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Summability of formal solution of Cauchy problem
for some PDE with variable coefficients

By

KuN1O ICHINOBE®

Abstract

We give a proof of the summability of formal solution for Cauchy problem of linear first
order partial differential equations with respect to ¢ and with ¢ dependent coefficients under
some global conditions for Cauchy data.

§1. Result

We consider the following Cauchy problem for linear partial differential equations
of first order with respect to ¢ and with ¢t dependent coefficients

finite

Owu(t, x) = Z aiat'0%u(t, )
(1.1) oy

u(0,z) = p(x) € O,

where (t,z) € C?, a;, € C and O denotes the set of holomorphic functions in a neigh-
borhood of the origin.
The Cauchy problem (1.1) has a unique formal solution of the form

(1.2) at,r) =3 un(:c)g.

n>0

We have an interest in the case where the formal solution is divergent. We assume that
for the operator

(1.3) max o > 1,
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with a;o # 0. In this case, the formal solution (1.2) is not convergent in general.

We shall study the summability of the formal solution.

For the operator we assume that for indices (¢, o) with a;, # 0, the number a/(i+1)
is a constant, that is

(1.4) o P

where p and ¢ are relatively prime. We call this number «/(i + 1) the modified order
of the operator (cf. M. Miyake [6]). In this case, since we see « = pj and ¢ = ¢qj — 1 for
j > 1, our equation is rewritten as follows.

(1.5) Owu(t,z) = Z ajt9 1 oPIy(t, x),

j=1
where v > 1 and a, # 0. Then the assumption (1.3) means

pv > 1.

In the case where (p,q) = (2,1) and v = 1, the equation (1.5) is the heat equation.
Before stating our result, we give some notations and definitions in Ramis or Balser
ways (cf. W. Balser [1]).
Ford e R, >0 and p (0 < p < o0), we define a sector S = S(d, 3, p) by

(1.6) S(d, B, p) = {t € C;|d—argt| < g,O < |t < p} ,

where d, 3 and p are called the direction, the opening angle and the radius of S, respec-
tively. We write S(d, 5,00) = S(d, ) for short.

Let £ > 0, S = S(d,3) and B(r) := {x € C;|z| < r}. Let v(t,z) € O(S x B(r))
which means that v(t,z) is holomorphic in S x B(r). Then we define that v(t,z) €
Exp,(k, S x B(r)), if for any closed subsector S’ of S, there exist some positive constants
C and 0 such that

(1.7) max [v(t,z)| < CeOM", te g
| <r
For k > 0, we define that 6(¢,z) = Y. o v, (2)t"/nl € O[[t]]1/x (6(t, ) is a formal
power series of Gevrey order 1/k), if v, (x) are holomorphic on a common closed disk
B(r) for some r > 0 and there exist some positive constants C' and K such that for any

n,

(1.8) max |, (z)] < CK™T (1 + (1 + %) n> .

|lz|<r
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Here T" denotes the gamma function.

Let k>0, 0(t,x) = >0 g vn(2)t"/n! € O[[t]]1 /5 and v(t, ) be an analytic function
on S(d,3,p) x B(r). Then we define that

(1.9) v(t,x) =g 0(t,x) in S =S5(d,0,p),

if for any closed subsector S’ of S, there exist some positive constants C' and K such
that for any NV, we have

N-1 i
!

(1.10) max |v(t, ) — 'Un(x); L

< CKN|tNT (1 - (1 + 1) N) , ted.

For k> 0, d € R and 9(t,x) € O[[t]]1/x, we define that (¢, ) is k-summable in d
direction (0(t,z) € O{t}k.q) if there exist a sector S = S(d, 3, p) with > w/k and an
analytic function v(¢,x) on S x B(r) such that v(t,x) = 0(¢t,z) in S.

We remark that the function v(t,z) above for a k-summable 0(t, z) is unique if it
exists. Therefore such a function v(¢,x) is called the k-sum of o(¢,x) in d direction.

Under the above preparations, our result is stated as follows.

Theorem 1.1.  For a fived d € R, we define dy = (¢/p)d + (arg a, + 27l) /pv for
(=0,1,--- ,pv—1. Let

qu
1.11 =
( ) K prv—1
and for some e > 0 and r > 0,
(1.12) O (p,v) i= UL S(dee) | B(r).
We assume that
pv
(1.13) o(x) € Exp, (pu — 1,Qgc(p, 1/)> :

Then the formal solution G(t,x), which is given by (1.2), of the Cauchy problem (1.1)
s k-summable in a direction d.

8§2. Gevrey order of formal solution

We recall our Cauchy problem
_ NV +qi—19pj
@2.1) Ou(t,x) =,y at¥ 0 u(t, z),
u(0,z) = p(x).

Gevrey order of formal solution of Cauchy problem (2.1) is given by the following propo-
sition.
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Proposition 2.1.  Let a(t,z) = > g un(z)t"/n! be the formal solution of the
Cauchy problem (2.1). Then we have

(2.2) i(t, z) € O[]k (k i >.

:pu—l

This proposition follows from the results which are proved by many mathematicians
(cf. M. Miyake and Y. Hashimoto [7] and A. Shirai [9] and their references). But we
give the proof, because the notations which are represented here will be employed later.

Proof. The coefficients u,,(x) of the formal solution satisfy the following recurrence
formula: ug(z) = ¢(z) and for n > 0,

v

(2.3) uns1(z) = > ay - []ggo1 - uP) o (@),

=1

where u_p(z) =0 (n > 0) and the notation [n], is defined by

_)nn—-1)---(n—L+1), £>1
(2.4) (1] —{ N /o

From the construction of recurrence formula (2.3), we can put
(2.5) ugn() = A(n)p®(z) (n20),

and u(x) = 0 for £ # gn (n > 0). Then we obtain the recurrence formula of A(n): For
n >0,

(2.6) An+1)=> a;-[qgn+q—1g-1-Aln—j+1),
j=1
where A(0) = 1 and we put A(—¢) =0 for £ > 0.
We put
(2.7) )= Amyen,
n>0

which is the generating function of A(n). Then we obtain the following Gevrey estimate
of f .

Lemma 2.2. Let

e
Il

(2.8)

qu—1"

Then we have

A

(2.9) f) € Clitl], /-
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Proposition 2.1 follows from Lemma 2.2 immediately. In fact, we have for some
r >0

ma fun ()| = ma | A(n/@) /9 ()|

< CLKTT(1 +n/(kq)) (%%)!

< CLKPT (1 + (i + I—’) n>
kg q

and ~

1 14+ k —1 —1 1

SRS N el N e LA =14 =,

kq 4 kq qu qu k
where A(n/q) =0ifn/q ¢ No = {0,1,2,---} and C; and K, are some positive constants
for ¢ = 1,2. This implies the desired Gevrey estimate of the formal solution 4. O

(Proof of Lemma 2.2.) We put B(n) := A(n)/n!l/’~€ & A(n) = B(n)n!l/’~€ and divide
both hand sides of (2.6) by (n + 1)1/,

(n—j74+1)!

1/k
CES] ) B(n—j+1).

(210) B(n + 1) = Zaj . [qn + q — 1]qj—1 (

Nl (n—jt1yt )"
Here we put I;(n;q) := [gn+ ¢ — 1]gj—1 sy . Then we have

Lemma 2.3.
(2.11) Ii(n;q) < ¢V

By admitting this lemma for a while, we continue the proof of Lemma 2.2.
Now, we consider the following recurrence formula of C'(n); C(0) = 1 and for n > 0,

(2.12) Cln+1) = laslg® 'Cln — j + 1),

j=1
where C(—¢) = 0 if £ > 0. We see that C(n) > |B(n)| = |A(n)|/n!1/'~c from the

construction of the recurrence formulas. By putting

h(t) = C(n)t",

n>0

we get A(t) — 1= Y7 {la;|/q} (¢"t)7 h(t), that is

1
1= {lajl/a} (qot)7”

h(t) =
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which is convergent in a neighborhood of the origin. Therefore there exist positive
constants C3 and K3 such that C'(n) < C3K% for any n, and by using Stirling’s formula
for the Gamma function, we obtain the desired Gevrey estimate for A(n).

Finally, we prove Lemma 2.3.
(Proof of Lemma 2.3.) When ¢ =1 and j = 1, we have [gn + ¢ —1];j—1 = 1. Therefore

we get
nl 1/k 1 1/k
Li(n;1) = = < 1.
1(n;1) ((n+1)!) (n-l—l)

In other case, we have

Ij(n;q)
1 1/k
n+1)n~~-(n—j+2))

— g1 <n+1_%> <n+1_§>...(n—j+1+%> ((n+1)n...1(n—j+2)> V

- (qn+q_1)(qn+q—2)-~~(qn+q—(qj—1))((

1\ 2\” : 1y
(=) (n1=2) (a1 d)
:qu—l q q q
(n+ 1)v—lpav=1l...(n —j42)r—1
v v v 1l/v
- (n—l—l—%) (n+1—§> -~~(n+1—§>
— U
¢ (n+1)r—1.n
v v v 1l/v v v l/v
1 —2) ... _ 4 —1-=41) ... —1-4
B ) I ) M o B S B Gtk DM et )
nav=2.(n —1)2 (n—1)=3.(n—2)3
v /v
(n—j+3—§) (=7 +2)
(n=j+1)®=U-D-(n—j+2)"1
4 qu—v \1/V
(n—j+2—l> ---(n—j+1+l> ,
X ! d < q¥

(n—j+2)
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§ 3. Summability of formal solution

Let k = qv/(pv — 1). From Proposition 2.1 we see that

5 Up(x) 8"

UB(S,QZ) = (Bka)(sax) = Z F(l +n/k-) m

n>0

is convergent in a neighborhood of (s,z) = (0,0). In order to prove Theorem 1.1, we
use the important lemma for the summability theory (cf. [1], D. Lutz, M. Miyake and
R. Schifke [5]).

Lemma 3.1. Letk >0, d € R and 0(t,z) = > vu(x)t"/n! € O[[t]]1/x. Then
the following statements are equivalent:

i) v(t,x) € O{t}r.a.

ii) vp(s,x) € Exp,(k,S(d,e) x B(r)) for some e >0 and r > 0.

For our purpose, we prepare a lemma for the summability of f (t), which will be
proved in the next section.

Lemma 3.2. Letk = v/(qu—1). Then we have f(t) = Dm0 A)t" € C{t}y 4,
where
d#e (L=0,1,---,v—1) and ep:=—(arga, + 27l)/v.

Remark.  fp(t) = (B; £)(t) has v singular points which are given by
(3.1) Ne=cpaPw b =01, v —1,
where ¢y = (qk)=%)/" and w, = e*™/*. Moreover, we have
(32) I5(t) € Bxpy(k, S(d; £0)),

where d # ey and g¢ > 0.

Now, we put

(3.3) (M f)(E) =S Amyw(n)t”, w(n) = (pn)!

' )
7?/20 (qn)'

which is called the moment series of f with respect to weight function w(n). Then we
remark that (M f) is a formal power series of Gevrey order 1/k, where

qv—l—(q—p)vzpv—l(

” ” > 0).

—(qg—p) =

T =

k.

We give the following theorem for the summability of (M® f)(t).
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Theorem 3.3.  Let k. = v/(pv—1). Then we have (M™ f)(t) € C{t}. .a, where

d#e (£=0,1,---,v—1).

Remark.
3 ; A(n)  (pn)!
3.4 MY t) := (Bg (M"Y t) = t"
has v singular points which are given by
(3.5) /\*g:cgaljl/”w;e, (=0,1,---,v—1,
where ¢, = g/ p=Pk, APV Moreover, we have

(3.6) (M f)B(t) € Exp,(k«, S(d, 0)),
where d # ey and g¢ > 0.

The directions for which some divergent series is not summable are called the
singular directions of the divergent series. From the above facts, we have the following

result for the moment series.
Remark.  The set of singular directions of (M f) coincides with the one of f.

We give the proof of Theorem 1.1 by using Lemma 3.1 ii) and Theorem 3.3.
Proof. We recall

= y * —

. qu _k v
pr—1 q

pv—1
Let |s| and |z| be sufficiently small. By Cauchy’s integral formula for up, we have

n

ZP 1+n/k n' Zl“l(—]:qn/k ) (qn)!

So(pn) ) gqn

Z T(1+n/k.) (qn)!

B L oz + () Am)  (pn)! (sT\"
ST Mrand Wiy} (&) «
1 P&+ C) 3w

B 27 [¢|=r0 C (M f)B (Cp) dC

with (|s|7/R.)YP < |¢| = ro, Ry = |Ase| and A\yp = constant x a,, a® L
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We remark that (M™ f)p(s?/(P) has v singular points in ¢(= s9/¢?) plane. There-
fore we see that (M™f)p(s?/¢P) has pv singular points in ¢ plane and the singular
points are given by

s4 1/p ) ‘
(3.7) Coom = " wy' = constant x s‘m’a,/pyw,/pw;;1

for/=0,1,---,v—1land m=0,1,--- ,p—1. Forn=0,1,...,pr — 1, we put

1/pv, n

— qa/p
G = constant X sPa,/P w;,

and

arga, + 2mn

(3.8) dy, = arg(, = g4
p pv

for a fixed s with args = d.

We consider the situation that |s| becomes bigger along arg s = d. In this case, we
spit the path of integral into pv arcs v, and pv arcs I';, (n = 0,1,--- ,pv — 1), where
each ~, consists of the arc between points of argument d,, — ¢/3 and d,, + ¢/3, and
each T'), consists of the arc between points of argument d,, + ¢/3 and d,,+1 — £/3 with
dpy = do. Since ¢(z) is analytic in Q. (p,v), we may deform =, into paths 7, g, along
the ray arg( = d,, — £/3 to a point with modulus R, = ¢[s]|%/P 4+ 1 (c is some constant),
then along the circle |(| = Rs to the ray arg( = d,, + /3 and back along this ray to
the original circle. So we have

pr—1

39  up(sa)= Y o— { |+ } 22D e pn (5) dc

n=0

In this expression, from the assumption that ¢(x) € Exp, (pv/pr —1,Q,(p,v)) and the
fact that (M"Y f)p(t) € Exp,(k«, S(d,e0)) with d # ey as in Remark of Theorem 3.3, we
can obtain the property of the analytic continuation and the desired exponential growth
estimate of ug(s,x) in S(d, &) x B(r) for some & and r. O

§4. Proof of Lemma 3.2 and Theorem 3.3

We shall prove Lemma 3.2 and Theorem 3.3, which are the results of k-summability
of the formal power series f and the moment series M"Y f . For the purpose, we shall
give the results for k-summability of the formal solution of a linear ordinary differential
equation in subsection 4.1. By applying their results to f and the moment series M" f ,
we shall give the proof of Lemma 3.2 and Theorem 3.3 in subsection 4.2.
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§4.1. Summability of formal solution for an ODE

In this subsection, we only give results for k-summability of the formal solution of
a linear ordinary differential equation. For the proof, see B. L. J. Braaksma [2], [3], S.
Ouchi [8] and K. Ichinobe [4].

Let k be positive rational number and let us consider the following polynomials.

mi mi+ma
PoQ) =D "A;0 Pt = > ai(t)n,

where m; € N={1,2,---}, mg € Ng, 4;,(,n € C and a,(t) € O.
Here we assume that mik € N, Ay # 0, A,,, # 0 and if jk € Ny, then A; =0, and

O(a,) ZO, OS]SmQ_l,
YU > (G —ma)k, ma<j<mi+ma,

where O(a) denotes the order of zeros of a function a(t) at ¢t = 0.
We consider the following linear ordinary differential equation.

(4.1) Py(t*6,)67"y = g(t) + Pi(t,0,)y,

where §; = t(d/dt) is the Euler operator and ¢(t) € O.

Here, we give the definition of the Newton polygon for the equation (4.1) (cf. M.
Miyake and Y. Hashimoto [7] and A. Shirai [9]).

Let L = Z?Site ¢; ;t'6] be a differential operator. We define a domain N(i, ) by

N(i, j) :== {(z,y) € R*x < j, y >i} for £; ; #0,

and N(i,j) := ¢ for ¢;; = 0. Then the Newton polygon N(L) of the operator L is
defined by

finite
N(L):=Ch<{ [ N(i,j) ¢,
,J
where Ch{---} denotes the convex hull of points in U; ;N(7,5). By employing this
definition, we define the Newton polygon for the equation (4.1) by

N (Po(t*6:)8y" — Pu(t,61)) -
The above assumptions means
N(Po(t56,)6,%2) = N (Py(t¥6,)6]"* — Py(t,6;)) and  N(Py(t*6;)6]"%) D N(Pyi(t,6:)).

In this sense, Py(t*6,)8;"* is called the principal operator of the equation (4.1).
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In order to state the result of k-summability of the formal solution for (4.1), we
define a characteristic equation associated with the principal operator Py (t*6;)d;"?

(4.2) Py(\) = 0.

Let A; (1 =1,2,...,my) be the roots of (4.2) and we put

arg \; + 2mn

(43) Gi’n = 2 s

n=0,1,....k—1.

Then we have

oo
Theorem 4.1.  Let g(t) = Zynt" be a formal power series solution of (4.1).
n=0
Then y(t) € C{t}x.a, where
(4.4) d#0, (i=1,2,...,m, n=01,... k—1).

Corollary 4.2.  Let yp(s) := (Bif))(s) = 3200y yns™/T(1 + n/k). Then yp(s)
has mik singular points in s complex plane at roots of

(4.5) Py(ks*) =0,
which is called a singular equation of yp(s). Moreover, we have

(46) yB(S) € Exps(k; S(da 50))7

for some g9 > 0, where d # 60, ,(i =1,2,...,m;, n=0,1,...,k—1).

§4.2. Proof of Lemma 3.2 and Theorem 3.3

(Proof of Lemma 3.2.) In order to prove Lemma 3.2, it is enough to seek the differential
equation which is satisfied by f. We recall that the coefficients A(n) satisfy the following
recurrence formula

(4.7) A(n+1) :Zaj.[qn+q—1]qj_1 “A(n —j+ 1),

where A(0) =1 and A(—¢) =0 for £ > 0.
By multiplying both hand sides of (4.7) by t"*! and taking sum of n > 0, we get

FO)=1=) "at’ > gn+q—1g—1A(n — j + 1)t I+
j=1

n>0

= Z ajtj Z[qn + Qj - l]qj_lA(n)t”.
j=1

n>0
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Here we use the another notation.

gn+qj —1gj—1=(qm+qi—1)(gn+qj—2)---(gn+qj — (gj — 1)) =: (qn + 1)4j_1,

where the notation (n); denotes the Pochhammer symbol. We obtain the differential
equation which is satisfied by f:

(4.8) fy—1= iajtj((ﬁt + Dgj1f(2).
j=1
From the results in the previous subsection, we notice that the principal operator
of (4.8) is given by
(4.9) Py = a,t(¢6,)™ -1
and a singular equation of fp(t) is given by
(4.10) ayt’ (gk)™ =t —1=0.

Therefore the singular points of fg(t), which are the roots of (4.10), are given by

(4.11) t=XA=cpa, YVt £=0,1,---,v—1,
where ¢; = (qk) =)/,
Hence from Theorem 4.1, we obtain that f is k-summable in a direction d, where
arg a, + 2ml

(4.12) d#e =arghpy=—+—-—  (=0,1,--- ;v —1.
v

O

(Proof of Theorem 3.3.) We prove Theorem 3.3 in the similar way to proof of Lemma
3.2. We seek the differential equation for M™ f.

We notice
(p(n—j5+1)+1),,

w(n) =---= (q(n_j+1)+1)qu(n—j+1).

(pn+ 1),

win+1) = (gn+1),

By multiplying both hand sides of (4.7) by w(n + 1)t"*! and taking sum of n > 0, we
get
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(M"f)(#) —

= Zajtj Z[qn +q—1]g-1An—j+1) EZEZ : j j: 3 j: %ﬁw(n 1yt
j=1 n>0 qJ

_ J , (pn +1)p; w(n)"

- Zajt 7;) an+ Dgjr gy Almu ()t

= _ZCLJ DY~ 1 p5t+1)pj(M f)(t)’

where D; ! = fot . Therefore we have

d . v

(M f)(t) = ; O+ 1)y (M) (0)
(4.13) = BUMUF)(E) = 37T (0 1)y (M) (0)

j=1

We notice that the principal operator of (4.13) is given by

(4.14) Qo = 247 (p5, )P — §, = (I—)a,,t”(pét)p”_l - 1) 5,
q q
and a singular equation of (M™ f)g(t) is given by

(4.15) gal,t”(pk*)p”_l —1=0.

Therefore the singular points of M™ f(t), which are the roots of (4.15), are given by

(4.16) t= Ao =cga,YVPw b £=0,1,--- v —1,

v

where ¢, = g/ p=Pk, APV Hence we obtain that M f is k.-summable in a direction
d, where d #e; ({ =0,1,...,v—1). 0

Acknowledgement. The author would like to express thanks to the referee for his
comments. According to his advice we add the subsection 4.1, where the results of
k-summability of the formal solution for a linear ODE are given.
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