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On polar varieties, logarithmic vector fields
and
holonomic D-modules

By

SHINICHI TAJIMA*

§1. Introduction

This is a survey on our recent results on logarithmic vector fields and on holo-
nomic D-modules for algebraic local cohomology classes supported on hypersurfaces
with isolated singularities. In [18], we have developed a new framework to study loga-
rithmic vector fields along a hypersurface with an isolated singular point. The key of
this approach is the concept of a polar variety. By using the Grothendieck local dual-
ity on residues we have derived an algorithmic method to compute logarithmic vector
fields. Further, we have adopted the same approach to investigate certain holonomic
D-modules supported on hypersurfaces in question and obtained an effective method
to construct first order partial differential operators that annihilate a local cohomology
class supported on the hypersurface. We also have obtained a formula on the charac-
teristic cycles that can be interpreted as a refinement of a special case of a result of M.
Kashiwara [9].

In this paper we present main results of [18] and try to describe the key ideas. In
section 2, we briefly recall the notion of logarithmic vector field and present first main
result. We also give some examples for illustration. In section 3, we consider a local
cohomology class supported on a hypersurface and introduce a holonomic D-module by
using first order annihilators. We give second main result on its characteristic cycle.
In section 4, we introduce a finite-dimensional vector space, Wr,, consisting of local
cohomology classes that describe a way of intersection of the hypersurface with the polar
variety. We present a framework to deal logarithmic vector fields and give a sketch of
proofs of the main results. In section 5, we give some examples of computation.
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§ 2. Logarithmic vector fields

Let S = {z € X | f(z) = 0} be a hypersurface with an isolated singularity at
the origin O € C™, where X is an open neighbourhood in C" of the origin and f is a
holomorphic defining function. Let Ox be the sheaf of holomorphic functions and let
(f) denote the ideal generated by f in Ox

Definition 2.1 ([14]). A holomorphic vector field

0 0 0
ay(x )833 +as(t)=— 4+ -+ an(r)=—, ai(x)€Ox, i=12,...,n
1

V=aQ
0xa 0z,

is logarithmic along S, if v(f) € (f) holds.

Let Derx(—logS) be the sheaf on X of logarithmic vector fields along S and let
Derx,o(—log S) be the stalk at the origin O of the sheaf Derx(—log.S) .
A logarithmic vector field v generated over Ox o by

$ 0 g 010 0 Of

1<i<j<n,
ox;’ 837] ox; 89018% =t=J=

is called trivial.

Example 2.2 ([15]). Let Cy = {(z,y) € C? | y®*—2® = 0}. Then the logarithmic
vector field

af 90 0f 0 _.,0 .0
yor ordy Y ar 5 g,

is trivial. The Euler vector field 33:% + 8y8—y is a non-trivial logarithmic vector field
along Cp.
Set Cpy = {t | t € C} and define a map m : Cy — C2 by a Puiseux expansion

x = t3,y = t8 of the curve Cy. Then, the conductor is equal to 14 and the Rosenlicht
dx N dy

differential form([12]), or the Poincare residue of the meromorphic form oS is
given by
_q,dx dt
o 1( of )(t) = tﬂ
dy

S d 2 ag 7 ag

ince —g(x(t),y(t)) = 3t“=—=(x(t),y(t)) + 8t ==(z(t), y(t)) for any g(z,y) € Ox.0, we

dt ox 8y
have p 9 5
b9 (mo(0)) = Br(t) 5 (mo(1)) +8y(0) 5 (mo(1)

and

0442 gro(t)) = By(0)? S (o) + 8(0)" 2 (o (1),
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which implies that the trivial logarithmic vector field 3y2% + 8x76% corresponds to
t14d% and the Euler vector field 3:1:% + Sy(% corresponds to t%, the Euler vector field
on (Y.

Note that M. Kersken showed that, for quasihomogeneous cases, Derx o(—log S)
is generated as an Ox,o module by the Euler vector field and trivial logarithmic vector
fields (see [20] for more precise statement for complete intersection cases).

We say that germs of two logarithmic vector fields v,v’ € Derx o(—logS) are
equivalent, denoted by v ~ v/, if v — ¢’ is trivial. Let Derx o(—logS)/ ~ be the
quotient by the equivalence relation ~.

Since every logarithmic vector field v € Derx (—log S) is trivial outside the singular
point, the sheaf Der x(—logS))/ ~ is supported at the origin.

Let 74 be the Tjurina number of the hypersurface S at the origin defined by

of of  of

7r = dime(Ox,0/(f, 021 0zs’ D

),

where Ox o is the stalk at the origin of the sheaf Ox of holomorphic functions.

Theorem 2.3 ([18]).

dimg(Derx,o(—logS)/ ~) = 7.

Remark Since logarithmic vector fields are directly related to torsion differential
forms for plane curve cases, the theorem above can be interpreted as an generalization

of a result of O. Zariski [21] on torsion differential forms.

Example 2.4. Let C = {(z,y) € C? | y®> — 32 — 2® — 21° = 0}. The principal
part of the defining function of the curve C is y> —28, the defining weighted homogeneous
polynomial of the curve Cy. The curve C' is not quasihomogeneous. In fact, the Milnor
number which is equal to the conductor, is equal to 14 whereas the Tjurina number is
equal to 13. We have therefore dime(Der x o(—log C)/ ~) = 13. The number of linearly
independent non-trivial logarithmic vector fields diminishes by one as compared with
that of the curve Cy in Example 1. Let C = {t | t € C} and set 7 : C — C? by
x =13,y =18+ t'0. Since

d _ ,.209 7 9, 0g
9@t y(®) = 32 52 a(t). y(0) + (1" +10") 3 (@(t). y(0).
the trivial vector field g—i% — %8% given by
0 0
2 o6\ Y _ 5, Q.7 _ 9N L
(3y* — 3z )8:17 + (—182°y — 8z — 10x )8y
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corresponds to (t1% 4 16 4 ¢18) %. Note that the coefficient 14 4 16 4- ¢! coincides with
the denominator of the Rosenlicht differential form

dt
$14 + $16 + $18 :

Since the curve C is not quasihomogeneous, there are no logarithmic vector fields

d

47 if the valuation of ¢(t) is equal to one.

that correspond to c¢(t)

§3. Holonomic D-modules

Let 2% be the sheaf on X of holomorphic differential n-forms and let H[IS](Q}) be
the sheaf oflocal cohomology supported on the hypersurface S.

Let Dx be the sheaf of linear partial differential operators with holomorphic coef-
ficients. Then, H[IS](QEL() naturally has a structure of a right Dx-module. Let

dxi Ndxo N -+ Ndx,

f

denote the modulo class in H[ls] (2% ) of a meromorphic form

w=| |

dxi Ndxo N -+ Ndx,

f

and let Anng))( o (w) be the right ideal in Dx o generated by partial differential operators

% (+S)

of order at most one that annihilate the given cohomology class w:

Annt) (w)={P €Dxo|wP=0,ordP < 1},

Dx,o

where Dx o is the stalk at O of the sheaf Dy.

Let v be a logarithmic vector field along S, i.e., v € Derx o(—logS). Then, there
exists a first order partial differential operator P of the form P = v+ h, with h € Ox o
that annihilates the local cohomology class w. Conversely, one can readily see as in [3]
that if P is a partial differential operator of order one that annihilates w, then the first

order part of P is a logarithmic vector field along S.
)

X,0
of two Lagrangian varieties, T}, o S)X and T4 X, where reg(S) is the non-singular part

The characteristic variety of the holonomic Dx o-module Dx / .Anng)1 (w) consists

of the hypersurface S.

the Milnor number of f|g,, where Hy is a generic

Now let us denote by ugcn_l)

hyperplane passing through the origin O. That is

p{" Y = min{u(f|m) | H : hyperplane € C" s.t. O € H}.

In [18], we have obtaind the following result.
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Theorem 3.1 ([18]).  The multiplicity of the Lagrangian T3 X of the character-
istic cycle C’C(DX/Anng;o (w)) is equal to py — 75 + ugc . That is

CC(Dx.0/Anny) (W) = T}y X + (ur — 77 + p' THX.

A sketch of the proof of the theorem will be given in section 4.

In 1973, M. Kashiwara [9] gave a beautiful and deep result on the indices of
holonomic D-modles. By applying Kashiwara’s result to the holonomic Dx o-module
H[S]( %), one has the following ([5], [1])

Theorem 3.2.
Let S be a hypersurface with an isolated singularity at the origin O. Then the

characteristic cylce of the holonomic Dx o-module H[ls](ﬂg() is given by

C’C’(,}_([S](‘(2 )) regSX+/“L(n 1)T'O‘Xr

The following result relevant to quasihomogeneity ([13]) can be obtained from The-
orem 3.1 and Theorem 3.2.

Corollary 3.3 ([3], [6]). Let S={xze€ X | f(x) =0} be a hypersurface with an
1solated singularity at the origin O. Then the following conditions are equivalent.
(i) = o
(ii) AnnD O( w) = Annpy ,(w).

Note that the result above on the quasihomogeneity and D-modules was already
proved by F. J. Castro-Jiménez and J. M. Ucha-Enriquez ([3]) for plane curves and was
generalized by M. Granger and M. Schulze ([6]) to the case of hypersurface with isolated

singularities.

§4. DPolar varieties and local cohomology

Let 'y be a polar variety ([10], [19]) of the hypersurface S defined to be

0 0 0
I'i={reX|— f f cee = f = 0}.
0xo 8.%‘3 8xn
ﬂ : . o g of of of
We may assume that the coordinates x1, xs, ..., x,, are generic so that f, Dog? Daa? ) Do

is a regular sequence. Let HE(£2%) be the local cohomology supported at O.
In order to extract information, relevant to logarithmic vector fields, from the polar
variety we consider following sets of local cohomology classes.
8f _of _9f |
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_ n (on _of _of . _9f _
Wr, = {w e H5(2%) | fw = 8x1w = awa = 8xn =0}

It follows from the Grothendieck local duality theorem that the pairings

0 0 0
fo(')xo/( 52 8:537'78;;)_)@

and

8 0 0
W XOX()/( f a;; ’81'{1)—)@

defined by local residues are non—degenerate.
Now, let  : Wr, — Wr, be the map defined by a(w) = g—gflw and let Wa, denote
the image of the map a:

_ 9/

Since the kernel of the map « is Wr,, we have the following exact sequance.
0 — Wr, —>Wpf —>WAf — 0.
We let Ax o denote the annihilator ideal in Ox o of Wi, defined to be
Ax.o ={a € Oxo | a(Wa,) = 0}.
Note that the Grothendieck local duality implies the non-degeneracy of the pairing:
Wa, x Ox,0/Ax,0 — C.

We have the following lemma, which amounts to saying that Ax o is the ideal quotient
of of of \. of
(f7 Bz’ O3’ " m) T
Lemma 4.1.
. of Oof
(Z) ( ) Bxs’ Oxz’ " 8$f ) - AX ,O of
(i) AXO:{a|aa e(f’awz aawn)}

The ideal Ax o enjoys the following.

Lemma 4.2.
(i) Ax.o={a| a(Wpf) C WTf}
(ii) {aw|a € Axo0,w € Wr,} = Wr,

Proposition 4.3.  Let a(z) € Ox,0. Then the following conditions are equiva-
lent.

(i) a(x) € Axo

(ii) There is a logarithmic vector field v along S (v € Derx o(—log¥)), so that

0 0 0 ,
'U:CL( )8_3314_@2( )8_372++an(x)87, ai(x)eoXa 1=2,.,n
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Since f, g—ai, g—;;, - % is a regular sequence, we have the following.

Lemma 4.4. Letv = ay (:c)a%,?—l—~ . -+an(x)% be a germ of holomorphic vector
field. If v’ is a logarithmic vector field along S, then v’ is trivial.

This yields the following result.

Proposition 4.5.  Letv = a(:lc)a‘%1 +as (:10)8%2 +--Hay (x)% be a holomorphic
vector field. Then the following conditions are equivalent.

(i) v is trivial.

(ii) a(x) € (f, 2L, 5L, .., 2L)

Now, we are ready to give a skech of the main result.
Theorem 4.6 ([18]).
dimc(Derx o(—logS)/ ~) = 75.

Proof. Proposition 4.3 and Proposition 4.4 imply the following isomorphism :

o5 of  of
Oxy’ Oxs’ 7 Oxy’

Derx.o(—logS)/ ~ = Ax.o/(f,
From

0 — Homg(Im(a),C) — Homc(Wr,,C) — Homc(Wr,,C) — 0,

we have the following exact sequence

af af  of

of of af )
Oxs Oxs’ ~ Oxy, '

) - OX,O/(f’ 8$1’8x2’ °9 axn - 07

0 — Ox,0/Ax,0 — Ox,0/(f,

which imediately yields

af af  of

of of of )
Oxy’ Oxs’ " Oxy,

) = Ox,0/(f, el Do m )

We thus have

) ) 0 0 0
dimc (Derx,0(—log )/ ~) = dimc(Ox,0/(f, 8;1’ 8@{;’"’ 8a:f ) =Ts.

Note that the theorem also follows from Lemma 4.2.
Now, let P = v+h € Dx o be a first order annihilator of the local cohomology class
dry Ndxo A--- Ndx,

w= 7

]. Then, as we have seen in the previous section, the first
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order part v is a logarithmic vector field along S. It follows from this observation and the
genericity of the coordinates system x1, o, ..., z,, that the multiplicity of the Lagrangian
T3 X of the characteristic cycle of the holonomic Dx o-module Dx o/ Anng;o (w) is
equal to dimc(Ox.0/Ax.0).

Since

0— Wr, — Wp, — Wa, —0

is exact, we have
dimc(OX,o/AX,o) = dimc(WAf) = dimc(Wpf) - dimC(WTf)-

Therefore, the Lé-Teissier formula ([10], [19]) implies the following result on the
characteristic cycle CC(Dx / Anng;o (w)) of the holonomic Dx o-module Dx o/ Ann) (w).

Dx,o

Theorem 4.7 ([18]).

CC(Dx o/ Annp). (@) = Ty X + (uy — 7p + pf" )T X,

Dx.o reg

§5. Examples

In this section, we consider Fjs isolated singularity. We explicitely compute a
standard basis of logarithmic vector fields by adopting algorithms given by [16], [17].

Example 5.1. Let fo(z,y) = 2> + 4" and Sy = {(z,y) € X | fo(z,y) = 0},
where X = C?. Since foly—0 = 23, we have uy = 74 = 12 and ,ugcl) = 2.
Set 'y, = {(z,y) € X | %(w,y) = 0}. Then,

dx A\ dy

WFfO:SpaIlC{[ ;(jzyj ] |1§Z§2, 1§j§7}

dx N dy

- |- Since

The vector space Wr, is generated over Ox o by [ 9
Yy
% [dx/\dy] _- [dw/\dy

8y x2y7 2

], we have
-y

dz A d dz N d
Wa,, = SpanC{[ y] [ y]}

Ty ZCzy

Thus, dimy,,c(Wa,,) = 2 and Ax o = (22,). One find therefore that the set of germs
of logarithmic vector fields Derx,o(—1log Sy) is generated over Ox o by
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Example 5.2. Let f(z,y) =23 +y" +2y® and S = {(z,y) € X | f(z,y) = 0}.
We have pp = 12, ,ugcl) = 2 as in previous Example 5.1, whereas 77 = 11.
Set I'y = {(z,y) € X | %(az,y) = 0}. Then, Wr, is generated over Ox o by

P I B R - B B Y
o 22y” 3 | zty? 3 | zy® 9 |23yt v

of . [1

Since

!
3

1
xygl Ydx A dy,

we have

dx Nd dx Nd dx Nd dr Nd
Ty 7y 7y Ly

Thus, dimc(Wa,) = 3, which is equal to py — 77 + p;’ and

1)

!
Ax.o = (22 xy,21y* — ).

The corresponding standard basis of germs of logarithmic vector fields Derx o (—log S)

is given by

)
(—10y" — 102y® — 63y° — 662y* — 2%y*)=— + (4y + 27)

2_
ox v oy’

(—=3y° + xy® + 102%y + 633:2)% + (4y + 27)xya%,

) )
(45y* + 211xy? — 1022 + 1323:17y)8—x + (4y + 27) (2132 — m)a—y.

Now let I'y = {(z,y) € X | g—{;(m, y) = 0}. Then, the vector space Wr defined by

0
Wr, = fw € MB(R) | f=FLw=0)

is generated over Ox o by

W= ( L2 1| 5] 1} 2x5|1 +§ 1 i A d
~ N 3y0 7 | 25y 7 | 22y® 72 |24y 72 | gyt0 Y-

Since, p(f|yz=0) = 6, we have dimC(Wp/f) =12+ 6 = 18. Let W/, denote the image of
the map o' : Wp} — Wp;c defined by the multiplication with %. From

af 1] 11 5 [ 1 52 [ 1
97 o = Z _ 2 i dz A d
8xw 8 [xyf‘] + 7 [x3y] 72 [x2y3] * 72 [xy5]) TNy,
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we find that
dx N dy dx N dy dx N dy dx N dy dz N\ dy 5) -dx/\dy
) 2 ) 3 ’ 2 21 5 Tz 2,2
xy xy xy x*y xy 7| zy

, -
91 [da:/\dy] N [dx/\dy] 5 [dx/\dy] +5_ [d$Ady

xy 3y 7| 2?3 7 x7°

constitutes a basis of the vector space WA/f . Note that dimc WA/f = 7 is consistent with

/Lf+u(f|m=0)—7'f =18—-11=17"1.
The standard basis of the annihilator

Axo=1{a€Oxo0|a(Wa,) =0}
with respect to a term order that is compatible with the weight vector (7, 3) is given by
7203zy + 245y* — 125y°, 2122 — 5, 4/S.
The corresponding logarithmic vector fields are

3(50y + 343)(7203xy + 245y* — 125y5)%+

)
(3125y° + 875y* — 62522 4 427035y> + 312522 + 3675y + 3176523y> — 151263x) —

oy’
) )
(50y + 343) (2122 — y5)a—w + (25¢° + 49y* + 41529 + 2522 + 3087:cy)a—y,
) )
(50y + 343)y68—x + (—25y° — 1549° + 5xy® — 2522y — 147x2)8—y.
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