{V\subset U} of linear maps is said to be an operator of type K for  E\mathscr{O}_{L}\infty on  U ,

if

each P_{V} is continuous and each diagram below commutes for any pair V_{1}\supset V_{2} in U.

E\mathscr{O}_{L^{\infty}}(V_{1}+K)\rightarrow^{P_{V_{1}}}E\mathscr{O}_{L^{\infty}}(V_{1})

\downarrow \downarrow
 E\mathscr{O}_{L^{\infty}}(V_{2}+K)\rightarrow^{P_{V_{2}}}E\mathscr{O}_{L^{\infty}}(V_{2})

Here the vertical arrows are the restriction maps.

Note that the meaning of the vector sum V+K can be naturally defined also in

case V\not\subset \mathbb{C}.
An operator P of type K automatically induces a family \{P_{ $\Omega$} :  E\mathscr{B}_{L}\infty( $\Omega$+K)\rightarrow

 E\mathscr{B}_{L}\infty( $\Omega$)\}_{ $\Omega$\subset U\cap \mathrm{D}^{1}} of linear maps, where the following diagram commutes

E\mathrm{B}_{L^{\infty}}($\Omega$_{1}+K)\rightarrow^{P_{$\Omega$_{1}}}E\mathrm{B}_{L^{\infty}}($\Omega$_{1})

\downarrow \downarrow
 E\mathrm{B}_{L^{\infty}}($\Omega$_{2}+K)\rightarrow^{P_{$\Omega$_{2}}}E\mathrm{B}_{L^{\infty}}($\Omega$_{2})

for any $\Omega$_{1}\supset$\Omega$_{2} in U\cap \mathrm{D}^{1}.

Consider the case U\subset \mathbb{C} . Then the sets V and V+K are included in \mathbb{C} , and the

entries of the family P are linear maps P_{V} : E\mathscr{O}(V+K)\rightarrow E\mathscr{O}(V) . Therefore, in this

case, we say that P is an operator of type K for E\mathscr{O} on U.

Let P be again an operator of type K for  E\mathscr{O}_{L}\infty on  U ,
and we define the notion of

 E\mathscr{O}_{L}\infty ‐solutions on an open set  V\subset U to an equation given by P . For f\in E\mathscr{O}_{L}\infty(V) ,
we

say that u is an  E\mathscr{O}_{L}\infty ‐solution to the equation  Pu=f on V ,
or simply an E\mathscr{O}_{L}\infty(V)-

solution to Pu=f ,
if u belongs to E\mathscr{O}_{L}\infty(V+K) and satisfies P_{V}u=f . Note that

the domain of definition of u is not V but V+K . Similarly, for  f\in E\mathscr{B}_{L}\infty () ,
an

 E\mathrm{B}_{L}\infty ‐solution to  Pu=f on  $\Omega$ is a section  u\in E\mathscr{B}_{L}\infty( $\Omega$+K) satisfying P_{ $\Omega$}u=f.

Moreover, when f is a germ of  E\mathscr{B}_{L}\infty at +\infty (that is,  f\in(^{E}\mathscr{B}_{L}\infty)_{+\infty} ), it makes sense

to consider an (^{E}\mathrm{B}_{L}\infty)_{+\infty} ‐solution to an equation Pu=f.
Note also that we sometimes omit the subscripts V and  $\Omega$ in  P_{V} and P_{ $\Omega$} if it causes

no confusion. A simple example is the differentiation \partial_{w}.
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§2.3. Periodicity for bounded hyperfunctions and operators

We take a positive constant  $\omega$ and give a notion of  $\omega$‐periodicity for our hyperfunc‐
tions and operators. Roughly speaking, we denote by  T_{ $\omega$} the  $\omega$‐translation operator

 f\mapsto f(\cdot+ $\omega$) ,
and by T_{ $\omega$}-1 the  $\omega$‐difference operator  f\mapsto f(\cdot+ $\omega$)-f() . Then we de‐

fine the  $\omega$‐periodicity for bounded holomorphic functions and bounded hyperfunctions

by the equation (T_{ $\omega$}-1)f=0 ,
and the  $\omega$‐periodicity for operators of type  K by the

commutativity with T_{ $\omega$} . Let us see this process a little bit more precisely.
As we have seen in (2.2), a section f\in E\mathscr{O}_{L^{\infty}}(V+ $\omega$) is actually a section  f\in

 E\mathscr{O}((V+ $\omega$)\cap \mathbb{C}) satisfying \Vert f\Vert_{L,p}<+\infty for any  L\Subset V+ $\omega$ and  p\in \mathcal{N}(E) . We define

T_{ $\omega$}f\in E\mathscr{O}(V\cap \mathbb{C}) by (T_{ $\omega$}f)(w) :=f(w+ $\omega$) for w\in V\cap \mathbb{C} . Then, it immediately
follows that \Vert T_{ $\omega$}f\Vert_{L,p}=\Vert f\Vert_{L+ $\omega$,p}<+\infty for  L\Subset V and p\in \mathcal{N}(E) ,

which implies
the continuity of T_{ $\omega$} : E\mathscr{O}_{L^{\infty}}(V+ $\omega$)\rightarrow E\mathscr{O}_{L^{\infty}}(V) . Since these maps for open sets

V\subset \mathrm{D}^{1}+i\mathbb{R} commute with restrictions, they form an operator of type \{ $\omega$\} for E\mathscr{O}_{L^{\infty}}
on \mathrm{D}^{1}+i\mathbb{R} . Similarly T_{ $\omega$}-1 becomes an operator of type [0,  $\omega$] ,

which can be seen from

the estimate \Vert(T_{ $\omega$}-1)f\Vert_{L,p}\leq\Vert f\Vert_{L+ $\omega$,p}+\Vert f\Vert_{L,p}\leq 2\Vert f\Vert_{L+[0, $\omega$],p}.
A section f\in E\mathscr{O}_{L^{\infty}}(V+[0,  $\omega$]) , (resp. f\in E\mathscr{B}_{L^{\infty}}(+[0,  $\omega$ is called  $\omega$‐periodic if it

satisfies (T_{ $\omega$}-1)f=0 in E\mathscr{O}_{L^{\infty}}(V) , (resp. in E\mathscr{B}_{L^{\infty}} ,
and an operator P=\{P_{V}\}_{V\subset U}

of type K\subset \mathbb{R} on a strip domain U is called  $\omega$‐periodic if the diagram

 E\mathscr{O}_{L^{\infty}}(V+ $\omega$+K)\rightarrow^{+ $\omega$}E\mathscr{O}_{L^{\infty}}(V+ $\omega$)P_{V}

commutes for any V\subset U . Note that  $\omega$‐periodic operator induces the commutative

diagram

 E\mathrm{B}_{L^{\infty}}( $\Omega$+ $\omega$+K)\rightarrow^{E}\mathrm{B}_{L^{\infty}}( $\Omega$+ $\omega$)P_{ $\Omega$+ $\omega$}

\mathrm{B}1()
for any  $\Omega$\subset U\cap \mathrm{D}^{1} ,

and preserves the  $\omega$‐periodicity of its operands.
Now we cite a result concerning  $\omega$‐periodicity.

Proposition 2.5 ([7, Proposition 3.8]). Let  $\Omega$\subset \mathbb{R} be an open interval and K

the closed interval [0,  $\omega$] . The restriction maps E\mathscr{B}_{L}\infty(\mathrm{D}^{1})\rightarrow E\mathscr{B}(\mathbb{R}) and  E\mathscr{B}(\mathbb{R})\rightarrow
 E\mathscr{B}( $\Omega$+K) induce the following isomorphisms respectively.

(2.5) \{f\in E\mathscr{B}_{L}\infty (\mathrm{D}1); (T_{ $\omega$}-1)f=0\}\rightarrow\{f\in E\mathscr{B}(\mathbb{R});(T_{ $\omega$}-1)f=0\},
(2.6) \{f\in E\mathscr{B}(\mathbb{R});(T_{ $\omega$}-1)f=0\}\rightarrow\{f\in E\mathscr{B}( $\Omega$+K);(T_{ $\omega$}-1)f=0\}.
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Moreover, any  $\omega$ ‐periodic hyperfunction  g\in E\mathscr{B}(\mathbb{R}) has an  $\omega$ ‐periodic defining function

 f\in E\mathscr{O}_{L^{\infty}}(\mathrm{D}^{1}+i\dot{B}_{d}) with some d>0.

Consider an equation Pu=f on \mathbb{R}
,

where P is an  $\omega$‐periodic operator of type

 K\subset \mathbb{R} for  E\mathscr{O}_{L}\infty on \mathrm{D}^{1}+iB_{d} ,
and f is an  $\omega$‐periodic  E‐valued hyperfunction on \mathbb{R}.

We can take a unique  $\omega$‐periodic extension \tilde{f}\in E\mathscr{B}_{L}\infty () of f using the isomorphism

(2.5), and associate an equation Pũ = \tilde{f} on \mathrm{D}^{1} to the original equation Pu=f . Under

this situation, we give the following corollary of Proposition 2.5, which is explained at

the end of section 3 in [7].

Corollary 2.6. The restriction E\mathscr{B}_{L}\infty(\mathrm{D}^{1})\rightarrow E\mathscr{B}(\mathbb{R}) induces the isomorphism
between the spaces of the  $\omega$ ‐periodic solutions.

\{\tilde{u}\in E\mathscr{B}_{L}\infty (D1); (T_{ $\omega$}-1)\tilde{u}=0 ,
Pũ = \tilde{f}\}\rightarrow\sim\{u\in E\mathscr{B}(\mathbb{R});(T_{ $\omega$}-1)u=0, Pu=f\}.

§3. Duality results on E\mathscr{O}

Throughout this section, E denotes a reflexive Hausdorff locally convex space over

\mathbb{C} . We denote by E' its strong dual space. By the very definition of the reflexivity, the

standard embedding $ : E\rightarrow E'' given by \{(x)(y)=y(x) for x\in E and y\in E' becomes

a topological isomorphism. Since the reflexivity implies the sequential completeness, we

can consider E\mathscr{O} as we did in the previous section, as well as E'\mathscr{O} by the same reason.

We study some functional analytic properties on E\mathscr{O}.

Note that, unlike in other sections, we do not consider \mathrm{D}^{1}+i\mathbb{R} , (nor E\mathscr{O}_{L^{\infty}}, E\mathscr{B}_{L^{\infty}} )
in this section. Instead, we take the Riemann sphere \mathbb{P}^{1}:=\mathbb{C}\sqcup\{\infty\} ,

where \infty
� denotes

its point at infinity.

§3.1. A weak form of the Köthe duality

Let  L be a compact set in \mathbb{C} and consider the space E\mathscr{O}(L) :=\displaystyle \lim_{\rightarrow V\supset L}E\mathscr{O}(V) of

E‐valued holomorphic functions defined in a neighborhood of L
,

where V runs through

open neighborhoods of L in \mathbb{C} . We endowed the space EO(L) with the locally convex

inductive limit topology, and give a weak form of the Köthe duality.

Denition 3.1. For open neighborhoods V, W\subset \mathbb{C} of L
,

we take a compact

neighborhood M of L in W\cap V whose boundary  $\gamma$:=@M consists of finite piecewise
smooth simple closed curves, and define a bilinear form

\rangle_{L}:^{E'}\mathscr{O}(W\backslash L)\times E\mathscr{O}(V)\rightarrow \mathbb{C}

by

(3.1) \displaystyle \langle F, f\rangle_{L} :=\int_{ $\gamma$}F(w)(f(w))dw
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for F\in E'\mathscr{O}(W\backslash L) and f\in E\mathscr{O}(V) . Here F(w)(f(w)) is a value of the continuous

linear functional F(w)\in E' evaluated at f(w)\in E.

Let us explain in the followings the fact that \rangle_{L} is well‐defined and that it

induces the duality between E'\mathscr{O}(W\backslash L)/E'\mathscr{O}(W) and E\mathscr{O}(L) .

The first remark is on the existence of M satisfying the requirements in Defini‐

tion 3.1, that we may take as M a union of finite closed disks with L\Subset M\Subset V\cap W.

Lemma 3.2. F(w)(f(w)) is holomorphic in w\in(W\cap V)\backslash L . TherefO re the

integral (3.1) does not depend on the choice of  $\gamma$ , and induces a bilinear form on  E'\mathscr{O}(W\backslash 
L)\times^{E}\mathscr{O}(L) .

Proof. For the former statement, we shall show that \displaystyle \frac{F(z)(f(z))-F(w)(f(w))}{(z-w)} con‐

verges as z\rightarrow w . This quotient is equal to

F'(w)(f(z))+F(w)(\displaystyle \frac{f(z)-f(w)}{z-w})+(\frac{F(z)-F(w)}{z-w}-F'(w))(f(z)) ,

whose first two terms converge to F'(w)(f(w))+F(w)(f'(w)) . To see that the third

term converges to 0 ,
note that f(z) belongs to a bounded set in E when z belongs to

a compact neighborhood of w
,

and that a convergence in E' is nothing but a uniform

convergence as functionals on bounded sets in E.

The latter statement directly follows from the former. \square 

Denition 3.3. Let L be a compact set in \mathbb{C} and W an open neighborhood. We

define linear maps  $\alpha$ : (^{E}\mathscr{O}(L))'\rightarrow E'\mathscr{O}(W\backslash L) and  $\beta$ :  E'\mathscr{O}(W\backslash L)\rightarrow(^{E}\mathscr{O}(L))' by

(3.2)  $\alpha$( $\varphi$)(w)(x) := $\varphi$(\displaystyle \frac{1}{2 $\pi$ i}\frac{1}{w-}x)\in \mathbb{C},
for  $\varphi$\in(^{E}\mathscr{O}(L))', x\in E and w\in W\backslash L ,

and by

(3.3)  $\beta$(F)(f):=\langle F, f\rangle_{L},

for F\in E'\mathscr{O}(W\backslash L) and f\in E\mathscr{O}(L) . Here we regard \displaystyle \frac{1}{2 $\pi$ i}\frac{1}{w-}x as an element of EO(L)
in the right hand side of (3.2).

The linearity of the functional  $\alpha$( $\varphi$)(w) : E\rightarrow \mathbb{C} is trivial, and that of the map  $\alpha$

is also trivial provided it is well‐defined. Let us show the well‐definedness of  $\alpha$.

Lemma 3.4.  $\alpha$( $\varphi$)(w):E\rightarrow \mathbb{C} is continuous.

Proof. For any w\in W\backslash L ,
we take  $\epsilon$>0 and a neighborhood V of L with

dist (w, V)> $\epsilon$ . For any compact set  M\subset V and continuous seminorm p\in \mathcal{N}(E) ,
we

have

\displaystyle \Vert\frac{1}{2 $\pi$ i}\frac{1}{w-}x\Vert_{M,p}=\Vert\frac{1}{2 $\pi$ i}\frac{1}{w-}\Vert_{M}\cdot p(x)\leq\frac{p(x)}{2 $\pi \epsilon$},
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which implies the continuity of E\displaystyle \ni x\mapsto\frac{1}{2 $\pi$ i}\frac{1}{w-}x\in E\mathscr{O}(V) . Since the restriction

E\mathscr{O}(V)\rightarrow EO(L) is also continuous, so is the composition  $\alpha$( $\varphi$)(w) of these maps. \square 

Lemma 3.4 implies that  $\alpha$( $\varphi$)(w)\in E'

Lemma 3.5.  $\alpha$( $\varphi$)\in E'\mathscr{O}(W\backslash L) .

Proof. Thanks to [1, Theorem 3.1], it suffices to show that  W\backslash L\ni w\mapsto
 x^{*}( $\alpha$( $\varphi$)(w))\in \mathbb{C} is holomorphic for any x^{*}\in E Since E is reflexive, there exists

x\in E such that \mathrm{o}(x)=x^{*} ,
that is, x^{*}(y)=y(x) for any y\in E' . Therefore, we shall

prove that  $\alpha$( $\varphi$)(w)(x) is holomorphic in w . By a direct calculation, we have

\displaystyle \frac{ $\alpha$( $\varphi$)(z)(x)- $\alpha$( $\varphi$)(w)(x)}{z-w}= $\varphi$(\frac{1}{2 $\pi$ i}\frac{-1}{(z-\cdot)(w-\cdot)}x) ,

for w, z\in W\backslash L . Now the conclusion follows from the fact that \displaystyle \frac{-1}{(z-\cdot)(w-\cdot)}x\rightarrow\frac{-1}{(w-\cdot)^{2}}x
as z\rightarrow w in E\mathscr{O}(L) . \square 

Lemma 3.6.  $\beta$(F)\in(^{E}\mathscr{O}(L))' , i.e.,  $\beta$(F) : E\mathscr{O}(L)\rightarrow \mathbb{C} is continuous.

Proof. By the definition of the locally convex inductive limit topology, it suffices

to show that  $\beta$(F) is continuous as E\mathscr{O}(V)\rightarrow \mathbb{C} for any open neighborhood V of L.

Once we fix V and W ,
then we can fix a contour  $\gamma$ in the calculation of \langle F, f\rangle_{L} for any

F\in E'\mathscr{O}(W\backslash L) and f\in E\mathscr{O}(V) .

Since the subset \mathcal{M}:=\{F(w)\}_{w\in $\gamma$}\subset E' is compact and therefore bounded, and

also since $ : E\rightarrow E'' is a topological isomorphism, p_{\mathcal{M}}(x) :=\displaystyle \sup_{y\in \mathcal{M}}|\{(x)(y)|=
\displaystyle \sup_{y\in \mathcal{M}}|y(x)| for x\in E defines a continuous seminorm on E . Now we have

| $\beta$(F)(f)|\displaystyle \leq\int_{ $\gamma$}|F(w)(f(w))| |dw|\leq\int_{ $\gamma$}p_{\mathcal{M}}(f(w)) |dw|
\displaystyle \leq| $\gamma$| \sup_{w\in $\gamma$}p_{\mathcal{M}}(f(w))=| $\gamma$| \Vert f\Vert_{ $\gamma$,p_{\mathcal{M}}},

which concludes the proof. \square 

Lemma 3.7. If F\in E'\mathscr{O}(W) ,
then  $\beta$(F)=0.

Proof. Under the same terminologies as in Definition 3.1, we have  $\beta$(F)(f)=

\displaystyle \int_{\partial M}F(w)(f(w))dw for any f\in E\mathscr{O}(V) . By the same proof of Lemma 3.2, we can show

F(w)(f(w))\in \mathscr{O}(M) . Therefore  $\beta$(F)(f)=0. \square 

Lemma 3.8.  $\beta$\circ $\alpha$=\mathrm{i}\mathrm{d}_{(^{E}\mathscr{O}(L))'}.
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Proof. We shall show  $\beta$( $\alpha$( $\varphi$))(f)= $\varphi$(f) for any  $\varphi$\in(^{E}\mathscr{O}(L))' and any f\in E\mathscr{O}(L) .

By the definition, we have

(3.4)  $\beta$( $\alpha$( $\varphi$))(f)=\displaystyle \int_{ $\gamma$} $\alpha$( $\varphi$)(w)(f(w))dw=\int_{ $\gamma$} $\varphi$(\frac{1}{2 $\pi$ i}\frac{1}{w-}f(w))dw,
where  $\gamma$ : = @M with L\Subset M\Subset W.

Now we claim that the map  $\gamma$\displaystyle \ni w\mapsto\frac{1}{2 $\pi$ i}\frac{1}{w-}f(w)\in EO(L) is continuous. In fact,
for any choice of L_{1} with L\Subset L_{1}\Subset M (@M= $\gamma$) ,

we have the estimate

\displaystyle \Vert\frac{1}{z-}f(z)-\frac{1}{w-}f(w)\Vert_{L_{1},p}\leq\Vert\frac{w-z}{(z-\cdot)(w-\cdot)}f(z)\Vert_{L_{1},p}+\Vert\frac{f(z)-f(w)}{w-}\Vert_{L_{1},p}
\displaystyle \leq\frac{|w-z|}{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}( $\gamma$,L_{1})^{2}}\Vert f\Vert_{ $\gamma$,p}+\frac{1}{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}( $\gamma$,L_{1})}p(f(z)-f(w)) ,

for p\in \mathcal{N}(E) and w,  z\in $\gamma$ . The right hand side converges to  0 as z\rightarrow w.

Therefore the calculation (3.4) can be continued to

 $\beta$( $\alpha$( $\varphi$))(f)= $\varphi$(\displaystyle \int_{ $\gamma$}\frac{1}{2 $\pi$ i}\frac{1}{w-}f(w)dw)= $\varphi$(f) .

\square 

Lemma 3.9. For any F\in E'\mathscr{O}(W\backslash L) ,  $\alpha$( $\beta$(F))-F\in E'\mathscr{O}(W) .

Proof. We take an arbitrary relatively compact open set U with piecewise smooth

boundary  $\Gamma$=\partial U satisfying L\subset U\subset W ,
and we shall show that ( $\alpha$( $\beta$(F))-F)|_{U\backslash L}\in

 E'\mathscr{O}(U\backslash L) can be extended to a section in E'\mathscr{O}(U) .

For any w\in U\backslash L ,
we choose M as in Definition 3.1 satisfying w\not\in M and

L\subset M\subset U ,
and define  $\gamma$:=@M. We can show  $\alpha$( $\beta$(F))(w)=\displaystyle \frac{1}{2 $\pi$ i}\int_{ $\gamma$}\frac{F(z)}{w-z}dz using a

test with an arbitrary x\in E as

 $\alpha$( $\beta$(F))(w)(x)= $\beta$(F)(\displaystyle \frac{1}{2 $\pi$ i}\frac{1}{w-}x)=\int_{ $\gamma$}F(z)(\frac{1}{2 $\pi$ i}\frac{1}{w-z}x)dz=\frac{1}{2 $\pi$ i}\int_{ $\gamma$}\frac{F(z)(x)}{w-z}dz
=(\displaystyle \frac{1}{2 $\pi$ i}\int_{ $\gamma$}\frac{F(z)}{w-z}dz)(x) .

On the other hand, we have F(w)=\displaystyle \frac{1}{2 $\pi$ i}\int_{ $\Gamma$- $\gamma$}\frac{F(z)}{z-w}dz ,
since w\in U\backslash M and @(U \backslash M) =

 $\Gamma$- $\gamma$ . It follows from these equalities that

( $\alpha$( $\beta$(F))-F)(w)=\displaystyle \frac{1}{2 $\pi$ i}\int_{ $\Gamma$}\frac{F(z)}{w-z}dz,
which can be extended to U. \square 

By these preparations, we give
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Theorem 3.10. The maps  $\alpha$ and  $\beta$ induce the isomorphism between vector

spaces

(^{E}\mathscr{O}(L))'\rightarrow\sim E'\mathscr{O}(W\backslash L)/E'\mathscr{O}(W) .

Consider the case W=\mathbb{C}.

Corollary 3.11. The maps  $\alpha$ and  $\beta$ also induce the isomorphism between vector

spaces

(^{E}\mathscr{O}(L))'\rightarrow\sim E'\circ.
Here E'\mathscr{O}^{\mathrm{O}}(\mathbb{P}^{1}\backslash L) denotes the subspace \{F\in E'\mathscr{O}(\mathbb{P}^{1}\backslash L);F(\infty)=0\} of E'\mathscr{O}(\mathbb{P}^{1}\backslash L) .

This corollary follows from Theorem 3.10 and the lemma below.

Lemma 3.12. For any  $\varphi$\in(^{E}\mathscr{O}(L))',  $\alpha$( $\varphi$)\in E'\mathscr{O}(\mathbb{C}\backslash L) extends holomorphi‐

cally to \mathbb{P}^{1}\backslash L and satisfyy  $\alpha$( $\varphi$)(\infty)=0.

Proof. We define a map F : \mathbb{P}^{1}\backslash L\rightarrow E' by F(w)= $\alpha$()() for w\in \mathbb{C}\backslash L
and F(\infty)=0 . Since \displaystyle \frac{1}{2 $\pi$ i}\frac{1}{w-}x\rightarrow 0 in EO(L) as  w\rightarrow\infty for any  x\in E ,

we have

 $\alpha$( $\varphi$)(w)(x)\rightarrow 0 as  w\rightarrow\infty . Then it follows from [1, Theorem 3.1] that  F\in E'\mathscr{O}(\mathbb{P}^{1}\backslash 
L) . \square 

By abuse, we denote the isomorphism in Corollary 3.11 again by  $\alpha$
,

and its inverse

by  $\beta$.

§3.2. Closedness of an operator of type K in weak topologies

We denote by E_{\mathrm{w}} the space E endowed with the weak topology. Since E is reflexive,

E_{\mathrm{w}} is isomorphic to the dual space of the barrelled space E' endowed with the weak

star topology. Therefore it follows from the Banach‐Steinhaus theorem that E_{\mathrm{w}} is also

sequentially complete. Refer, for example, to Schaefer‐Wolff [11, III.4.6 and IV.5.6].
In this subsection, we consider an operator P=\{P_{V} : E\mathscr{O}(V+K)\rightarrow E\mathscr{O}(V)\}

of type K=[a, b]\subset \mathbb{R} for E\mathscr{O} on U\subset \mathbb{C} ,
and we shall show that each P_{V} becomes

sequentially closed as a map E_{\mathrm{w}\mathscr{O}(V}+K ) \rightarrow E_{\mathrm{w}\mathscr{O}(V)} . Note that E\mathscr{O}(V)=E_{\mathrm{w}\mathscr{O}(V)} as

vector spaces. In fact, the inclusion E\mathscr{O}(V)\subset E_{\mathrm{w}\mathscr{O}(V)} follows from the very definition,
and the equality follows again from [1, Theorem 3.1].

For a compact set L in U ,
we denote by P_{L} : E\mathscr{O}(L+K)\rightarrow EO(L) the inductive

limit of P_{V} in V with L\subset V\subset U ,
and by P_{L}^{*} : E'\mathscr{O}^{\mathrm{O}}(\mathbb{P}^{1}\backslash L)\rightarrow E'\mathscr{O}^{\mathrm{O}}(\mathbb{P}^{1}\backslash (L+K))

its adjoint given by Corollary 3.11. In other words, P_{L}^{*} is a linear map satisfying

\langle P_{L}^{*}(F) , f\rangle_{L_{1}}=\langle F, P_{L}(f)\rangle_{L_{2}} for any F\in E'\mathscr{O}^{\mathrm{O}}(\mathbb{P}^{1}\backslash L) and f\in E\mathscr{O}(L+K) .

Lemma 3.13. Consider L\subset V, F\in E'\mathscr{O}^{\mathrm{O}}(\mathbb{P}^{1}\backslash L) and a convergent sequence

\{f_{n}\}_{n} in E_{\mathrm{w}\mathscr{O}(V)} with limit f . Then \langle F, f_{n}\rangle_{L}\rightarrow\langle F, f\rangle_{L}.
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Proof. We can take L\Subset M\Subset V and  $\gamma$ : = @M such that \langle F, g\displaystyle \rangle_{L}=\int_{ $\gamma$}F(w)(g(w))dw
for any g\in E_{\mathrm{w}\mathscr{O}(V)} . Since \{f_{n}\} is a convergent sequence, \mathcal{L}:=\{f_{n}(w);w\in $\gamma$, n\in \mathbb{N}\}
is bounded in E_{\mathrm{w}} ,

and therefore bounded also in E by virtue of Mackey�s theorem.

The seminorm q_{\mathcal{L}} on E' defined by q_{\mathcal{L}}(y) :=\displaystyle \sup_{x\in \mathcal{L}}|y(x)| is continuous and we have

 C:=\displaystyle \sup_{w\in $\gamma$}q_{\mathcal{L}}(F(w))<+\infty . Therefore |F(w)(f_{n}(w))|\leq C for any  w\in $\gamma$ and

any  n\in \mathbb{N} . On the other hand, we have F(w)(f_{n}(w))\rightarrow F(w)(f(w)) for each fixed

 w\in $\gamma$ since  f_{n}(w)\rightarrow f(w) in E_{\mathrm{w}} . Now the conclusion follows from Lebesgue�s bounded

convergence theorem. \square 

Lemma 3.14. Let P=\{P_{V} : E\mathscr{O}(V+K)\rightarrow E\mathscr{O}(V)\}_{V\subset U} be an operator of type

K=[a, b] fo r^{E}\mathscr{O} on U. Then, each P_{V} : E_{\mathrm{w}\mathscr{O}(V}+K ) \rightarrow E_{\mathrm{w}\mathscr{O}(V)} is sequentially closed.

Proof. Consider a sequence \{f_{n}\}_{n}\subset E\mathscr{O}(V+K) convergent in E_{\mathrm{w}\mathscr{O}(V}+K ) with

limit f\in E\mathscr{O}(V+K) ,
such that P_{V}(f) converges to g\in E\mathscr{O}(V) in E_{\mathrm{w}\mathscr{O}(V)} . We shall

show that P_{V}(f)=g.
The equality P_{V}(f)=g in E\mathscr{O}(V) is reduced to the equalities P_{V}(f)|_{L}=g|_{L}

for compact subsets L\subset V ,
which can be checked by duality. Therefore, thanks to

Corollary 3.11 and the definition of P_{L}^{*} ,
it suffices to prove that \langle P_{L}^{*}(F) , f\rangle_{L}=\langle F, g\rangle_{L}

for any L\subset V and any F\in E'\mathscr{O}^{\mathrm{O}}(\mathbb{P}^{1}\backslash L) . We get this equality from the equalities

\langle P_{L}^{*}(F) , f_{n}\rangle_{L+K}=\langle F, P_{V}(f_{n})\rangle_{L} for n\in \mathbb{N} , by applying Lemma 3.13 to the both sides.

\square 

§4. Main result

We recall the notion of the sequential Montel property (M) for locally convex spaces.

Refer to section 4 of [7]. (See also Zubelevich [13].)

Denition 4.1. Let E be a sequentially complete Hausdorff locally convex space.

E is said to admit the Montel property if it satisfies the condition:

(M) Any bounded sequence in E has a convergent subsequence.

When E admits the Montel property, we have the following weak variant of the

Montel type theorem for E\mathscr{O}_{L}\infty(U) .

Theorem 4.2 ([7, Theorem 4.1]). Assume that E satisfies the Montel property

(M). Then for any bounded sequence (f_{j})_{j} in E\mathscr{O}_{L}\infty(U) ,
we can take a subsequence

(f_{j_{k}})_{k} which converges in E\mathscr{O}(U\cap \mathbb{C}) . The limit f\in E\mathscr{O}(U\cap \mathbb{C}) of such a convergent

subsequence belongs to E\mathscr{O}_{L}\infty(U) .
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As we mentioned in the introduction, infinite dimensional Banach spaces never

admit the Montel property. But it is well‐known that the weak topology of a reflexive

Banach space does.

Theorem 4.3. Let E be a reflexive Banach space. Then any bounded sequence

in E has a subsequence which converges in the weak topology. In particular, E_{\mathrm{w}} admits

the Montel property (M).

Refer to Yosida [12, V. §2 Theorem 1] for the former, and recall again that a subset

in E is bounded if and only if it is bounded in E_{\mathrm{w}}.

Now we give our main result.

Theorem 4.4. Let E be a reflexive Banach space, K a closed interval in \mathbb{R}
,

and

 $\omega$ a positive number. Consider an  $\omega$ ‐periodic operator  P of type K fo  r^{E}\mathscr{O}_{L}\infty on a strip
domain \mathrm{D}^{1}+i ] -d, d[ with some d>0 and an  $\omega$ ‐periodic  E ‐valued hyperfunction f . The

equation Pu=f has an  $\omega$ ‐periodic  E ‐valued hyperfunction solution if and only if it has

an (^{E}\mathrm{B}_{L}\infty)_{+\infty} ‐solution.

Proof. The necessity follows from Corollary 2.6, and we shall prove the sufficiency.
Assume that Pu=f has an (^{E}\mathrm{B}_{L}\infty)_{+\infty} ‐solution u . Then, under the notations

 $\Omega$:=]a, +\infty], U:=]a, +\infty]+iB_{d'}, \dot{U}:=]a, +\infty]+i\dot{B}_{d'}=U\backslash \mathrm{D}^{1},

we can take \~{u}\in E\mathscr{O}_{L}\infty(\dot{U}+K) , \tilde{f}\in E\mathscr{O}_{L}\infty(\mathrm{D}^{1}+i\dot{B}_{d'}) satisfying (T_{ $\omega$}-1)\tilde{f}=0 and

g\in E\mathscr{O}_{L}\infty(U) for some a\in \mathbb{R} and 0<d'<d ,
such that

[\~{u}]=u on  $\Omega$, [\tilde{f}]=f on \mathrm{D}^{1}, P_{\dot{U}}\tilde{u}-g=\tilde{f} on \dot{U}.

In fact, we can first choose, for some choice of a and d'
,

a local defining function

\~{u}\in E\mathscr{O}_{L}\infty(\dot{U}+K) of u by Proposition 2.3 and an  $\omega$‐periodic defining function \tilde{f}\in
 E\mathscr{O}_{L}\infty(+i\dot{B}_{d'}) of f by Proposition 2.5. Next, since P_{\dot{U}} ũ‐

\tilde{}

f
\sim

represents  0 in (^{E}\mathscr{B}_{L}\infty)_{+\infty},
it extends to a germ g\in(^{E}\mathscr{O}_{L}\infty)_{+\infty} . Finally we shrink U (i.e., increase a and decrease

d') if necessary, so that g belongs to E\mathscr{O}_{L}\infty(U) . Here we used the commutativity of P

with restrictions.

Now, in the same way as the proof of Theorem 4.3 of [7], we define

Skũ :=\displaystyle \frac{1}{k}\sum_{j=0}^{k-1}T_{j $\omega$}\tilde{u}|_{\dot{U}+K}\in^{E}\mathscr{O}_{L^{\infty}}(\dot{U}+K) , S_{k}g:=\displaystyle \frac{1}{k}\sum_{j=0}^{k-1}T_{j $\omega$}g|_{U}\in^{E}\mathscr{O}_{L^{\infty}}(U) ,

for k\in \mathbb{N} . It follows, again from the commutativity of P with restrictions and from the

 $\omega$‐periodicity of  P and \tilde{f} , that

(4.1) P_{\dot{U}} Skũ—Sg =\tilde{f} on \dot{U} for any k\in \mathbb{N}.
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Moreover, \tilde{u}\in E\mathscr{O}_{L^{\infty}}(\dot{U}+K) and g\in E\mathscr{O}_{L^{\infty}}(U) imply that {Skũ \in N \subset E\mathscr{O}_{L^{\infty}}(\dot{U}+K)
and \{S_{k}g\}_{k\in \mathbb{N}}\subset E\mathscr{O}_{L^{\infty}}(U) are bounded.

Recall that E\mathscr{O}(V)=E_{\mathrm{w}\mathscr{O}(V)} for any open V\subset \mathbb{C} ,
and that the boundedness in E

and that in E_{\mathrm{w}} coincide. These two properties imply that E\mathscr{O}_{L^{\infty}}(V)=E_{\mathrm{w}\mathscr{O}_{L^{\infty}}}(V) as

vector spaces for any open V\subset \mathrm{D}^{1}+i\mathbb{R} ,
and that the two notions of the boundedness in

both topologies coincide. Therefore, we have the inclusions \{S_{k}\tilde{u}\}_{k\in \mathbb{N}}\subset E_{\mathrm{w}\mathscr{O}_{L\infty}}(\dot{U}+K)
and \{S_{k}g\}_{k\in \mathbb{N}}\subset E_{\mathrm{w}\mathscr{O}_{L\infty}}(U) ,

and the left hand sides of both are bounded. Now, thanks

to Theorem 4.3, we can apply Theorem 4.2 with E replaced by E_{\mathrm{w}} to these sequences,

and get a subsequence \{k(l)\}_{l\in \mathbb{N}}, v\in E\mathscr{O}_{L^{\infty}}(\dot{U}+K) and h\in E\mathscr{O}_{L^{\infty}}(U) such that

(4.2) S_{k(l)} ũ \rightarrow v as  l\rightarrow\infty in  E_{\mathrm{w}}\mathscr{O}_{L^{\infty}}((\dot{U}+K)\cap \mathbb{C}) ,

(4.3) S_{k(l)}g\rightarrow h as  l\rightarrow\infty in  E_{\mathrm{w}}\mathscr{O}_{L^{\infty}}(U\cap \mathbb{C}) .

Let us show the equality P_{\dot{U}}v-h=\tilde{f} i \mathrm{n}^{E}\mathscr{O}_{L^{\infty}}(\dot{U}) ,
and the  $\omega$‐periodicity of  v.

For the equality above, it suffices to prove it in E\mathscr{O}_{L^{\infty}}(\dot{U}\cap \mathbb{C}) ,
since  E\mathscr{O}_{L^{\infty}}(\dot{U})\subset

 E\mathscr{O}_{L^{\infty}}(\dot{U}\cap \mathbb{C}) . By restricting (4.1) to \dot{U}\cap \mathbb{C} with k=k(l) ,
we get

P_{\dot{U}} \cap \mathbb{C} Sk(l)ũ =S_{k(l)}g+\tilde{f} for l\in \mathbb{N}.

Applying Lemma 3.14 with V=\dot{U}\cap \mathbb{C} ,
the desired equality follows from (4.2) and (4.3).

In order to show the  $\omega$‐periodicity of  v
,

note that (T_{ $\omega$} —1 ) Skũ \rightarrow 0 as  k\rightarrow\infty in

 E\mathscr{O}(\dot{U}+K) since (T_{ $\omega$}-1)S_{k}\tilde{u}=k^{-1}(T_{k $\omega$}-1)\tilde{u} . Therefore (T_{ $\omega$}-1)S_{k}\tilde{u}\rightarrow 0 holds also

in E_{\mathrm{w}\mathscr{O}(\dot{U}}+K) ,
and by applying Lemma 3.14 to the sequence \{(T_{ $\omega$} - l) Sk(l)ũ \in N for

operator  T_{ $\omega$}-1 on the set (\dot{U}+K)\cap \mathbb{C} ,
we have (T_{ $\omega$}-1)v=0 on that set, and also on

\dot{U}+K.
Due to the  $\omega$‐periodicity,  v has a unique  $\omega$‐periodic extension in  E\mathscr{O}_{L^{\infty}}(\mathrm{D}^{1}+i\dot{B}_{d}') .

Moreover h has a unique  $\omega$‐periodic extension in  E\mathscr{O}_{L^{\infty}}(\mathrm{D}^{1}+iB_{d}') . In fact, since h=

P_{\dot{U}}v-\tilde{f} is  $\omega$‐periodic on \dot{U} ,
it is  $\omega$‐periodic also in  U ,

and can be extended.

Finally note that [v]\in E\mathscr{B}_{L^{\infty}} () becomes a desired  $\omega$‐periodic solution. \square 
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