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Boundary values of ultradistribution solutions
to regular-specializable systems

By

SusuMU YAMAZAKI*

Abstract

For any hyperfunction solutions to the regular-specializable system, a boundary value mor-
phism is defined by Laurent-Monteiro Fernandes. We announce that this morphism induces a
boundary value morphism for extensible ultradistribution solutions to the regular-specializable
system under an irregularity condition due to Tahara.

Introduction

In this article, we announce of result about boundary value problems for extensible
ultradistribution solutions along an initial boundary to the regular-specializable system
of analytic linear differential equations in the framework of Algebraic Analysis.

The regular-specializable system is defined by Kashiwara [3], and constitutes a
special class of Fuchsian systems in the sense of Laurent-Monteiro Fernandes [14]. In a
single equation case, this corresponds to a Fuchsian operator in the sense of Baouendi-
Goulaouic [1] with constant characteristic exponents, or equivalently, a regular-singular
operator with weak sense due to Kashiwara-Oshima [7] (cf. Oshima [21]). For any
regular-specializable system, its vanishing cycle and nearby cycle in the Z-Module the-
ory are defined (see Kashiwara [3], Laurent [13], Maisonobe-Mebkhout [16]). After the
results by Kashiwara-Oshima [7] and Oshima [21], for any hyperfunction solutions to
a regular-specializable system, Laurent-Monteiro Fernandes ([15], [17], [18]) defined an
injective boundary value morphism which takes values in hyperfunction solutions to
the nearby cycle of the system. This morphism extends the non-characteristic bound-
ary value morphism due to Komatsu-Kawai and Schapira. Note that the solvability is
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discussed in [15] under a kind of hyperbolicity condition (see Yamazaki [25] for a mi-
crolocal version). Moreover if we replace hyperfunctions with distributions, then, we can
prove that the boundary value morphism due to Laurent-Monteiro Fernandes induces
the boundary value morphism for temperate (i.e. extensible) distribution solutions to
any regular-specializable system (see Yamazaki [26]). Hence, we shall consider bound-
ary value problems in the framework of (Gevrey) ultradistributions, and announce that
the boundary value morphism above induces a boundary value morphism for extensi-
ble ultradistribution solutions to the regular-specializable system under an irregularity
condition due to Tahara.
Details of this article will be appeared in a forthcoming paper [27].

§1. Notation

We fix the notation used in this paper. Our main references are Kashiwara [5]
and Kashiwara-Schapira [8]: We denote by Z, R and C the sets of all the integers, real
numbers and complex numbers respectively. Moreover we set

Ni={n€Z;n>1} CNy:=NU{0}, Ry y:={teR;r >0} CR,;:={t € R; r > 0}.

For a topological space Z and A C Z, we denote by Int A and Cl A the interior and
the closure of A respectively. In this paper, we shall write Module or Ring with capital
letters, instead of sheaf of left modules or sheaf of rings respectively. Let A be a Ring
on Z. We denote by A°P the opposed Ring, and we regard right .A-Modules as (left)
A°P-Modules. We denote by 9od(A) the category of A-Modules, and by €oh(.A) the
full subcategory of 9MMod(.A) consisting of coherent .4-Modules. Further we denote by
D"(A) the bounded derived category of complexes of A-Modules, and by D® | (A) the
full subcategory of DP (A) consisting of objects with coherent cohomologies. In this

coh

paper, all the manifolds are assumed to be smooth and paracompact. Let M be a real
analytic manifold, and X a complexification of M. Let N be an analytic hypersurface
of M, and Y a complexification of N in X. Let ¢: Y <— X be the natural embedding.
Since the problem is local, we fix the following coordinates:

N=R!x {0} M =R xR,
(1.1) N N
Y =C!x {0} X=C!xC_

0
We set 8ZV = 8—21/, 0. = p etc. and ¥ := 70, (or t0, on real cases). For o =

(aq,...,,) € NJ, we set |a| = Za and 07 : 80‘1~ 8 n. We denote by Oy

the Ring of holomorphic functions, by P the Ring of holomorphzc linear differential
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operators, and by 2 the sheaf of the holomorphic differential forms with maximal degree
on X respectively. Set Py y 1= Oy @ Dy and Dy = 2y @ Dy @ 2T that
o o Oy

Y

X
is, the transfer (2, @ 2%|y) and (P |y © PyF)-Modules associated with ¢: Y — X
respectively. For a Z,-Module .# defined on a neighborhood of Y, we denote by

L
DA =Dy M,
Ix

Di Ml = R s (R g (M, D) 5% Dy D)1,
X

the inverse image and the extraordinary inverse image respectively. Let 2 ,, denote the
orientation sheaf on M, and set oty = ot ® o |y (the relative orientation sheaf
attached to N — M). We set wy,5, 1= 22 y,5,[—1] and w%/_]&[ 1= vy 0[] (the relative
dualizing complex and its dual). We set 25 = Dy | x> Zige n = Pxy|n @ o N ete.
(we add the superscript A in order to avoid the confusion with holomorphic cases). Let
B, and D7, be the sheaves on M of Sato hyperfunctions and of Schwartz distributions
respectively. Further, Let %, and 27,; be the sheaves on M of ultradifferentiable
functions and of ultradistributions of Gevrey class *, respectively. Here and in what
follows, * stands for {s} with 1 < s < oo or (s) with 1 < s < oo to indicate the
Gevrey growth order, and we understand that .@/]\(fo) := Cj; is the sheaf on M of
functions of class C°°. In particular, @/A(/IOO) = 97, . We fix the coordinates in (1.1),
and recall the definitions of %, and 27, (see [9], [10]): Let U C M be an open set.
For u(x) € I'(U; C};), compact set K € U and h > 0, we set

ps,h(u) = sup |8§8£/’U/($,t)| )
z (@, t)eZ 1h|a|+y(|0é| +v)ls
(a,V)ENg

Then u(z) € T'(U; 24%)) (resp. T'(U; 94%))) if for any K € U, there exist h > 0
such that (resp. for any K € U and h > 0) p3"(u) < co. By the system of semi-
norms {pi&h(~)}h>0, xeu» we can endow each I'(U; %4y ) and I,(U; %) with a natural
locally convex topology (the subscript ¢ means the sections with compact support), and
consequently

(a) I'(U; .@/A{f}) is a DLFS space, and I (U; .@/A{f}) is a DFS space,

(b) I'(U; @/]\(j)) is an FS space, and I, (U; @/]\(f)) is an LF'S space.

These all spaces are reflexive.
Set ¥y = 25|y ® o2y, and ¥y = Gy @ ¥, for x = {s} or (s) with 1 < s < o0;
o

M
that is, ¥} is the sheaf on M of volume elements with coefficients in Z;. Since we fix

the coordinates, we have a (global) isomorphism

(1.2) Dy D u(x,t) — u(x,t)dedt € ¥y,
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where dz dt denotes the standard Lebesgue measure on M ~ R" ™. We endow ¥, 7 with
the locally convex topology under which (1.2) is the topological isomorphism and set:

L(U; 24y =T.(U; 3.

Here the prime means the strong dual of a topological vector space. The assignment
U — D(U; 9#y;) defines a sheaf 27, on M. Then 27,#} is called the sheaf of ultradistri-
butions of class {s} (of Roumieu type), and @/]\(f ) is called the sheaf of ultradistributions
of class (s) (of Beurling-Bjorck type). It is known that I'(U; 27y;) = I'(U; ¥;;)". The
global isomorphism (1.2) permits us the following identifications as usual:

[(U: 93y = TLU; 9637) € T(U: 93) = LU Gy -

Further
(a) I'(U; .@/]é[s}) is an FS space, and I (U; .@/A{f}) is an LF'S space,
(b) I'(U; @/A(f)) is a DLF'S space, and I (U; @/A(j)) is a DFS space.

If 1 <s<t, then as 9;@ sub-Modules
Diry C 93 € 220 € 94 ¢ 245 < 8,
For any @]’3 sub-Module .7 C %, set

Iy (F) = @A@%N;%‘ﬂ'

We can represent any section (or any germ) of 24y as Soa,(,0,) 9 -1, , where
T

1,,. n is a canonical generator of @ﬁh_ N over @ﬁ associated with coordinates in (1.1).
Let 6(t) be the delta function, and set 6 (¢) := 0;0(t). If 1 < s < t, then the
identification that 25y 3 0y 1y N+ 5 (t) for any r € N, induces

Iy(Z24y)C F[N](@/z\{f}) - F[N](-@/A(f)) CF[N](@/ABS}) - F[N](-@/A(f)) C LN (By)
Il N N N N N
T\ (Z4y) C Ty(2447) € Ty(247) C T (24()) C Ty(24)) C Ty (By)

Here we remark that Iy (27,) = I'y(27y)-
Let U, C N be an open subset. Then

(a) I'(Uy; FN(.@/ABS})) is an F'S space, and I',(Uy; FN(.@/ABS})) is an LFS space,
(b) I'(Uy; I'y(24))) is a DLFS space, and I'.(Uy; I'y(24)) is a DFS space.

We set 2, :={(x,t) € M;t >0} C M= {(x,t) € M;t>0}. Let Tizon(x, D7y)
be the Schwartz functor due to Kashiwara (see [4]), and set

F}Z+(@/M) = Thern(Cqy_, Dyy) = Dirg [ Trra (P40r)-
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Let U C M be an open subset with U N N # (). As in the case of distribution, we set
T5432) = D432 Tar (9530
If UNN # 0, then we have (see [12] and cf. [2])
ru; FE’T(@/A’;)) = I'(U; Q/A})/FU\Q+(U; Diyy) CT(UNR ;D).
By using a result of [11], we can prove
Proposition 1.1.  For any k € Z, there exists an isomorphism
Fg’j(.@/j\’;)bv S u(z,t) — t Fu(z, t) € FB’T(Q/A’;HN.

For a vector bundle 7: E — Z over a manifold Z, we set 7: E := E~ Z — Z (the
zero-section removed). Let DEN((C ») C D(Cp) be the subcategory of the bounded
derived category of C-Modules such that each cohomology is conic. We set

Pt o= {(v,§) € TyM X Ty M; (v,€) > 0}

and denote by pf: Pt — TNM and p; . P — T]’QM the canonical projections. Then:

Proposition 1.2 ([24, Corollary A.2], cf. [22, Chapter I]).  There ezists the fol-
lowing distinguished triangle for any F € Dﬂz (Cp )
>0 N

F— T](,lRTN! F®w§f}/—]\1/[ — Rpf* p;_l F" ®w§f}/—]\1/[ 1,

Here F denotes the Fourier-Sato transform of F.

Taking F = vy (F) (specialization along N) for any F € D"(C,,), we have the
following distinguished triangle by Proposition 1.2:

+1
RI(F)® ey — RFM+(f)|N® N/ T RFQ+(-7:)|N —,
and this induces the following:

0= I'n(P7y) ® o2 )0p — FM+(9/M)|N Qernv — Ffer(@/M”N —0

N N N
(1.3) 0 — I'n(P7yy) ® o2 j0p — FM+(9/AZ)|N Qernv — F.g)f(@/]\})l]\f —0
N N N

0— I'n(Zy) @ ey /pp — FM+(‘%)M)|N Qeen — FQ+(‘%M)|N —0
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§2. Regular-Specializable Systems

We recall the definitions of regular-specializable systems and vanishing and nearby
cycle Modules (see [13], [16], [26, Appendix] and references cited therein). Since the
problem is local, we fix the coordinates in (1.1). Let {@X(p)}pENO the usual order

filtration. Further we denote by V,.(Zy) = {V’f/(@X)}~,ceZ the V-filtration (along Y').
This filtration is given by

VE(@x) = (P € Dxlys PIE C T} = { S Py(2,0)7'0] € Dy )
Je ]

Here 7 be the defining Ideal of Y in €'y with a convention that 7. =0  for 7 <0.
Then we have:

(i) VE(2y) C VETH(2,) holds, and JVE(Dy) = Dy;
k
(ii) V5§ (25) Vi (2y) C VET(24) holds for any k, [ € Z.

In what follows we omit the phrase “along Y” since Y is fixed.

Definition 2.1.  Let # € €oh(Zy|y). Then a V-filtration V(.AZ) on A is a
family {V*(.2)} ez Of sub-Groups such that

(i) VE(#t) c VFTE () holds, and YVF () = 4';
k
(i) VE(25) Vi () C VFTH () holds for any k, | € Z.

Moreover a V-filtration V(.#') is said to be good if (locally) there exist I € N, {u;, {:1 C
M, and {k,}]_, € Z such that for any k, the following holds:

)

V) = SVE ()

We set FPVY(Zy) == V3 (Zx ), and call FVy(Z) := {FPV5(Zx) } g pyem, <z the
bi-filtration. This enjoys the following properties:
(i) FPVE(2y) C FPHOVET (94 holds if ¢, 1 € N, and |J FPVE(Zy) = Dy
p,k
(i) FPVE(24) FIVL(2y) € FPTVET (9,) holds if p, ¢, k, | € Z.

Definition 2.2.  Let # € €oh(Py|y ). Then a bi-filtration FV(.#) on A is a
family {FPV*(.2)} pkez Of sub-Groups such that
(i) FPVF() € FPHaVET (L) holds if ¢, | € N, and | FPVF(4) = 4
p.k
(i) FPVE(2y) FIVI () € FPTIVEY (L) holds if p, ¢, k, 1 € Z.
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Moreover, a bi-filtration FV(.#) is said to be good if locally there exist I € N, {u, {:1 C
M Ap |, {k,}_| C Z such that for any p, k, we have

I
FIVE(H) = S FP vy % (95w,

1
i=1
Definition 2.3. .#Z € Coh(Py|y) is said to be regular-specializable if the fol-
lowing equivalent conditions are satisfied:

(1) there exist (locally) a coherent €'y sub-Module £ of .#Z and a non-zero polynomial
b() € Cla] such that # = 2L and b(9)L C FI8V (2, L.

(2) there exist (locally) a good bi-filtration FV(.#') and a non-zero polynomial b(«) €
Cla] such that for any p, k € Z, the following holds:

b(9 + k) FPVF (L) ¢ Frdeebyh=1( g

(3) for any (local) section u € .#, there exist a non-zero polynomial b, (o) € Cla] and
Q,, € F¥8PV 1 (2,) such that (b, (9) — Q,)u = 0.

We denote by Ry (Zy) C €oh(Zy |y ) the subcategory consisting of regular-specializable
P+ |y-Modules.

Remark 2.4. (1) If Y is non-characteristic for .# € €oh(Z|y ), then A €
Ry ().

(2) Every regular-holonomic %y |,~Module are regular-specializable (Kashiwara-
Kawai [6]).

Proposition 2.5.  For any # € Ry (Py), there exist a non-zero polynomial
by (o) € Cla] (unique under the assumption that the degree is minimum) and a unique
good V -filtration Ny (M) = {NY (M)} .y such that by (0) C {0 € C; 0 < 0 < 1} and
for any k € Z

by (0 + k) VE () C V().

Here < stands for the lexicographical order on C = R + /=1 R.

Definition 2.6. For any .# € R, (Zy) and Vy (.#) in Proposition 2.5, we set
Gri () = V';(///)/V’f/_l(j/). Then the vanishing cycle @y (A) and nearby cycle
Wy (M) are defined respectively by

Oy (M) = Cry (M), Uy (M) := Gy (M).
It is known that Gr¥. (.#) € €oh(2y) for any k € Z, and for any k € N,

Gt () =0F oy (), Gry* () =", ().
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Proposition 2.7.  Let
(2.1) 0— M — M —M"—0

be an exact sequence in €Cob(Dy|y). Then A € Ry (Dy) if and only if A, #" €
Ry (Zy ). Further if (2.1) is an exact sequence in Ry (Zy ), then for any k € Z, there
exists an exact sequence in Coh(Zy):

0 — Gri (') — Gl (M) — Grl (") — 0.
Theorem 2.8. If . # € Ry(Dy), then Dd, Di'.4l € DY, (2y), and there

coh
exist the following distinguished triangles:

By (M) T3 Uy (M) — DM — |

Dt — Uy () 25 & () s

Proposition 2.9.  Let # € Coh(Dy|y ), and assume that Y is non characteris-
tic for M . Set D = H° D4 . Then &y () =0 and

(2.2) D/ M ~ Wy (M)~ DM ~ DM .

§3. Boundary Values for Solutions to Regular-Specializable System

We recall (1.3) and Theorem 2.8. Then:

Theorem 3.1 ([18], [26], cf. [25]).  For any .# € Ry (Zy), there exists the fol-
lowing morphism of distinguished triangles:

R g (M, T (By)) © or g 7= R%mgy(DL!%, ABy) 1]

l 3
R Ao g (M, g (Bar))|n @ o2 nnr R 5 (Py (M), By)
{
B
RM@X(/{iF()JF(%M)ﬂN —_— R%m%(wy(//z), By)
+1 +1

(3.1)

and (3.1) induces the following morphism of distinguished triangles:

R g (M, T(Dbrg) @ 02y )ng = Rlorn g, (DM, Dy)[1]

|

RAzn g (M, FM+('@/M))|N Q ee g — RAowmn g (Dy (M), D7)
) i
ﬁt
R Ao g (M, F3+(9/M Ny ————= RAonegy (W (M), D)
I+ |+

(3.2)
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that is, (3.2) is compatible with (3.1) under (1.3). Moreover, 3 and 3 induce monomor-
phisms:

Bt,O
Hoon gy (M Ty (D3 @ 02 5oy 7 Horn g (B (M), D)

N N
BO
e%”m@X(///,F (% ))|N®%N/M>—>%¢” ( y (A ), By),
B ,0
Aoy (M Tl (D3| et Ay (U (M), D)
N N
BO

Horr g (M Ty (Bo))) |y Horn gy (U (M), By).

Here, 3" := H' () etc.

Remark 3.2. (1) In (3.1), both 3 and 3 are isomorphisms under the near-
hyperbolicity condition in the sense of Laurent-Monteiro Fernandes [15, Definition 1.3.1],
and a microlocal counterpart of 3 is defined in Yamazaki [25] along the line of [20].

(2) For non-characteristic cases, see Remark 4.3.

Example 3.3. Let b(a) € C[a] be a monic polynomial of degree m and @ €

n
F™Vy ' (2y). Assume that b(a) H( ;)™ with o, —a; ¢ Z (i # j) and Zm =m.
We set A = Dy /D (b(V) — Q)_ Then we see that WU, (A#) ~ 2,". We take the
following local coordinates:

N=R"x {0} M =R" xR, X =C" x C_

L r

Y =C] x {0} L=C} xR,

and set @ZMM = H;NM(Vy(H}J(ﬁX))) ® ey, (see [19], [20], [25]). Then there exists

~ d :
a monomorphism vy (%)) ~— By p- Let us take any v* = (z4;1 %) € TyM and
u(z,t) € %”m@X(%, vn(PBar)),« Then it is known (see [25], cf. [19]) that as a section
of Hom g (M, By nr)

o Wz, t) can be written as

m.
7

P> 2 (@ + VT T 0,) 1% (log 1)1~

A
\./
I M’;

Here each Fi?(z, 7) is holomorphic on a neighborhood of {(z,0) € X; |z,—z2| <&, Imz €
I';;} with a positive constant € and an open convex cone I, C R". Hence u,;(z) :=

i Fi(x+v=11I7;0,0) € BNz, are well defined, and 3°(u) is equivalent to
v=1

{ug(@,0 1<i<p 1<) <my} C By,
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We shall consider ultradistribution solutions. Locally we can write

F'V (D) ={ Y. 7rq,, (2,7) 020" v, € N},

o] Frm
We need several notions due to Tahara [23]:
Definition 3.4. For Q= > 7Y%rq, (2,7)02" € F"Vy'(Z2y) (v, €N, and
q,,.(2,0) #0if q,.(2,7) #0), we |Sael:r<m
Sr(Q) ={v,, €N;q,.(z,7) Z0and || —v,, > 1},
b(80(@ #0).
Sp(Q) =0).

Let m, d € N. We shall consider the following square matrix of size d whose

. {m—r—vm
min _—

IT(Q) = UO“‘GST(Q) |O£| - var
00 (

components belong to I (m):

(3.3) P(z,7,0,,0.) = P(z,7,0,,9) =b(V)1; — Q(z,7,0,,9).

Y2y T - -

Here b(¥) € C[Y] with degree m, 1, stands for the identity matrix of size d, and each
component @,; of @ = (Qij)fd.:1 belongs to FmV;l(.@X). Set M p = .@X‘-i/.@x‘-lP. Then
Mp € Ry (D).

Definition 3.5.  Tahara’s index for P is defined by
T,(P) == min{Z,.(Q;;); 1 <i,j < d}.

Remark 3.6. (1) Tahara [23] defined his index for Fuchsian operators in the
sense of Baouendi-Goulaouic [1], and this index measures the difference of Fuchsian
operators from operators with regular singularities due to Kashiwara-Oshima [7].

(2) Let *P be the formal adjoint of P. Then we see that Z,(P) = Z,.(P).

Then we state our main theorem:

Theorem 3.7.  Assume that 1 < s < Z,(P). Then (3.1) induces the following
morphism of distinguished triangles for * = {s} or (s):

R%??Z@X(%P, FN(@/AZ)) & 2 NIM m R%mgy(DL!//P, @/K})[—l]

l

(3.4) R%??Z@X(%P, FM+(@/]\Z))|N & N T R%mgy(éy (//P), @/K,)
ex * /3* *
R Ao g (Mp. T (D63) |y ———— Rl g (Uy (Mp), D7y)
L+ 1+

that is, (3.4) is compatible with (3.1) under (1.3).
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By virtue of division theorem, the construction of morphisms in (3.4) are same as
in [17], [26].

Remark 3.8. (1) We see that Wy (4p) ~ 294 and &y (Mp) ~ 2. Thus
there exist the following commutative diagrams:

Ao g (M, Ty (D3))| i © 0y g s D™

ﬂ — N
[ m
Herr g (Mp, Dy (P431)) N @ 223 nr S (24y) 2™
n - N
Hern gy (Mp, Iy, (B )y @ oy —— BN,
B0 m
Horm gy (Mip, Ty (Dyg)) |y ——s 2
N N
ex * B*° *\Bm
Herng (Mp, FQ:(-@/M)”N —— (27)™
N N

B° m
‘%ﬂmﬂx(//fpa FQ+(‘@M))|N — 93139 d,

and if i £ 0, then B4 =3 =5 = pb' = 3" = 3' = 0.
(2) If 1 < s < Zp(P) < o0, then this condition can be written as

m vzj —r .. 8
max{l,max{—r; vy € ST(QZ-].), 1<i4,57< d}} < 5

|

Therefore, we can regard this condition as a counterpart of an irregularity condition for
ordinary differential equation.

§4. Case of General Regular Specializable Systems

Let # € Ry (Zy). Then there exists locally an epimorphism
(4.1) Ly — M — 0.

Here .7, = @%PV and each Py = bj(9)1,, — Qq(z,7,0,,7) is of the type (3.3). We

-
l/V

set I := Z dg deg by. Then first we have the followmg partial result:

Proposition 4.1.  Under (4.1), assume that 1 < s < min{Z,(F;); 1 <v < v,}.
Then 5*° and 8*° induce the following monomorphisms respectively for x = {s} or (s):

B0 Ao g (M Ty (DA ® ctnpsg = Hoon g By (M), D).
B0 Heon gy (M TGHDED) | = Hoor g (T (M), D).
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In particular, there exist the following:

B0
%ﬁz@x(/{, FM+(@/M))|N & N1 R %mgy(@y(.//), @/N)

N — N
* g0 *
N N

EO
Herm g (M, FM+(‘%M))|N Q cv > o g (Py (M), By ),

Bt,O
Horn g (M Tly (D3)) |y = Horn o (B (M), D)
N

N
ex * B0 *

N N
BO
Hoon gy (M Ty (Bog)) = Horn gy (U (M), By).

Next, for any .# € Ry (Zy), there exists locally an exact sequence

(4.2) 0= -2, ,— =L —L— M—0.

n

Here % € Ry (Zy) and .Z, = Gé//lp;, and each P/ is of the type (3.3). Then we have
=1 o

Hn+2]— %L, — .M where Ly =L, 5~ — L)
As a special case, if there exists locally an exact sequence instead of (4.2):
(4.3) 0—-%, - =2 -2 —M—0,
where ;1 < n 4 1 and each .Z, is same as in (4.2), then we have
L =%, — = Z) =M.

Under this notation we set
min{Z(F;’);
min{Z(F;’);

o n+2} (the case of (4.2)),
Tal )= { wh (the case of (4.3)).

Then Theorem 3.7 is generalized as follows:

Theorem 4.2.  Assume that 1 < s < L, (). Then (3.1) induces the following
morphism of distinguished triangles for « = {s} or (s):

R g (M, Ty(Di3p)) @ ooy jng == Rl gy (DU M, D5) 1]

|

(4.4) R%mgx(.//, FM+(@/]\Z))|N & N S R%mgy(éy (M), @/ﬁ)

ex * /3* *
R g (M TGN D) |y ——— RAon g (W (M), D7)

L+ 1+
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that is, (4.4) is compatible with (3.1) under (1.3). In particular, the monomorphisms 3°
and 3° in Theorem 3.1 induce the following monomorphisms for x = {s} or (s):

3,0

IE]

Hom g (M. Ty, (:@/M))|N ® vt ja s Hon gy (B :(//1), 2%
Ao g (M Toy (Bo)ly @ o2 pag s Ao g (B (M), By).
Ao (. T (93 s Aoy, (5 (). 26
Ao (M. ggf(%;)) o—2 ,%ﬂm@y(w% (M), D5%)

.

Ao g (M, FQ+(‘%M))|N > Homng (W (M), By).

Remark 4.3. Let .# € Coh(Py|y) and assume that Y is non-characteristic for
A . Then there exist the following (recall (2.2)):

R ooy (M Th (94

~

Rﬁm@x(%’ FN(@/M)) ®w§){/_]\14 _ Re%amgy(DL*%, @/N)

~N

Rl (M, TG DGy .

~ e

(4.5)

and (4.5) induces the following monomorphisms:

Ao g (M T, (Der)) s Hom gy (DU, D)

Horn g (M, ?ext(@/M))|N>ﬁ—> Homg, (D(Z*//z D7)

Sy (4T, (B s Ao g, (Dett, By
and 3° coincides with boundary value morphism due to Komatsu-Kawai and Schapira
in the single equation case (see Komatsu [12]).
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