
RIMS Kôkyûroku Bessatsu
B40 (2013), 015020

A Banach algebra and Cauchy problems with small

analytic data

By

Hideshi Yamane *

Abstract

We announce our recent results about nonlinear Cauchy problems with small analytic data.

In each problem, the nonlinear term is analytic in the derivatives of the unknown function (and
their complex conjugates). By using Banach algebra techniques, it can be shown that a solution

exists for a large time if the data are small. Direction of future research is discussed.

§1. Introduction

When a Cauchy problem has a solution locally in time, one is interested in how

far it can be extended. A well‐known sufficient condition for a long lifespan of the

solution is smallness (defined in various ways) of the initial data. In particular, there is

a significant amount of results about nonlinear wave equations or nonlinear Schrödinger

equations in the C^{\infty} ‐category. On the other hand, there are some results in the real‐

analytic category with different formulations of smallness. The Kirchhoff equation was

studied in [1] and [2], and some m‐th order equations were solved in the Gevrey class in

[2]. In the present paper, we announce some results about second‐order fully nonlinear

Cauchy problems with small data in the real‐ and complex‐analytic categories without

hyperbolicity assumption in the spirit of the Cauchy‐Kowalevsky theorem. The nonlinear

term is an analytic function in the unknown function u, \nabla u, \nabla^{2}u, \partial_{t}u and \nabla\partial_{t}u (and
their complex conjugates).

Some more results and complete proofs are given in [9]; in [10] the author gives
the proofs without technical details and with greater emphasis on essential ideas. In

the present article, we state some results with a short sketch of the proof and discuss

possible directions of future research.

Received January 20, 2012, Accepted July 30, 2012.

2010 Mathematics Subject Classication(s): Primary 35\mathrm{A}01 , Secondary 35\mathrm{L}70

Key Words: Cauchy problem, lifespan
*

Department of Mathematical Sciences, Kwansei Gakuin University 669‐1337, Japan.

© 2013 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



16 Hideshi Yamane

§2. Results

Let  $\Omega$ be an open set of \mathbb{R}_{x}^{n}, x=(x_{1}, \ldots, x_{n}) . A smooth function  $\varphi$(x) on  $\Omega$ is

said to be uniformly analytic on  $\Omega$ if there exists  C>0 such that for any multi‐index

 $\alpha$\in \mathbb{N}^{n}=\{0 , 1, 2, \}^{n} one has

\displaystyle \sup_{x\in $\Omega$}|\partial^{ $\alpha$} $\varphi$(x)|\leq C^{| $\alpha$|+1}| $\alpha$|!,
where @ $\alpha$=\partial^{| $\alpha$|}/\partial x_{1}^{$\alpha$_{1}} . :. \partial x_{n}^{$\alpha$_{n}} . The totality of uniformly analytic functions on  $\Omega$ is

denoted by  A( $\Omega$) .

For T>0 ,
let I_{T} be the open interval] -T, T[ and set $\Omega$_{T}=I_{T}\times $\Omega$\subset \mathbb{R}_{t}\times \mathbb{R}_{x}^{n}.

For k\in \mathbb{N} ,
we say that a continuous function u(t, x) on $\Omega$_{T} belongs to C^{k}(T;A if it

satisfies the following two conditions:

(i) \partial_{t}^{j}\partial^{ $\alpha$}u exists and is continuous in $\Omega$_{T} for any j\in\{0, . . . ; k\} and any  $\alpha$\in \mathbb{N}^{n}.

(ii) For any  T'\in ]  0, T [, there exists a positive constant C=C_{T'} such that for any

j\in\{0, . . . , k\} and any  $\alpha$\in \mathbb{N}^{n} ,
we have \displaystyle \sup_{|t|\leq T,x\in $\Omega$}|\partial_{t}^{j}\partial^{ $\alpha$}u(t, x)|\leq C^{| $\alpha$|+1}| $\alpha$|!.

Notice that the estimate in (ii) is uniform in x but is only locally uniform in t . This

formulation has been chosen so that the Banach algebra defined below is a subspace of

C^{k}(T;A( $\Omega$)) .

Let P(\displaystyle \partial_{t}, \partial_{x})=\sum_{j=1}^{n}p_{j}\partial_{t}\partial_{j}+\sum_{k=1}^{n}\sum_{j=1}^{k}p_{jk}\partial_{j}\partial_{k} be a second‐order linear partial
differential operator with constant coefficients, where \partial_{j} = @ =@xj and p_{j}, p_{jk}\in \mathbb{C} . We

consider the following fully nonlinear Cauchy problem:

(CP1) \{ (@_{t}^{2}-P(\partial_{t}, \partial_{x}))u=f_{1}(t;u; @u;u; \nabla\partial_{t}u, \nabla^{2}u) ,

u(0, x)= $\varphi$(x) , \partial_{t}u(0, x)= $\psi$(x) ,

where \partial_{t}= @ =@t;u =(\partial_{j}u)_{1\leq j\leq n} and \nabla^{2}u=(\partial_{j}\partial_{k}u)_{1\leq j\leq k\leq n} . Here  $\varphi$(x) and  $\psi$(x)
are uniformly analytic in an open subset  $\Omega$ of \mathbb{R}^{n} . We assume that f_{1}(t;X;Y;Z)
is a bounded continuous function on \mathbb{R}_{t}\times \mathcal{U} ,

where \mathcal{U} is an open neighborhood of

(X, Y, Z)=0\in \mathbb{C}\times \mathbb{C}^{n+1}\times \mathbb{C}^{N}, N=n(n+3)/2 . Moreover we assume that it is

complex‐analytic in \mathcal{U} for each fixed t\in \mathbb{R} and has an expansion of the form

(1) f_{1}(t;X;Y;Z)=\displaystyle \sum_{L\geq 4}a_{ $\alpha \beta \gamma$}(t)X^{ $\alpha$}Y^{ $\beta$}Z^{ $\gamma$}, L= $\alpha$+2| $\beta$|+3| $\gamma$|.
We shall study the lifespan of a solution when the data are small in a certain sense.

Theorem 2.1. There exist  $\delta$>0 and $\epsilon$_{0}>0 such that the following holds for
all  $\epsilon$ with  0< $\epsilon$\leq$\epsilon$_{0} :

If \displaystyle \sup_{x\in $\Omega$} |@,|\leq$\epsilon$^{| $\alpha$|+1}| $\alpha$|! and \displaystyle \sup_{x\in $\Omega$}|\partial^{ $\alpha$} $\psi$|\leq$\epsilon$^{| $\alpha$|+2}| $\alpha$|! for all  $\alpha$\in \mathbb{N}^{n} , then

(CP1) has a solution u(t, x)\in C^{2}(T;A( $\Omega$)) for T= $\delta$/ $\epsilon$.
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Remark. The order $\epsilon$^{-1} is the best possible result even in the case of the 1 + 1

dimensional linear wave equation on a finite interval. The solution of (\partial_{t}^{2}-\partial_{x}^{2})u=
0,  $\varphi$(x)= $\epsilon$/(1+ $\epsilon$ x) ,  $\psi$(x)=$\epsilon$^{2}/(1+ $\epsilon$ x)^{2} is u(t, x)= $\epsilon$/(1- $\epsilon$ t+ $\epsilon$ x) . If  $\Omega$ is a

relatively compact open subinterval of \{-r<x<r\}, u belongs to C^{2}(-r+1/ $\epsilon$;A( $\Omega$))
for 0< $\epsilon$<1/r . Another illuminating example is a Cauchy problem for a nonlinear

ODE. The solution of d^{2}u/dt^{2}=6u^{2}, u(0)=$\epsilon$^{2}, u'(0)=2$\epsilon$^{3} is u(t)=$\epsilon$^{2}/(1- $\epsilon$ t)^{2}.

Let  $\varphi$(x) and  $\psi$(x) be complex‐analytic functions on an open set U of \mathbb{C}_{x}^{n} . We

assume that f_{1} is independent of t (a bounded entire function in t). Set  B_{T}=\{t\in
\mathbb{C};|t|<T\} for T>0 . Then we can formulate the complex version of (CP1) and refer

to it as (CPlc).

Theorem 2.2. There exist  $\delta$>0 and $\epsilon$_{0}>0 such that the following holds for
all  $\epsilon$ with  0< $\epsilon$\leq$\epsilon$_{0} :

If \displaystyle \sup_{x\in U} |@,|\leq$\epsilon$^{| $\alpha$|+1}| $\alpha$|! and \displaystyle \sup_{x\in U}|\partial^{ $\alpha$} $\psi$|\leq$\epsilon$^{| $\alpha$|+2}| $\alpha$|! for all  $\alpha$\in \mathbb{N}^{n} , then

(CPlc) has a unique solution u(t, x) which is complex‐analytic on B_{T}\times U for  T= $\delta$/ $\epsilon$
and satises the following estimate: foor all  T' with  0<T'<T= $\delta$/ $\epsilon$ ,

there exists

 C=C_{T'}>0 such that

\displaystyle \sup | @u (t; x)|\leq C^{| $\alpha$|+1}| $\alpha$|!
|t|\leq T',x\in U

holds for any  $\alpha$\in \mathbb{N}^{n}.

We can relax the condition on  $\psi$ in exchange for posing stronger conditions on  P

and the nonlinear term. Let us assume that P=P(@)=\displaystyle \sum_{k=1}^{n}\sum_{j=1}^{k}p_{jk}\partial_{j}\partial_{k} is free

from \partial_{t} and consider

(CP2) \{ (\partial_{t}^{2}-P(@))u=f_{2}(t, u, \partial_{t}u, \nabla u, \nabla\partial_{t}u, \nabla^{2}u) ,

u(0, x)= $\varphi$(x) , \partial_{t}u(0, x)= $\psi$(x) ,

where f_{2}(t, X, Y, Z,  $\Theta$,  $\Xi$) is a bounded continuous function on \mathbb{R}_{t}\times \mathcal{V} ,
where \mathcal{V} is an

open neighborhood of (X, Y, Z,  $\Theta$,  $\Xi$)=0\in \mathbb{C}\times \mathbb{C}\times \mathbb{C}^{n}\times \mathbb{C}^{n}\times \mathbb{C}^{n(n+1)/2} . Moreover we

assume that it is complex‐analytic in \mathcal{V} for each fixed t\in \mathbb{R} and is expanded as follows:

(2) f_{2}(t, X, Y, Z,  $\Theta$, =\displaystyle \sum_{L_{1}\geq 2,L_{2}\geq 2}a_{ $\alpha \beta \gamma \lambda \mu$}(t)X^{ $\alpha$}Y^{ $\beta$}Z^{ $\gamma$}$\Theta$^{ $\lambda$}$\Xi$^{ $\mu$},
L_{1}= $\alpha$+| $\gamma$|+| $\mu$|, L_{2}= $\beta$+| $\gamma$|+2| $\lambda$|+2| $\mu$|.

Notice that the combination of L_{1}\geq 2 and L_{2}\geq 2 implies L\geq 4.

Theorem 2.3. There exist  $\delta$>0 and $\epsilon$_{0}>0 such that the following holds for
all  $\epsilon$ with  0< $\epsilon$\leq$\epsilon$_{0} :
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If \displaystyle \sup_{x\in $\Omega$} |@,|\leq$\epsilon$^{| $\alpha$|+1}| $\alpha$|! and \displaystyle \sup_{x\in $\Omega$}|\partial^{ $\alpha$} $\psi$|\leq$\epsilon$^{| $\alpha$|+1}| $\alpha$|! for all  $\alpha$\in \mathbb{N}^{n} , then

(CP2) has a solution u(t, x)\in C^{2}(T;A( $\Omega$)) for T= $\delta$/ $\epsilon$.

Remark 2.4. The complex‐analytic version of Theorem 2.3 can be formulated
in an obvious way. We omit the details.

We can generalize Theorems 2.1 and 2.3 so that the nonlinear terms involve the

complex conjugates of the derivatives of the unknown function. Here we state the

generalization of Theorem 2.3. Let us consider

(CP3) \{
(\partial_{t}^{2}-P(\partial_{x}))u

=f_{3}(t;u,\overline{u};\partial_{t}u, \partial_{t}\overline{u};\nabla u, \nabla\overline{u};\nabla\partial_{t}u, \nabla\partial_{t}\overline{u};\nabla^{2}u, \nabla^{2}\overline{u}) ,

u(0, x)= $\varphi$(x) , \partial_{t}u(0, x)= $\psi$(x) ,

where  f_{3}(t;\tilde{X};\tilde{Y};\tilde{Z};\tilde{ $\Theta$};---)\sim is a bounded continuous function on \mathbb{R}_{t}\times\overline{\mathcal{V}} , where \overline{\mathcal{V}} is an

open neighborhood of (\tilde{X},\tilde{Y},\tilde{Z},\tilde{ $\Theta$}, -\sim--)=0\in \mathbb{C}^{2}\times \mathbb{C}^{2}\times \mathbb{C}^{2n}\times \mathbb{C}^{2n}\times \mathbb{C}^{n(n+1)} . Moreover

we assume that it is complex‐analytic in \overline{\mathcal{V}} for each fixed t\in \mathbb{R} and is expanded in the

form

f_{3}(;---a\sim(t)\tilde{X}^{\sim}\tilde{Y}^{\tilde{ $\beta$}}\tilde{Z}^{\sim-\sim},

\tilde{L}_{1}= + + , \tilde{L}_{2}=|\tilde{ $\beta$}|+ +2|\tilde{ $\lambda$}|+2

Theorem 2.5. There exist  $\delta$>0 and $\epsilon$_{0}>0 such that the following holds for
all  $\epsilon$ with  0< $\epsilon$\leq$\epsilon$_{0} :

If \displaystyle \sup_{x\in $\Omega$} |@,|\leq$\epsilon$^{| $\alpha$|+1}| $\alpha$|! and \displaystyle \sup_{x\in $\Omega$}|\partial^{ $\alpha$} $\psi$|\leq$\epsilon$^{| $\alpha$|+1}| $\alpha$|! for all  $\alpha$\in \mathbb{N}^{n} , then

(CP3) has a solution u(t, x)\in C^{2}(T;A( $\Omega$)) for T= $\delta$/ $\epsilon$.

Example 2.6. The theorem above can be applied to nonlinearities such as

|\displaystyle \nabla u|^{2}=\sum_{j=1}^{n}\partial_{j}u\partial_{j}\overline{u}.

We can deal with operators with first‐order terms. (As will be clear later, our

present result leaves some room for improvement. ) Let P'(\displaystyle \partial_{x})=\sum_{j=1}^{n}p_{j}'\partial_{j} (p_{j}'\in \mathbb{C})
be a vector field. Let us consider

(CP4) \{ (\partial_{t}^{2}-P(\partial_{t}, \partial_{x})-P'(\partial_{x}))u=f_{4}(t, u, \partial_{t}u, \nabla u, \nabla\partial_{t}u, \nabla^{2}u) ,

u(0, x)= $\varphi$(x) , \partial_{t}u(0, x)= $\psi$(x) ,

where f_{4}(t, X, Y, Z,  $\Theta$ ,
is a bounded continuous function on \mathbb{R}_{t}\times \mathcal{V} , where \mathcal{V} is as in

(CP2). Moreover we assume that it is complex‐analytic in \mathcal{V} for each fixed t\in \mathbb{R} and is
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expanded in the form

f_{4}(t, X, Y, Z, \displaystyle \ominus,  $\Xi$)=\sum_{l\geq 5/2}X^{ $\alpha$}Y^{ $\beta$}Z^{ $\gamma$}$\Theta$^{ $\lambda$- $\mu$}-,
l= $\alpha$+\displaystyle \frac{3}{2} $\beta$+2| $\gamma$|+\frac{5}{2}| $\lambda$|+\frac{5}{2}| $\mu$|.

Theorem 2.7. There exist  $\delta$>0 and $\epsilon$_{0}>0 such that the following holds for
all  $\epsilon$ with  0< $\epsilon$\leq$\epsilon$_{0} :

If \displaystyle \sup_{x\in $\Omega$} |@,|\leq$\epsilon$^{| $\alpha$|+1}| $\alpha$|! and \displaystyle \sup_{x\in $\Omega$}|\partial^{ $\alpha$} $\psi$|\leq$\epsilon$^{| $\alpha$|+3/2}| $\alpha$|! for all  $\alpha$\in \mathbb{N}^{n} , then

(CP4) has a solution u(t, x)\in C^{2}(T;A( $\Omega$)) for T= $\delta$/\sqrt{ $\epsilon$}.

§3. The Banach algebra \mathcal{G}_{T, $\zeta$}( $\Omega$)

We recall some known facts about a Banach algebra defined in terms of a power

series. Set  $\theta$(X)=K^{-1}\displaystyle \sum_{k=0}^{\infty}X^{k}/(k+1)^{2}, K=4$\pi$^{2}/3 (a series due to Peter Lax) and

let D(X) be its j‐th derivative. For  $\zeta$>0 ,
a continuous function u(t, x) on $\Omega$_{T} is

an element of \mathcal{G}_{T, $\zeta$}( $\Omega$) if it is infinitely differentiable in x and there exists an constant

C>0 such that for any  $\alpha$\in \mathbb{N}^{n} and any t\in I_{T} one has

(3) \displaystyle \sup_{x\in $\Omega$}|\partial^{ $\alpha$}u(t, x)|\leq C$\zeta$^{| $\alpha$|}D^{| $\alpha$|} $\theta$(|t|/T) .

Let the norm \Vert u\Vert be the infimum of such  C' \mathrm{s} . Then \mathcal{G}_{T, $\zeta$}( $\Omega$) is a Banach algebra and

is a subspace of C^{0}(T;A( $\Omega$)) .

Proposition 3.8. Set \displaystyle \partial_{t}^{-1}u(t, x)=\int_{0}^{t}u(s, x)ds . For all (k,  $\alpha$)\in () \times \mathbb{N}^{n}

with k+| $\alpha$|\leq 0 ,
there exists a constant C_{k,| $\alpha$|}>0 such that \partial_{t}^{k}\partial^{ $\alpha$} is an endomorphism

of the Banach space \mathcal{G}_{T, $\zeta$}( $\Omega$) and its norm is not larger than C_{k,| $\alpha$|}T^{-k}$\zeta$^{| $\alpha$|}.

For proofs of the facts in this section, see [11], [2] or [8].

§4. Sketch of the Proof of Theorem 2.1

We sketch the proof of Theorem 2.1. The other theorems are shown basically in

the same way.

Set w(t, x)=\partial_{t}^{2}u(t, x) ,
then  u=\partial_{t}^{-2}w+ $\varphi$+t $\psi$ . We define  Q and \mathcal{L}_{1} by

Qu=(u;\partial_{t}u, \nabla u;\nabla\partial_{t}u, \nabla^{2}u) ,

\mathcal{L}(w)=P(\partial_{t}^{-2}w+ $\varphi$+t $\psi$)+f_{1}(t;Q(\partial_{t}^{-2}w+ $\varphi$+t $\psi$)) .

Then (CP1) is equivalent to w=\mathcal{L}(w) (i.e. w is a fixed point of \mathcal{L} ). We have only to

find w\in \mathcal{G}_{T, $\zeta$}() \subset C^{0}(T;A for T= $\delta$/ $\epsilon$,  $\zeta$=2e^{2} $\epsilon$ ,
because  u=\partial_{t}^{-2}w+ $\varphi$+t $\psi$
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becomes an element of  C^{2}(T;A( $\Omega$)) . By using Proposition 3.8, we can show that \mathcal{L} is

a contraction from \mathrm{a} (carefully chosen) closed ball of \mathcal{G}_{T, $\zeta$}( $\Omega$) to itself. Then it has a

unique fixed point w in the ball.

§5. Further developments

The following problems with small initial data could be studied by using similar

techniques,

1. Third or higher order equations.

2. Fuchsian equations.

3. Systems.

4. Problems in the Gevrey classes.
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