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The non‐integrability of some system of fifth‐order

partial differential equations describing surfaces

containing 6 families of circles

By

Kiyoomi KATAOKA * and Nobuko TAKEUCH 1
**

Abstract

We prove that a surface germ z=f(x, y) at the origin in \mathbb{R}^{3} is a cyclide, if it contains some

six continuous families of circular arcs through every point and it satisfies some conditions on

the third order derivatives of f at the origin. This result was conjectured by Takeuchi in [6]:
A surface in \mathbb{R}^{3} is a cyclide if it contains two circles through almost every point.
Our proof is based on the non‐integrability of the corresponding system of fifth‐order partial
differential equations introduced in [3], and so we do not use any global information on the

surfaces, for example, our result is free from the genus and the closedness of surfaces. The

detailed results with proofs will be published in [4].

A general cyclide (Darboux cyclide [2]) is defined by a quartic equation

3 3 3

(0.1)  $\alpha$(x_{1}^{2}+X_{2}^{2}+x_{3}^{2})^{2}+2(x_{1}^{2}+X_{2}^{2}+x_{3}^{2})\displaystyle \sum$\beta$_{i^{X}i}+\sum$\gamma$_{ij}x_{i}x_{j}+2\sum$\delta$_{i^{X}i}+ $\epsilon$=0
i=1 i,j=1 i=1

with real numbers  $\alpha$, $\beta$_{i}, $\gamma$_{ij}, $\delta$_{i},  $\epsilon$ . Then a usual torus and a 6‐circle Blum cyclide ([1])
correspond to the case  $\alpha$=1, $\beta$_{*}=0, $\delta$_{*}=0, $\gamma$_{ij}=-2a_{i}$\delta$_{ij},  $\epsilon$=\ell^{2} with 0<\ell<a_{1}=

a_{2},  a_{3}=-\ell ,
and to that with  0<\ell<a_{2}<a_{1}, -\ell\neq a_{3}<\ell , respectively.

We consider a surface germ  M : z=f(x, y) at the origin of \mathbb{R}^{3}
,
where f is a C^{5} ‐class

function defined in a neighborhood of x=y=0 satisfying the following conditions:

(0.2) f(0,0)=f_{x}(0,0)=f_{y}(0,0)=f_{xy}(0,0)=0,
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and

(0.3) f_{xx}(0,0)-f_{yy}(0,0)\neq 0.

Indeed, if the origin is not an umbilical point of a C^{2} ‐surface M
,

we can take such a

Euclidean coordinate system x, y, z of \mathbb{R}^{3}.

Before stating our main result, we introduce conformal transformations, which have

a great importance in our proof of the main result.

Definition 0.1. A conformal transformation in \mathbb{R}^{3} is a finite composition of

translations, rotations, and the inversions \vec{x}= $\lambda$\vec{y}/|\vec{y}|^{2}( $\lambda$>0) in \mathbb{R}^{3} . As a result,
reflections and dilations are conformal transformations. Two surface germs M, M' at

p\in \mathbb{R}^{3} are said to be conformally equivalent to each other if there is a conformal

transformation F with F(p)=p such that F(M)=M' as a surface germ.

Remark. A conformal transformation maps a sphere (or (a plane) \mathrm{U}\{\infty\} ) onto a

sphere or (a plane) \mathrm{U}\{\infty\} : As a result, a circle (or (a line) \mathrm{U}\{\infty\} ) onto a circle or (\mathrm{a}
line) \mathrm{U}\{\infty\} . Hence the total number of circles and lines passing through a point on a

surface is preserved under a conformal transformation. Further it is well‐known that a

general cyclide is transformed into another general cyclide by any conformal transfor‐

mation. N. Takeuchi [6] proved that any general cyclide is conformally equivalent to a

cyclide of the following type:

(0.4)  $\alpha$(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{2}+\displaystyle \sum_{i}^{3}$\gamma$_{ii}x_{i}^{2}+ $\epsilon$=0.
We denote by a, b, c_{*}, d_{*}, e_{*} the higher order derivatives of f(x, y) and by P(t)

the characteristic polynomial for a surface germ z=f(x, y) ,
which will be given in

Definition 1.1. Then, our main result is the following:

Theorem 0.2. Let z=f(x, y) be a C^{5} ‐class function defined in a neighborhood

of x=y=0 satisfy ing conditions (0.2), (0.3). Let P(t) be the characteristic polynomial
at the origin for the surfa ce germ M:z=f(x, y) . Suppose that P(t)=0 has 6 distinct

non‐zero real roots \{t_{k}\}_{k=1}^{6} ,
and that M includes 6 continuous families of circular arcs

corresponding to \{t_{k}\}_{k=1}^{6} . Then, f is analytic at x=y=0 ,
and f is completely

determined by the 11 higher order derivatives c_{0}, c_{2}, d_{*}, e_{*} of f at (0,0) . Furthermore,

suppose the following additional conditions

d_{0}=d_{1}=d_{2}=d_{3}=0 at (0,0)

with some generic conditions on c_{0}, c_{2}, e_{0}, e_{2}, e_{4} . Then we obtain that e_{1}=\mathrm{e}_{3}=0 at

(0,0) ,
and that the surfa ce germ z=f(x, y) at x=y=0 is a general cyclide. More
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precisely, M is conformally equivalent to a germ at (0,0, *) of the following 6‐circle

Blum cyclide:

(0.5) (x^{2}+y^{2}+z^{2})^{2}-2a_{1}x^{2}-2a_{2}y^{2}-2a_{3}z^{2}+a_{4}^{2}=0,

where a_{1}>a_{3}>a_{4}>0, -a_{2}>a_{4} . Further this surfa ce (0.5) has the same character‐

istic roots \{t_{k}\}_{k=1}^{6}.

Our plan of this paper is the following: In Section 1, we recall the results in [3]
(and the complete version [4]) with some necessary definitions, P(t) , c_{0}, c_{2}, d_{*}, e_{*} for M.

Section 2 is devoted to show some explicit calculations for the Blum 6‐circle cyclides
and to give a rough sketch of the proof of Theorem 0.2. In particular, the explicit
calculations of T(x, y) in Proposition 2.4 are the original results in this paper.

§1. The system of fifth‐order partial differential equations which

describes surfaces including several continuous families of circles

Definition 1.1. (The key polynomial Z(T) ). Let z=f(x, y) be a C^{4}‐class

function defined in a neighborhood of (0,0)\in \mathbb{R}^{2} . Put the Taylor coefficients of f at

(x, y) as follows:

\left\{\begin{array}{l}
a:=f_{x}(x, y) , b:=f_{y}(x, y) ,\\
c_{0}:=f_{xx}(x, y)/2, c_{1}:=f_{xy}(x, y) , c_{2}:=f_{yy}(x, y)/2,\\
d_{0}:=f_{xxx}(x, y)/3!, d_{1}:=f_{xxy}(x, y)/2!,\\
d_{2}:=f_{xyy}(x, y)/2!, d_{3}:=f_{yyy}(x, y)/3!,\\
e_{0}:=f_{xxxx}(x, y)/4!, e_{1}:=f_{xxxy}(x, y)/3!, e_{2}:=f_{xxyy}(x, y)/2!^{2},\\
e_{3}:=f_{xyyy}(x, y)/3!, e_{4}:=f_{yyyy}(x, y)/4!.
\end{array}\right.
We define some polynomials C(T) , D(T) , E(T) , R(T) , S(T) , K(T) , W(T) and the key

polynomial Z(T) in T as follows:

C(T):=c_{0}+c_{1}T+c_{2}T^{2}, D(T):=d_{0}+d_{1}T+d_{2}T^{2}+d_{3}T^{3},

E(T) :=e_{0}+e_{1}T+e_{2}T^{2}+e_{3}T^{3}+e_{4}T^{4},

R(T) :=(b^{2}+1)T^{2}+2abT+a^{2}+1,

S(T) :=D(T)R(T)-2(bT+a)C(T)^{2},

K(T) :=R'(T)C(T)-R(T)C'(T) ,

W(T) :=bS(T)+C(T)K(T)=2TC(T)^{2}+(bD(T)-C'(T)C(T))R(T) ,

where C'(T)=\partial_{T}C(T) , R'(T)=\partial_{T}R(T),\ldots \mathrm{e}\mathrm{t}\mathrm{c}..

Z(T)\equiv Z(T;x, y):=
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K(T)^{2}(R(T)E(T)-C(T)^{3})+R(T)K(T)D(T)(D'(T)R(T)
-3(b^{2}+1)TD(T))+D(T)^{2}R(T)[-ab(2K(T)+TK'(T))
-2(a^{2}+1)(b^{2}+1)C(T)+((a^{2}+1)c_{2}+(b^{2}+1)c_{0})R(T)]
+2R(T)C(T)[(bT+a)\{D(T)K'(T)C(T)+D(T)K(T)C'(T)

-D'(T)K(T)C(T)\}-bD(T)C(T)K(T)]

+4C(T)^{4}(bT+a)\{((a^{2}-1)c_{2}+(b^{2}+1)c_{0})(bT+a)
‐ \displaystyle \frac{1}{2}ac_{1}R'(T)+2a(c_{2}-c_{0})-bc_{1}\}.

It is easy to verify that (the degree of Z(T) in T ) \leq 10 . Consider a C^{4}‐surface germ

M=\{z=f(x, y)\} at (0,0, f(0,0)) . We call

P(t) :=Z(t;0,0)/(c_{0}(0,0)-c_{2}(0,0))

the characteristic polynomial of the surface germ M if conditions (0.2), (0.3) are satisfied.

Since a=b=c_{1}=0 at (0,0) ,
we have a more simplified form:

(1.1) P(t)=(t^{2}+1)\mathring{D}(t)\{2t(t^{2}+1)\mathring{D}\prime(t)-(5t^{2}+1)\mathring{D}(t)\}
+4(\mathring{c}_{0}-\mathring{c}_{2})t^{2}\{(t^{2}+1)\mathring{E}(t)-\mathring{C}(t)^{3}\},

where \mathring{c}_{j}:=c_{j}(0,0) , \mathring{C}(t) :=C(t;0,0) ,
etc.. Moreover, under the additional condition

d_{0}(0,0)=d_{1}(0,0)=d_{2}(0,0)=d_{3}(0,0)=0,

we have P(t)=4(\mathring{c}_{0}-\mathring{c}_{2})t^{2}Q(t) with a polynomial Q(t) of degree 6, which we call the

reduced characteristic polynomial:

(1.2) Q(t) :=(t^{2}+1)\mathring{E}(t)-\mathring{C}(t)^{3}

Then we can introduce the main theorems of [3], [4]:

Theorem 1.2. Let z=f(x, y) be a C^{4} ‐function defined in U_{$\delta$_{0}}=\{x^{2}+y^{2}<
$\delta$_{0}^{2}\}($\delta$_{0}>0) satisfy ing (0.2), (0.3). Then we have the following (i), (ii), (iii).

(i) Let t_{0}, s_{0}\in \mathbb{R} . If

(1.3) M\cap\{y= tx +s_{0}z\}

is a circular arc or a line segment in a neighborhood of the origin, then

Z(t_{0};0,0)=0.
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Further, if it is a circular arc, then C(t_{0};0,0)\neq 0 and under an additional condi‐

tion t_{0}\neq 0 we have

s_{0}=\displaystyle \frac{(t_{0}^{2}+1)D(t_{0};0,0)}{2(c_{0}(0,0)-c_{2}(0,0))t_{0}C(t_{0};0,0)}.
If it is a line segment, then C(t_{0};0,0)=D(t_{0};0,0)=E(t_{0};0,0)=0.

(ii) Let t(x, y) , s(x, y) be real‐valued continuous functions defined in a neighborhood of

(0,0) such that, for some  $\delta$>0 and any (x_{0}, y_{0})\in U_{ $\delta$} ,
the set

(1.4) M\cap\{y-y_{0}=t(x_{0}, y_{0})(x-x_{0})+s(x_{0}, y_{0})(z-f(x_{0}, y_{0}

coincides with a circle in a neighborhood of (x_{0}, y_{0}, f(x_{0}, y_{0})) . Assume that  t(0,0)\neq
 0 . Consider a continuous function

(1.5) T(x, y):=\displaystyle \frac{t(x,y)+f_{x}(x,y)s(x,y)}{1-f_{y}(x,y)s(x,y)}
defined in a neighborhood of (0,0) . Then, T(x, y) , s(x, y) , t(x, y) satisfy the follow‐

ing equations:

(1.6) Z(T(x, y);x, y)=0,

(1.7) s(x, y)=\displaystyle \frac{S(T)}{W(T)}, t(x, y)=\displaystyle \frac{TK(T)C(T)-aS(T)}{W(T)}.
Moreover, if t(x, y) , s(x, y) are constant on each circular arc (1.4), f is a C^{5}-

function in U_{$\delta$_{0}} and Z'(t(0,0);0,0)\neq 0 ,
then T(x, y) is a C^{1} ‐function in a neigh‐

borhood of the origin satisfy ing the following equation:

(1.8) (@x + T(x; y ) \partial_{y} ) T(x, y)=\displaystyle \frac{2S(T)}{K(T)}.
(iii) Conversely, let f(x, y)\in C^{5}(U_{$\delta$_{0}}) ,

and let T(x, y) be a real‐valued C^{1} ‐function

defined in a neighborhood of (0,0) satisfy ing T(0,0)\neq 0 , equations (1.6),(1.8).
Then, t(x, y) , s(x, y) defined by (1.7) belong to C^{1}(U_{ $\delta$}) for a small  $\delta$>0 ,

and

satisfy that, for any (x_{0}, y_{0})\in U_{ $\delta$} ,
the set

M\cap\{y-y_{0}=t(x_{0}, y_{0})(x-x_{0})+s(x_{0}, y_{0})(z-f(x_{0}, y_{0}

coincides with a circle in a neighborhood of( x_{0}, y_{0}, f(x_{0}, y_{0} and that t(x, y), s(x, y)
are constant on this circular arc.
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Though equation (1.8) looks like a first order PDE, this is a fifth‐order PDE for

f(x, y) :

(1.9) \displaystyle \sum_{j=0}^{5}\left(\begin{array}{l}
5\\
j
\end{array}\right)T^{j}\partial_{x}^{5-j}\partial_{y}^{j}f(x, y)=\frac{24N(T)}{R(T)K(T)^{3}}.
This is because T is an analytic function of \nabla f, \nabla^{2}f, \nabla^{3}f, \nabla^{4}f through Z(T)=0 . Here

N(T) is a polynomial in T of degree 14 defined by

(1.10) N(T) :=-K(T)((\displaystyle \partial_{x}+T@_{y})Z(T)-\frac{K(T)^{2}R(T)}{24}\sum_{j=0}^{5}\left(\begin{array}{l}
5\\
j
\end{array}\right)T^{j}\partial_{x}^{5-j}\partial_{y}^{j}f)
-2S(T)Z'(T) ,

where (\partial_{x}+T\partial_{y})Z(T) :=(\partial_{x}+T\partial_{y})Z(T;x, y) means a differentiation for each coefficient

of Z(T) . It is easy to see that the degree of N(T) in T is at most 14. As we give an

explicit form of N(T) in Proposition 1.3, all the coefficients of N(T) are polynomials of

derivatives a, b, c_{*}, d_{*}, e_{*} of f(x, y) introduced in Definition 1.1.

Proposition 1.3. We have the following expression of polynomial N(T) intro‐

duced at (1.10). In particular, the degree of N(T) in T is 14.

N(T)=-5R(T)K(T)^{2}E'(T)[R(T)D(T)-2(bT+a)C(T)^{2}]
+D(T)^{3}R(T)B_{1}(T)+2D(T)^{2}D'(T)R(T)^{2}B_{2}(T)

-D(T)^{2}R(T)^{2}K(T)[(3d_{3}T+d_{2})(5R(T)-(b^{2}+1)T^{2})
+(d_{1}T+3d_{0})(b^{2}+1)]+D(T)^{2}B_{3}(T)
+2(bT+a)D(T)D'(T)R(T)C(T)B_{4}(T)

+10(bT+a)D(T)D''(T)R(T)^{2}K(T)C(T)^{2}+D(T)B_{5}(T)

-4(bT+a)D'(T)R(T)K(T)C(T)^{3}[5(bT+a)C'(T)+2bC(T)]

+4(bT+a)C(T)^{4}K(T)[3d_{0}B_{6}(T)+d_{1}B_{7}(T)+d_{2}B_{8}(T)
-3d_{3}TB_{9}(T)]+4C(T)^{4}B_{10}(T) .

Here, a, b, c_{*}, d_{*}, e_{*} are the higher‐order derivatives of f(x, y) ,
and C(T) ,

C'(T) , D(T) , D'(T) , D''(T) , E(T) , E'(T) , R(T) , R'(T) , K(T) , K'(T) are the polynomi‐
als in T (or their derivatives in T ) with coefficients in polynomials in a, b, c_{*}, d_{*}, e_{*},

which are introduced in Definition 1.1. Further, B_{1}(T) , B_{10}(T) are the polynomials
in T, a, b, c_{*} given by the following:

B_{1}(T) :=K(T)\{42(b^{2}+1)R(T)-20(a^{2}+b^{2}+1)\}
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-4c_{2}R(T)\{3abR(T)-2(a^{2}+b^{2}+1-a^{2}b^{2})T+2ab(a^{2}+1)\}
+2(b^{2}+1)c_{1}R(T)\{3R(T)+4abT+4a^{2}+4\}

-4(b^{2}+1)R(T)R'(T)c_{0},

B_{2}(T) :=-(4(b^{2}+1)T+5ab)K(T)-((b^{2}+1)T^{2}+a^{2}+1)K'(T)
+4(a^{2}+1)(b^{2}+1)C(T)-2((a^{2}+1)c_{2}+(b^{2}+1)c_{0})R(T) ,

B_{3}(T) :=K(T)^{2}\{-4aR(T)C'(T)+12(b^{2}+1)(bT+a)TC(T)
+8ab(bT+a)C(T)+12bR(T)C(T)+2bR(T)(2c_{0}+c_{1}T)\}
+K(T)K'(T)\{4abT(bT+a)C(T)-12(bT+a)R(T)C(T)
+bTR(T)(2c_{0}+c_{1}T)+aTR(T)C'(T)\}
+K(T)\{-4a(b^{2}+6)R(T)C(T)^{2}-(18(b^{2}+1)T(bT+a)
+16ab(bT+a)-4b(a^{2}+1))R(T)C(T)C'(T)
+8(a^{2}+1)(b^{2}+1)(bT+a)C(T)^{2}-8(bT+a)((a^{2}+1)c_{2}
+(b^{2}+1)c_{0})R(T)C(T)+4abT(bc_{1}-2ac_{2})R(T)C(T)
+4a(b^{2}+1)(2c_{0}+c_{1}T)R(T)C(T)-2ac_{2}(2c_{0}+c_{1}T)R(T)^{2}

-2bc_{0}C'(T)R(T)^{2}-12(b^{2}+1)(bT+a)TR'(T)C(T)^{2}

-8ab(bT+a)R'(T)C(T)^{2}-4(bT+a)R(T)R'(T)C(T)C'(T)

+4bR(T)R'(T)C(T)^{2}-4(bT+a)R(T)^{2}C'(T)^{2}

-8c_{2}(bT+a)R(T)^{2}C(T)+4bR(T)^{2}C(T)C'(T)\}
-2(bT+a)K'(T)C(T)\{2abTR'(T)C(T)+5R'(T)R(T)C(T)
+6R(T)^{2}C'(T)\}-4(bT+a)K''(T)R(T)C(T)^{2}(R(T)+abT)
-8(a^{2}+1)(b^{2}+1)(bT+a)R'(T)C(T)^{3}+8(bT+a)((a^{2}+1)c_{2}
+(b^{2}+1)c_{0})R(T)R'(T)C(T)^{2}
-8(a^{2}+1)(b^{2}+1)(bT+a)R(T)C(T)^{2}C'(T) ,

B_{4}(T) :=2(3(b^{2}+1)T+5ab)K(T)C(T)+5R(T)K(T)C'(T)
+2((b^{2}+1)T^{2}+a^{2}+1)K'(T)C(T)-8(a^{2}+1)(b^{2}+1)C(T)^{2}
+4R(T)C(T)((a^{2}+1)c_{2}+(b^{2}+1)c_{0}) ,

B_{5}(T) :=9C(T)^{2}K(T)^{3}+K(T)^{2}C(T)^{2}\{6R'(T)C(T)+4R(T)C'(T)
+8b(bT+a)C(T)-8(bT+a)^{2}C'(T)\}
-8(bT+a)^{2}K(T)K'(T)C(T)^{3}+K(T)C(T)^{2}\{-8(bT+a)(bc_{1}
-2ac_{2})R(T)C(T)-8b(bT+a)R(T)C'(T)C(T)+8b^{2}R(T)C(T)^{2}

-4b(bT+a)R(T)C(T)C'(T)-48(bT+a)^{2}C(T)((a^{2}-1)c_{2}
+(b^{2}+1)c_{0})+24ac_{1}(bT+a)R'(T)C(T)-48(bT+a)C(T)(2a(c_{2}
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-c_{0})-bc_{1})+12(bT+a)^{2}R(T)C'(T)^{2}-8b(bT+a)R'(T)C(T)^{2}
+8(bT+a)^{2}R'(T)C(T)C'(T)+16c_{2}(bT+a)^{2}R(T)C(T)

-8b(bT+a)R(T)C(T)C'(T)\}
+8(bT+a)^{2}K'(T)C(T)^{3}\{R'(T)C(T)+3R(T)C'(T)\}
+8(bT+a)^{2}R(T)C(T)^{4}K''(T)

-16b(bT+a)R(T)C(T)^{4}((a^{2}-1)c_{2}+(b^{2}+1)c_{0})
-32(bT+a)^{2}R(T)C(T)^{3}C'(T)((a^{2}-1)c_{2}+(b^{2}+1)c_{0})
+16a(bT+a)R(T)R'(T)c_{1}C(T)^{3}C'(T)+4abR(T)R'(T)c_{1}C(T)^{4}

+8a(b^{2}+1)(bT+a)R(T)c_{1}C(T)^{4}-8bR(T)C(T)^{4}(2a(c_{2}-c_{0})
‐bcl) -32(bT+a)R(T)C(T)^{3}C'(T)(2a(c_{2}-c_{0})-bc_{1}) ,

B_{6}(T) :=-(b^{2}+1)(bT+a)+2a,

B_{7}(T) :=-(b^{2}+1)T(bT+a)+aR'(T)+2(aT+b) ,

B_{8}(T) :=-(a^{2}-3)(bT+a)+aTR'(T)-4a-4(bT+a)R(T) ,

B_{9}(T) :=(a^{2}-1)(bT+a)+2a+4(bT+a)R(T) ,

B_{10}(T) :=K(T)^{2}\{2bC(T)-4(bT+a)C'(T)\}
-2(bT+a)C(T)K(T)K'(T)+K(T)\{aR'(T)c_{1}C(T)
-4(bT+a)C(T)((a^{2}-1)c_{2}+(b^{2}+1)c_{0})-4a(c_{2}-c_{0})C(T)
+2bc_{1}C(T)-2a(bT+a)^{2}c_{2}(2c_{0}+c_{1}T)-2b(bT+a)^{2}c_{0}C'(T)

+2ab(bT+a)c_{1}C(T)+a(bT+a)^{2}c_{1}C'(T)

+\displaystyle \frac{1}{2}(bT+a)R'(T)c_{1}(2c_{0}+c_{1}T)-2(bT+a)(c_{2}-c_{0})(2c_{0}+c_{1}T)
+(bT+a)c_{1}C'(T)\}+8b(bT+a)^{2}((a^{2}-1)c_{2}+(b^{2}+1)c_{0})C(T)^{2}
+16(bT+a)^{3}C(T)C'(T)((a^{2}-1)c_{2}+(b^{2}+1)c_{0})
-8a(bT+a)^{2}R'(T)c_{1}C(T)C'(T)-2ab(bT+a)R'(T)c_{1}C(T)^{2}

-4a(b^{2}+1)(bT+a)^{2}c_{1}C(T)^{2}+4b(bT+a)C(T)^{2}(2a(c_{2}-c_{0})
‐bcl) +16(bT+a)^{2}C(T)C'(T)(2a(c_{2}-c_{0})-bc_{1}) .

Theorem 1.4. Let z=f(x, y) be a C^{5} ‐class function defined in a neighborhood

of the origin satisfy ing (0.2). Assume that the origin is not an umbilical point of M:=

\{z=f(x, y)\} . Let P(t) be the characteristic polynomial at the origin. For an integer

\ell(1\leq\ell\leq 10) ,
we suppose that there exist \ell non‐zero real numbers \{t_{k}\}_{k=1}^{p} satisfy ing

P(t_{k})=0, P'(t_{k})\neq 0 for each k=1
,

. :.

;
\ell

,
and that  M includes \ell continuous fa milies

of circular arcs associated with \{t_{k}\}_{k=1}^{p} . Let T_{k}(x, y) be the function T corresponding
to non‐zero simple root t_{k} ; that is, T_{k}(0,0)=t_{k}(k=1, \ell) . Then f is a solution of
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the following system of fiftth‐order partial differential equations:

(1.11) \left\{\begin{array}{l}
Z(T_{k}(x, y))=0, T_{k}(0,0)=t_{k},\\
\sum_{j=0}^{5}[Matrix] T_{k}(x, y)^{j}\partial_{x}^{5-j}\partial_{y}^{j}f(x, y)=\frac{24N(T_{k}(x,y))}{R(T_{k}(x,y))K(T_{k}(x,y))^{3}}\\
(1\leq k\leq\ell) ,
\end{array}\right.
where N(T) is defined at (1.10). Further the converse statement also holds in the sense

of (iii) of Theorem 1.2.

Theorem 1.5. Let M : z=f(x, y) be a C^{5+ $\theta$} ‐class surfa ce germ at the origin

satisfy ing condition (0.2), where  $\theta$(0< $\theta$<1) is an exponent for Hölder continuity.
Assume that the origin is not an umbilical point of M. Let P(t) be its characteristic

polynomial at (0,0) . Suppose that M contains two continuous fa milies of circles in the

sense of (ii) of Theorem 1.2, where these families correspond to two distinct non‐zero

real simple roots t_{1}, t_{2} of P(t)=0 , respectively. Then, f is an analytic function which

is uniquely determined only by the partial derivatives at (0,0) up to 8th‐order. More

precisely, such surfa ce‐germs are classified by at most 21 real parameters.

§2. General cyclides and Theorem 0.2

Before giving a rough sketch of the proof of Theorem 0.2, we introduce some results

on general cyclides.

Proposition 2.1. Let z=f(x, y) be a C^{4} ‐function defined in a neighborhood of
the origin satisfy ing conditions (0.2), (0.3). Assume that M=\{z=f(x, y)\} coincides

with a general cyclide as a surfa ce germ at the origin. Then we have

(2.1) e_{1}=\displaystyle \frac{2d_{0}d_{1}-d_{1}d_{2}-d_{0}d_{3}}{c_{0}-c_{2}}, e_{3}=\frac{-2d_{2}d_{3}+d_{1}d_{2}+d_{0}d_{3}}{c_{0}-c_{2}}
at (0,0) . Here c_{*}, d_{*}, e_{*} are the derivatives of f(x, y) introduced in Definition 1.1. Con‐

versely, if f satisfies conditions (2.1), then there is a unique germ of a general cyclide
M' such that the local defining function z=g(x, y) of M' coincides with z=f(x, y) up

to the fourth‐order derivatives at (0,0) .

Example 2.2. Let M be a six‐circle Blum cyclide

(2.2) (x^{2}+y^{2}+z^{2})^{2}-2ax^{2}-2by^{2}-2cz^{2}+d^{2}=0,
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such that a, b, c, d are real numbers satisfying a>c>d>0, b<-d . Then the

characteristic polynomial at (0,0, $\sigma$_{2}\sqrt{c+$\sigma$_{1}\sqrt{c^{2}-d^{2}}}) with $\sigma$_{1}=\pm 1, $\sigma$_{2}=\pm 1 is given

by

P(t)=\displaystyle \frac{(a-b)(b-c)(d-b)(d+b)}{4(c^{2}-d^{2})^{2}(c+$\sigma$_{1}\ell)^{2}}t^{2}(t^{2}-\frac{a-c}{c-b})(t^{2}-\frac{a-d}{d-b})(t^{2}-\frac{a+d}{-b-d}) .

Indeed, since z^{2}=c-x^{2}-y^{2}+$\sigma$_{1}\sqrt{c^{2}-d^{2}+2(a-c)x^{2}+2(b-c)y^{2}} in a neigh‐
borhood of (0,0) ,

we have

z=$\sigma$_{2}\displaystyle \sqrt{c+$\sigma$_{1}\ell}(1+\frac{(a-c-$\sigma$_{1}l)x^{2}+(b-c-$\sigma$_{1}P)y^{2}}{2$\sigma$_{1}\ell(c+$\sigma$_{1}\ell)}-\frac{((a-c)x^{2}+(b-c)y^{2})^{2}}{4$\sigma$_{1}l^{3}(c+$\sigma$_{1}l)}
-\displaystyle \frac{((a-c-$\sigma$_{1}l)x^{2}+(b-c-$\sigma$_{1}l)y^{2})^{2}}{8\ell^{2}(c+$\sigma$_{1}\ell)^{2}}+o((x^{2}+y^{2})^{2})) ,

where \ell=\sqrt{c^{2}-d^{2}} . Therefore f(x, y) :=z(x, y)-$\sigma$_{2}\sqrt{c+$\sigma$_{1}\ell} satisfies conditions (0.2),
(0.3), and so we have the following Taylor coefficients at the origin:

c_{0}=\displaystyle \frac{$\sigma$_{2}($\sigma$_{1}(a-c)-P)}{2l\sqrt{c+$\sigma$_{1}\ell}}, c_{2}=\frac{$\sigma$_{2}($\sigma$_{1}(b-c)-l)}{2l\sqrt{c+$\sigma$_{1}\ell}},
e_{0}=-$\sigma$_{2}\displaystyle \frac{2$\sigma$_{1}(a-c)^{2}(c+$\sigma$_{1}\ell)+\ell(a-c-$\sigma$_{1}\ell)^{2}}{8l^{3}\sqrt{c+$\sigma$_{1}\ell}^{3}},
e_{2}=-$\sigma$_{2}\displaystyle \frac{2$\sigma$_{1}(a-c)(b-c)(c+$\sigma$_{1}\ell)+\ell(a-c-$\sigma$_{1}\ell)(b-c-$\sigma$_{1}\ell)}{4l^{3}\sqrt{c+$\sigma$_{1}\ell}^{3}},
e_{4}=-$\sigma$_{2}\displaystyle \frac{2$\sigma$_{1}(b-c)^{2}(c+$\sigma$_{1}\ell)+\ell(b-c-$\sigma$_{1}\ell)^{2}}{8l^{3}\sqrt{c+$\sigma$_{1}\ell}^{3}},

and all the other coefficients up to the fourth order vanish at the origin. In particular
we have the 6 non‐zero real roots for P(t)=0.

The following lemma and Proposition 2.4 are the original results in this paper. For

the readers to check the calculations, we have a Mathematica source file Blumcircles‐

parameter in the following website for download:

http://agusta.ms.u‐tokyo.ac.jp/microlocal/manycircles.html

Lemma 2.3. Let x_{0}, y_{0}, z_{0}, U_{1}, U_{2}, U_{3}, V_{1}, V_{2}, V_{3},  $\lambda$ be real constants satisfy ing

 U_{3}V_{1}-U_{1}V_{3}\neq 0 . Consider the following curve with parameter t\in \mathbb{R}\cup\{\infty\} in \mathbb{R}^{3} :

x=x_{0}+\displaystyle \frac{2 $\lambda$(U_{1}+V_{1}t)}{(U_{1}+V_{1}t)^{2}+(U_{2}+V_{2}t)^{2}+(U_{3}+V_{3}t)^{2}},
y=y_{0}+\displaystyle \frac{2 $\lambda$(U_{2}+V_{2}t)}{(U_{1}+V_{1}t)^{2}+(U_{2}+V_{2}t)^{2}+(U_{3}+V_{3}t)^{2}},



THE N0N‐integrability 0f some system 0f F1FTH‐order partial differential equations 105

z=x_{0}+\displaystyle \frac{2 $\lambda$(U_{3}+V_{3}t)}{(U_{1}+V_{1}t)^{2}+(U_{2}+V_{2}t)^{2}+(U_{3}+V_{3}t)^{2}}.
Then, this is a circle contained in a plane

y-y_{0}=\displaystyle \frac{U_{3}V_{2}-U_{2}V_{3}}{U_{3}V_{1}-U_{1}V_{3}}(x-x_{0})+\frac{U_{2}V_{1}-U_{1}V_{2}}{U_{3}V_{1}-U_{1}V_{3}}(z-z_{0})
with center

x=x_{0}+\displaystyle \frac{ $\lambda$(U_{1}(V_{2}^{2}+V_{3}^{2})-V_{1}(U_{2}V_{2}+U_{3}V_{3}))}{(U_{2}V_{3}-U_{3}V_{2})^{2}+(U_{3}V_{1}-U_{1}V_{3})^{2}+(U_{1}V_{2}-U_{2}V_{1})^{2}},
y=y_{0}+\displaystyle \frac{ $\lambda$(U_{2}(V_{3}^{2}+V_{1}^{2})-V_{2}(U_{3}V_{3}+U_{1}V_{1}))}{(U_{2}V_{3}-U_{3}V_{2})^{2}+(U_{3}V_{1}-U_{1}V_{3})^{2}+(U_{1}V_{2}-U_{2}V_{1})^{2}},
z=z_{0}+\displaystyle \frac{ $\lambda$(U_{3}(V_{1}^{2}+V_{2}^{2})-V_{3}(U_{1}V_{1}+U_{2}V_{2}))}{(U_{2}V_{3}-U_{3}V_{2})^{2}+(U_{3}V_{1}-U_{1}V_{3})^{2}+(U_{1}V_{2}-U_{2}V_{1})^{2}},

and radius

R=\displaystyle \frac{| $\lambda$|\sqrt{V_{1}^{2}+V_{2}^{2}+V_{3}^{2}}}{\sqrt{(U_{2}V_{3}-U_{3}V_{2})^{2}+(U_{3}V_{1}-U_{1}V_{3})^{2}+(U_{1}V_{2}-U_{2}V_{1})^{2}}}.
Proof. Suppose that this curve is a circle with center (x_{0}+W_{1}, y_{0}+W_{2}, z_{0}+W_{3})

included in y-y_{0}= $\alpha$(x-x_{0})+ $\beta$(z-z_{0}) . Then, since

\displaystyle \sum_{j=1}^{3}(\frac{2 $\lambda$(U_{j}+V_{j}t)}{(U_{1}+V_{1}t)^{2}+(U_{2}+V_{2}t)^{2}+(U_{3}+V_{3}t)^{2}}-W_{j})^{2}
=\displaystyle \frac{4 $\lambda$( $\lambda$-\sum_{j=1}^{3}(U_{j}+V_{j}t)W_{j})}{(U_{1}+V_{1}t)^{2}+(U_{2}+V_{2}t)^{2}+(U_{3}+V_{3}t)^{2}}+\sum_{j=1}^{3}W_{j}^{2},

we have the sufficient conditions:

V_{2}= $\alpha$ V_{1}+ $\beta$ V_{3}, U_{2}= $\alpha$ U_{1}+ $\beta$ U_{3},

W_{2}= $\alpha$ W_{1}+ $\beta$ W_{2}, \displaystyle \sum_{j=1}^{3}V_{j}W_{j}=0, \sum_{j=1}^{3}U_{j}W_{j}= $\lambda$.
Thus we obtain  $\alpha$=(U_{3}V_{2}-U_{2}V_{3})/(U_{3}V_{1}-U_{1}V_{3}) ,  $\beta$=(U_{2}V_{1}-U_{1}V_{2})/(U_{3}V_{1}-U_{1}V_{3}) ,

and

W_{1}, W_{2}, W_{3} as in the statement. Further we have radius \sqrt{W_{1}^{2}+W_{2}^{2}+W_{3}^{2}}=R. \square 

Proposition 2.4. Let M be the six‐circle Blum cyclide given at (2.2). Then

for each non‐zero real root of P(t)=0 ,
we have a continuous family of circles in a

neighborhood of (0,0, $\sigma$_{2}\sqrt{c+$\sigma$_{1}\sqrt{c^{2}-d^{2}}}) with $\sigma$_{1}, $\sigma$_{2}=\pm 1 . In fa ct, we have the six

non‐zero real roots:

\pm\sqrt{\frac{a-c}{c-b}}, \pm\sqrt{\frac{a-d}{d-b}}, \pm\sqrt{\frac{a+d}{-b-d}}.
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(i) For the characteristic roots \pm\sqrt{(a-c)}/(c-b) with v_{1}=\sqrt{(a-c)(c-b)(c^{2}-d^{2})}
we have

t_{1,\pm}(x, y)=T_{1,\pm}(x, y) , s_{1,\pm}(x, y)=0,

and

T_{1,\pm}(x, y):=\displaystyle \frac{-2(a-c)(c-b)xy\mp v_{1}\sqrt{c^{2}-d^{2}+2(a-c)x^{2}+2(b-c)y^{2}}}{(b-c)(c^{2}-d^{2}+2(a-c)x^{2})}.
(ii) For the characteristic roots \pm\sqrt{(a-d)}/(d-b) with v_{2}=\sqrt{2(a-d)(d-b)(c-d)}

we have

t_{2,\pm}(x, y) :=\{2(b-c)(a-d)xyz\mp$\sigma$_{1}$\sigma$_{2}v_{2}( — by
2

— cz
2

+(x^{2}+y^{2}+z^{2})(y^{2}+z^{2}))\}/\{(d-b)z((d-c)(d+x^{2}+y^{2}
+z^{2})-2(a-c)x^{2})\mp $\sigma$ 122 xy (x^{2}+y^{2}+z^{2}-b)\},

s_{2,\pm}(x, y) :=\{(c-d)y((b-d)(d+x^{2}+y^{2}+z^{2})+2(a-b)x^{2})
\pm $\sigma$ 122 xz (x^{2}+y^{2}+z^{2}-c)\}/\{(d-b)z((d-c)(d+x^{2}+y^{2}
+z^{2})-2(a-c)x^{2})\mp $\sigma$ 122 xy (x^{2}+y^{2}+z^{2}-b)\}.

Further, T_{2,\pm}(x, y)=P_{2,\pm}(x, y)/Q_{2}(x, y) with

P_{2,\pm}(x, y) :=xy\{-(c^{2}-d^{2})(3ab-2ac-2bc-(a+b-4c)d-d^{2})
+2(a-c)(-2ab+ac+2bc+(a-3c)d+d^{2})x^{2}
+2(b-c)(-2ab+2ac+bc+(b-3c)d+d^{2})y^{2}
+$\sigma$_{1}\sqrt{c^{2}-d^{2}+2(a-c)x^{2}+2(b-c)y^{2}}(2c^{2}(a+b)-3abc
+(ab+ac+bc-4c^{2})d

-(a+b-c)d^{2}+d^{3}+2(a-c)(b-d)x^{2}+2(b-c)(a-d)y^{2})\}
\pm$\sigma$_{1}v_{2}\sqrt{c-x^{2}-y^{2}+$\sigma$_{1}\sqrt{c^{2}-d^{2}+2(a-c)x^{2}+2(b-c)y^{2}}}
\times\{$\sigma$_{1}\sqrt{c^{2}-d^{2}+2(a-c)x^{2}+2(b-c)y^{2}}(c^{2}-d^{2}+(a-c)x^{2}
+(b-c)y^{2})+c(c^{2}-d^{2}+2(a-c)x^{2}+2(b-c)y^{2})\},

Q_{2}(x, y) :=-(b-d)(c-d)^{2}(2c+d)(c+d)

+(b-d)(d-c)(6ac-7c^{2}+4(a-c)d+d^{2})x^{2}
-(b-c)(b-d)(c-d)(3c+d)y^{2}-2(a-c)(b-d)(2a-3c+d)x^{4}

+2(b-c)(-2ab+ac+2bc+(a-3c)d+d^{2})x^{2}y^{2}
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-$\sigma$_{1}\sqrt{c^{2}-d^{2}+2(a-c)x^{2}+2(b-c)y^{2}}

\times\{(b-d)(c-d)(2c-d)(c+d)
+(b-d)(4ac-5c^{2}-2(a-c)d+d^{2})x^{2}+(b-c)(b-d)(c-d)y^{2}
-2(a-c)(b-d)x^{4}-2(b-c)(a-d)x^{2}y^{2}\}.

(iii) For the characteristic roots \pm\sqrt{(a+d)}/(-d-b) ,

setting V3=\sqrt{2(a+d)(-b-d)(c+d)} we have a similar expression to (ii) (only
replace d in (ii) by -d). We omit the detailed forms of T_{3,\pm}(x, y) .

Proof. Take a point

(x_{0}, y_{0}, z_{0})\in S:=\{(x^{2}+y^{2}+z^{2})^{2}-2ax^{2}-2by^{2}-2cz^{2}+d^{2}=0\}.

Following Blum�s argument [1], we consider the inversion with center (x_{0}, y_{0}, z_{0}) :

(x, y, z)=(x_{0}+\displaystyle \frac{2x'}{x^{\prime 2}+y^{2}+z^{\prime 2}}, y_{0}+\frac{2y'}{x^{\prime 2}+y^{2}+z^{\prime 2}}, z_{0}+\frac{2z'}{x^{\prime 2}+y^{2}+z^{\prime 2}}) .

Putting

r_{0}=\sqrt{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}}, A=(r_{0}^{2}-a)/2, B=(r_{0}^{2}-b)/2, C=(r_{0}^{2}-c)/2,

we rewrite the equation by (x', y', z') :

(Ax_{0}x'+By_{0}y'+Cz_{0}z')r^{\prime 2}+Ax^{\prime 2}+By^{\prime 2}+Cz^{\prime 2}+(x_{0}x'+y_{0}y'+z_{0}z'+1)^{2}=0.
Then by taking the intersection with a plane Ax_{0}x'+By_{0}y'+Cz_{0}z'+k=0 for some

k\in \mathbb{R} we reduce the equation to the following system:

(2.3) \left\{\begin{array}{l}
(A-k)x^{\prime 2}+(B-k)y^{\prime 2}+(C-k)z^{\prime 2}+(x_{0}x'+y_{0}y'+z_{0}z'+1)^{2}=0,\\
Ax_{0}x'+By_{0}y'+Cz_{0}z'+k=0.
\end{array}\right.
To get the condition for k

,
we substitute z' for z'=-(Ax_{0}x'+By_{0}y'+k)/(Cz) in the

first equation. Hence we have a quadratic equation in x', y' :

0=A'x^{\prime 2}+B'x'y'+C'y^{\prime 2}+D'x'+E'y'+F'=A'x^{\prime 2}+(B'y'+D')x'+C'y^{\prime 2}+E'y'+F',

where

(C^{2}z_{0}^{2})A'=C^{2}z_{0}^{2}(A-k)+A^{2}x_{0}^{2}(C-k)+z_{0}^{2}x_{0}^{2}(C-A)^{2}=:A

(C^{2}z_{0}^{2})B'=2AB(C-k)x_{0}y_{0}+2(C-A)(C-B)x_{0}y_{0}z_{0}^{2}=:B

(C^{2}z_{0}^{2})C'=C^{2}z_{0}^{2}(B-k)+B^{2}y_{0}^{2}(C-k)+z_{0}^{2}y_{0}^{2}(C-B)^{2}=:C
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(C^{2}z_{0}^{2})D'=2(C-k)kAx_{0}+2(C-A)(C-k)x_{0}z_{0}^{2}=:D

(C^{2}z_{0}^{2})E'=2(C-k)kBy_{0}+2(C-B)(C-k)y_{0}z_{0}^{2}=:E

(C^{2}z_{0}^{2})F'=(C-k)k^{2}+(C-k)^{2}z_{0}^{2}=:F

Then the condition for k is that the equation for x', y' splits into a product of two first

order equations in x', y' . Therefore the discriminant

(B''y'+D'')^{2}-4A''(C''y^{\prime 2}+E''y'+F

=(B^{\prime\prime 2}-4A''C'')y^{\prime 2}+2(B''D''-2A''E'')y'+D^{\prime\prime 2}-4A''F''

in x' should be the square of some first order polynomial in y' . Hence we get the

following condition for k :

\left\{\begin{array}{l}
(B''D''-2A''E'')^{2}-(B^{\prime\prime 2}-4A''C'')(D^{\prime\prime 2}-4A''F'')=0,\\
B^{\prime\prime 2}-4A''C''\geq 0.
\end{array}\right.
Since the first equation is equivalent to

4A''(-B''D''E''+A''E^{\prime\prime 2}+B^{\prime\prime 2}F''+C''(D^{\prime\prime 2}-4A''F''))=0,

we obtain a sufficient condition:

\left\{\begin{array}{l}
-B''D''E''+A''E^{\prime\prime 2}+B^{\prime\prime 2}F''+C''(D^{\prime\prime 2}-4A''F'')=0,\\
B^{\prime\prime 2}-4A''C''\geq 0.
\end{array}\right.
Finally we get an equation for k :

0=-B''D''E''+A''E^{\prime\prime 2}+B^{\prime\prime 2}F''+C''(D^{\prime\prime 2}-4A''F'')

=4C^{4}z_{0}^{4}(k-A)(k-B)(k-C)(k^{2}-k(x_{0}^{2}+y_{0}^{2}+z_{0}^{2})+Ax_{0}^{2}+By_{0}^{2}+Cz_{0}^{2})

=4C^{4}z_{0}^{4}(k-A)(k-B)(k-C)(k-\displaystyle \frac{r_{0}^{2}-d}{2})(k-\frac{r_{0}^{2}+d}{2}) ,

because

r_{0}^{4}-d^{2}-4(Ax_{0}^{2}+By_{0}^{2}+Cz_{0}^{2})=r_{0}^{4}-d^{2}-2(r_{0}^{2}-a)x_{0}^{2}-2(r_{0}^{2}-b)y_{0}^{2}-2(r_{0}^{2}-c)z_{0}^{2}
=-r_{0}^{4}-d^{2}+2ax_{0}^{2}+2by_{0}^{2}+2cz_{0}^{2}=0.

Thus k should be either one of the following:

(r_{0}^{2}-a)/2, (r_{0}^{2}-b)/2, (r_{0}^{2}-c)/2, (r_{0}^{2}-d)/2, (r_{0}^{2}+d)/2.

On the other hand, putting G(k) :=B^{\prime\prime 2}-4A''C'' ,
we have the inequalities for \forall k :

0\leq G((r_{0}^{2}-a)/2)=-4(A-B)(A-C)C^{2}x_{0}^{2}z_{0}^{2}(A^{2}+By_{0}^{2}+Cz_{0}^{2}-A(y_{0}^{2}+z_{0}^{2}))



THE N0N‐integrability 0f some system 0f F1FTH‐order partial differential equations 109

\equiv(a-b)(c-a)(a+d)(a-d) ,

0\leq G((r_{0}^{2}-b)/2)=-4(A-B)(-B+C)C^{2}y_{0}^{2}z_{0}^{2}(B^{2}+Ax_{0}^{2}+Cz_{0}^{2}-B(x_{0}^{2}+z_{0}^{2}))
\equiv(a-b)(b-c)(b+d)(b-d) ,

0\leq G((r_{0}^{2}-c)/2)=4(A-C)(-B+C)C^{2}z_{0}^{4}(C^{2}+Ax_{0}^{2}+By_{0}^{2}-C(x_{0}^{2}+y_{0}^{2}))
\equiv(a-c)(b-c)(d-c)(c+d) ,

0\leq G((r_{0}^{2}-d)/2)=C^{2}z_{0}^{2}(d-a)(d-b)(d-c)(x_{0}^{2}+y_{0}^{2}+z_{0}^{2}+d)^{2}/8

\equiv(d-a)(d-b)(d-c) ,

0\leq G((r_{0}^{2}+d)/2)=-C^{2}z_{0}^{2}(d+a)(d+b)(d+c)(x_{0}^{2}+y_{0}^{2}+z_{0}^{2}-d)^{2}/8

\equiv-(d+a)(d+b)(d+c) .

Hence for our case a>c>d>0, -b>d , only k=(r_{0}^{2}-c)/2, (r_{0}^{2}-d)/2, (r_{0}^{2}+d)/2
give the positive G(k)' \mathrm{s}.
Case (i) k=(r_{0}^{2}-c)/2 : Setting v_{1}=\pm\sqrt{(a-c)(c-b)(c^{2}-d^{2})} ,

we solve equations

(2.3). Then we have

y'=\displaystyle \frac{(2(a-c)(c-b)x_{0}y_{0}-v_{1}(r_{0}^{2}-c))x'}{(c-b)(c^{2}-d^{2}+2(a-c)x_{0}^{2})},
z'=

\displaystyle \frac{(c-b)(d^{2}-c^{2}+2(c-a)x_{0}^{2})+\{(b-c)x_{0}((a-c)(r_{0}^{2}-2z_{0}^{2})+ac-d^{2})+v_{1}y_{0}(r_{0}^{2}-b)\}x'}{(c-b)z_{0}(c^{2}-d^{2}+2(a-c)x_{0}^{2})}.
Therefore in the original coordinates x, y, z we have the following:

x=x_{0}+\displaystyle \frac{2B_{1}^{2}z_{0}^{2}x'}{B_{1}^{2}z_{0}^{2}x^{\prime 2}+B_{2}^{2}z_{0}^{2}x^{2}+(B_{1}+B_{3}x')^{2}},
(2.4) y=y_{0}+\displaystyle \frac{-2B_{1}B_{2}z_{0}^{2}x'}{B_{1}^{2}z_{0}^{2}x^{\prime 2}+B_{2}^{2}z_{0}^{2}x^{2}+(B_{1}+B_{3}x')^{2}},

z=z_{0}+\displaystyle \frac{-2B_{1}z_{0}(B_{1}+B_{3}x')}{B_{1}^{2}z_{0}^{2}x^{\prime 2}+B_{2}^{2}z_{0}^{2}x^{2}+(B_{1}+B_{3}x')^{2}},
where

(2.5) B_{1} :=(b-c)(c^{2}-d^{2}+2(a-c)x_{0}^{2}) ,

(2.6) B_{2}:=2(a-c)(-b+c)x_{0}y_{0}-v_{1}(-c+x_{0}^{2}+y_{0}^{2}+z_{0}^{2}) ,

(2.7) B_{3}:=v_{1}y_{0}(-b+x_{0}^{2}+y_{0}^{2}+z_{0}^{2})+(b-c)x_{0}(ac -d^{2}+(a-c)(x_{0}^{2}+y_{0}^{2}-z_{0}^{2})) .

Then, setting  $\lambda$=z_{0}B_{1}, U_{1}=U_{2}=0, U_{3}=-B_{1}, V_{1}=z_{0}B_{1}, V_{2}=-z_{0}B_{2}, V_{3}=-B_{3},
we can apply Lemma 2.3. Therefore, concerning the plane y-y_{0}=t(x-x_{0})+s(z-z_{0})
including the circle we have

(2.8) t=-\displaystyle \frac{B_{2}}{B_{1}}=\frac{2(a-c)(b-c)x_{0}y_{0}-v_{1}(c-x_{0}^{2}-y_{0}^{2}-z_{0}^{2})}{(b-c)(c^{2}-d^{2}+2(a-c)x_{0}^{2})}, s=0.
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Further, in a neighborhood of (0,0, $\sigma$_{2}\sqrt{c+$\sigma$_{1}\sqrt{c^{2}-d^{2}}}) (; $\sigma$_{2}=\pm 1) we obtain

(2.9) T(x, y)=t(x, y)=\displaystyle \frac{2(a-c)(b-c)xy+$\sigma$_{1}v_{1}\sqrt{c^{2}-d^{2}+2(a-c)x^{2}+2(b-c)y^{2}}}{(b-c)(c^{2}-d^{2}+2(a-c)x^{2})},
which corresponds to the characteristic root

T(0,0)=-\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(v_{1})$\sigma$_{1}\sqrt{(a-c)}/(c-b) .

The results corresponding to the characteristic roots are as in the statement. The center

of the circle is

(2.10) x=x_{0}-\displaystyle \frac{B_{1}B_{3}}{B_{1}^{2}+B_{2}^{2}}, y=y_{0}+\frac{B_{2}B_{3}}{B_{1}^{2}+B_{2}^{2}}, z=0.
and the radius is

(2.11) \sqrt{\frac{B_{3}^{2}+z_{0}^{2}(B_{1}^{2}+B_{2}^{2})}{B_{1}^{2}+B_{2}^{2}}}.
Case (ii) k=(r_{0}^{2}-d)/2 : Setting v_{2}=\pm\sqrt{2(-b+d)(c-d)(a-d)} ,

we solve (2.3).
Hence we get

y'=\displaystyle \frac{1}{2\{(d-c)y_{0}^{2}(b^{2}-d^{2}+2(a-b)x_{0}^{2})+(b-d)z_{0}^{2}(d^{2}-c^{2}+2(c-a)x_{0}^{2})\}}
\times\{2(c-d)y_{0}(bd -d^{2}+2(a-b)x_{0}^{2}+(b-d)r_{0}^{2})+2x_{0}y_{0}((ab-d^{2})(c-d)
+(a-b)(c-d)(x_{0}^{2}-y_{0}^{2})+((a+b)(c+d)-2(ab+cd))z_{0}^{2})x'
-v_{2}z_{0}(r_{0}^{2}-c)((d+r_{0}^{2})x'+2x_{0})\},

z'=\displaystyle \frac{1}{2\{(d-c)y_{0}^{2}(b^{2}-d^{2}+2(a-b)x_{0}^{2})+(b-d)z_{0}^{2}(d^{2}-c^{2}+2(c-a)x_{0}^{2})\}}
\times\{-2z_{0}\{(b-d)(d^{2}-cd-(2a-c-d)x_{0}^{2}+(d-c)(y_{0}^{2}+z_{0}^{2}))
‐ ((ac-d^{2})(b-d)+(b-d)(a-c)(x_{0}^{2}-z_{0}^{2})+(bc-2bd+dc-2ac

+ab+ad)y_{0}^{2})x_{0}x'\}+v_{2}y_{0}(-b+r_{0}^{2})(2x_{0}+(d+r_{0}^{2})x')\}.
Therefore in the original coordinates we have the following:

(2.12) x=x_{0}+\displaystyle \frac{8C_{1}^{2}x'}{4C_{1}^{2}x^{2}+(2C_{2}+C_{3}x)^{2}+(2C_{4}+C_{5}x)^{2}},
(2.13) y=y_{0}+\displaystyle \frac{4C_{1}(2C_{2}+C_{3}x')}{4C_{1}^{2}x^{2}+(2C_{2}+C_{3}x)^{2}+(2C_{4}+C_{5}x)^{2}},
(2.14) z=z_{0}+\displaystyle \frac{4C_{1}(2C_{4}+C_{5}x')}{4C_{1}^{2}x^{\prime 2}+(2C_{2}+C_{3}x)^{2}+(2C_{4}+C_{5}x')^{2}},
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where

C_{1} :=-(c-d)(b^{2}-d^{2}+2(a-b)x_{0}^{2})y_{0}^{2}-(b-d)(c^{2}-d^{2}+2(a-c)x_{0}^{2})z_{0}^{2},
C_{2} :=-v_{2}x_{0}z_{0}(r_{0}^{2}-c)+(c-d)y_{0}(bd -d^{2}+2(a-b)x_{0}^{2}+(b-d)r_{0}^{2}) ,

C_{3} :=v_{2}z_{0}(c-r_{0}^{2})(d+r_{0}^{2})+2x_{0}y_{0}\{(c-d)(ab-d^{2})+(a-b)(c-d)x_{0}^{2}
-(a-b)(c-d)y_{0}^{2}+((a+b)(c+d)-2(ab+cd))z_{0}^{2}\},

C_{4} :=v_{2}x_{0}y_{0}(r_{0}^{2}-b)+(-b+d)z_{0}(d^{2}-cd-(2a-c-d)x_{0}^{2}+(d-c)(y_{0}^{2}+z_{0}^{2})) ,

C_{5}:=v_{2}y_{0}(-b+r_{0}^{2})(d+r_{0}^{2})+2x_{0}z_{0}\{(b-d)(ac-d^{2})
+(b(c-2d)+cd+a(b-2c+d))y_{0}^{2}+(a-c)(b-d)(x_{0}^{2}-z_{0}^{2})\}.

In the same way as in case (i), putting  $\lambda$=2C_{1}, U_{1}=0, U_{2}=2C_{2}, U_{3}=2C_{4}, V_{1}=

2C_{1}, V_{2}=C_{3}, V_{3}=C_{5} ,
we get the plane

y-y_{0}=\displaystyle \frac{C_{3}C_{4}-C_{2}C_{5}}{2C_{1}C_{4}}(x-x_{0})+\frac{C_{2}}{C_{4}}(z-z_{0}) .

Therefore we obtain t=(C_{3}C_{4}-C_{2}C_{5})/(2C_{1}C_{4}) , s=C_{2}/C_{4} . Since the numerator of t

has the factor 2C_{1} ,
we have

t=\{2(b-c)(a-d)x_{0}y_{0}z_{0}+v_{2}(-by_{0}^{2}-cz_{0}^{2}+r_{0}^{2}(y_{0}^{2}+z_{0}^{2}))\}/C_{4}

=\displaystyle \frac{2(b-c)(a-d)x_{0}y_{0}z_{0}+v_{2}(-by_{0}^{2}-cz_{0}^{2}+r_{0}^{2}(y_{0}^{2}+z_{0}^{2}))}{v_{2}x_{0}y_{0}(r_{0}^{2}-b)+(-b+d)z_{0}(d^{2}-cd-(2a-c-d)x_{0}^{2}+(d-c)(y_{0}^{2}+z_{0}^{2}))},
s=\displaystyle \frac{-v_{2}x_{0}z_{0}(r_{0}^{2}-c)+(c-d)y_{0}(bd-d^{2}+2(a-b)x_{0}^{2}+(b-d)r_{0}^{2})}{v_{2}x_{0}y_{0}(r_{0}^{2}-b)+(-b+d)z_{0}(d^{2}-cd-(2a-c-d)x_{0}^{2}+(d-c)(y_{0}^{2}+z_{0}^{2}))}.

As for T(x_{0}, y_{0})=(t+sz_{x})/ ( 1 —sz), we can calculate z_{x}, z_{y} by the implicit
function theorem applied to (x^{2}+y^{2}+z^{2})^{2}-2ax^{2}-2by^{2}-2cz^{2}+d^{2}=0 . Hence we

have

z_{x}=\displaystyle \frac{x(a-x^{2}-y^{2}-z^{2})}{z(x^{2}+y^{2}+z^{2}-c)}, z_{y}=\frac{y(b-x^{2}-y^{2}-z^{2})}{z(x^{2}+y^{2}+z^{2}-c)}.
Therefore in a neighborhood of (0,0, $\sigma$_{2}\sqrt{c+$\sigma$_{1}\sqrt{c^{2}-d^{2}}}) (; $\sigma$_{2}=\pm 1) we get T(x_{0}, y_{0})=
P(x_{0}, y_{0})/Q(x_{0}, y_{0}) ,

where

Q(x_{0}, y_{0})=(d-b)(c-d)^{2}(c+d)(2c+d)+(b-d)(d-c)(6ac-7c^{2}+4(a-c)d+d^{2})x_{0}^{2}
-(b-c)(b-d)(c-d)(3c+d)y_{0}^{2}-2(a-c)(b-d)(2a-3c+d)x_{0}^{4}

+2(b-c)(-2ab+ac+2bc+(a-3c)d+d^{2})x_{0}^{2}y_{0}^{2}

+\{-(b-d)(c-d)(c+d)(2c-d)-(b-d)(4ac-5c^{2}-2(a-c)d+d^{2})x_{0}^{2}
-(b-c)(b-d)(c-d)y_{0}^{2}+2(a-c)(b-d)x_{0}^{4}+2(b-c)(a-d)x_{0}^{2}y_{0}^{2}\}
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\times$\sigma$_{1}\sqrt{c^{2}-d^{2}+2(a-c)x_{0}^{2}+2(b-c)y_{0}^{2}},
P(x_{0}, y_{0})=x_{0}y_{0}\{(c^{2}-d^{2})(-3ab+2ac+2bc+(a+b-4c)d+d^{2})+2(a-c)(-2ab

+ac+2bc+(a-3c)d+d^{2})x_{0}^{2}+2(b-c)(-2ab+2ac+bc+(b-3c)d+d^{2})y_{0}^{2}

+$\sigma$_{1}\sqrt{c^{2}-d^{2}+2(a-c)x_{0}^{2}+2(b-c)y_{0}^{2}}(-3abc+2ac^{2}+2bc^{2}+(ab+ac
+bc-4c^{2})d-(a+b-c)d^{2}+d^{3}+2(a-c)(b-d)x_{0}^{2}+2(b-c)(a-d)y_{0}^{2})\}

+$\sigma$_{2}v_{2}\sqrt{c-x_{0}^{2}-y_{0}^{2}+$\sigma$_{1}\sqrt{c^{2}-d^{2}+2(a-c)x_{0}^{2}+2(b-c)y_{0}^{2}}}\{-c^{3}+cd^{2}
-2(a-c)cx_{0}^{2}-2(b-c)cy_{0}^{2}+$\sigma$_{1}\sqrt{c^{2}-d^{2}+2(a-c)x_{0}^{2}+2(b-c)y_{0}^{2}}
\times(-c^{2}+d^{2}+(-a+c)x_{0}^{2}+(-b+c)y_{0}^{2})\}.

In particular, for any signature of d
,

the characteristic root T(0,0) is given by

T(0,0)=-$\sigma$_{1}$\sigma$_{2}$\sigma$_{3}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(v_{2})\sqrt{(a-d)}/(d-b) ,

where $\sigma$_{3}=\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(\sqrt{c+d}+$\sigma$_{1}\sqrt{c-d}) (hence $\sigma$_{3}=-1 for d<0, $\sigma$_{1}=-1 ,
and $\sigma$_{3}=1

for other cases). The results corresponding to the characteristic roots are as in the

statement. The center of the circle is

(2.15) x=x_{0}-\displaystyle \frac{2C_{1}^{2}(C_{2}C_{3}+C_{4}C_{5})}{4C_{1}^{2}(C_{2}^{2}+C_{4}^{2})+(C_{3}C_{4}-C_{2}C_{5})^{2}},
(2.16) y=y_{0}+\displaystyle \frac{C_{1}(C_{2}(4C_{1}^{2}+C_{5}^{2})-C_{3}C_{4}C_{5})}{4C_{1}^{2}(C_{2}^{2}+C_{4}^{2})+(C_{3}C_{4}-C_{2}C_{5})^{2}},
(2.17) z=z_{0}+\displaystyle \frac{C_{1}(C_{4}(4C_{1}^{2}+C_{3}^{2})-C_{2}C_{3}C_{5})}{4C_{1}^{2}(C_{2}^{2}+C_{4}^{2})+(C_{3}C_{4}-C_{2}C_{5})^{2}}.
Further the radius is

(2.18) |C_{1}|\sqrt{\frac{4C_{1}^{2}+C_{3}^{2}+C_{5}^{2}}{4C_{1}^{2}(C_{2}^{2}+C_{4}^{2})+(C_{3}C_{4}-C_{2}C_{5})^{2}}}.
Case (iii) k=(r_{0}^{2}+d)/2 : Setting v_{2}=\pm\sqrt{2(-b-d)(c+d)(a+d)} ,

we solve (2.3).
Easily to see, the results are obtained by exchanging d by -d in the results in case

(ii). \square 

The following is the key lemma for the calculation in the proof of Theorem 0.2:

Lemma 2.5. Let Q(t)=\displaystyle \sum_{k=0}^{n}q_{k}t^{k} be a polynomial in t of degree n(>0) with

coefficients q_{0}, q_{n}\in \mathbb{C}(q_{n}\neq 0) . Suppose that Q(t)=0 has n separate roots t_{1},  t_{n}\in

\mathbb{C} . Let A(t) be a polynomial in t with complex coefficients, and s_{1}, s_{m} be m(>0)
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different complex numbers such that \{s_{p};p=1, m\}\cap\{t_{j};j=1, n\}=\emptyset . Then the

solution (g_{0}, g_{n-1})\in \mathbb{C}^{n} to the system

(2.19) \displaystyle \sum_{k=0}^{n-1}(t_{j})^{k}g_{k}=\frac{A(t)}{\prod_{p=1}^{m}(t-s_{p})} (j=1, n)
t=t_{j}

is given by

(2.20) g_{k}=$\alpha$_{k}+\displaystyle \sum_{p=1}^{m}$\beta$_{p}$\gamma$_{k,p}
fork=0, n-1 . Here $\beta$_{p} is the residue of A(t)/(\displaystyle \prod_{r=1}^{m}(t-S)) at t=s_{p} given by

$\beta$_{p}:=\displaystyle \frac{A(s_{p})}{\prod_{r\neq p}(s_{p}-s_{r})},
and $\alpha$_{k} �s are the coefficients of the remainder \displaystyle \sum_{k=0}^{n-1}$\alpha$_{k}t^{k} of the division B(t)/Q(t) for
the polynomial

B(t):=\displaystyle \frac{A(t)}{\prod_{p=1}^{m}(t-s_{p})}-\sum_{p=1}^{m}\frac{$\beta$_{p}}{t-s_{p}}.
Further, the coefficient $\gamma$_{k,p} at (2.20) is given by

$\gamma$_{k,p}:=-\displaystyle \sum_{\ell=0}^{n-k-1}q_{\ell+k+1}(s_{p})^{p}/Q(s_{p}) ( hence 1/(t_{j}-s_{p})=\displaystyle \sum_{k=0}^{n-1}$\gamma$_{k,p}(t_{j})^{k}, \forall j=1, n) .

A rough sketch of the proof of Theorem 0.2. By Theorem 1.4 we have the

following system of 6 differential equations for f(x, y) :

(2.21) \left\{\begin{array}{l}
Z(T_{k}(x, y))=0, T_{k}(0,0)=t_{k},\\
\sum_{j=0}^{5}T_{k}(x, y)^{j}([Matrix]\partial_{x}^{5-j}\partial_{y}^{j}f(x, y))=\frac{24N(T_{k}(x,y))}{R(T_{k}(x,y))K(T_{k}(x,y))^{3}}\\
(1\leq k\leq 6) .
\end{array}\right.
Since

\displaystyle \det (T_{j}(0,0)^{k-1};j, k=1, 6) =\prod_{j>k}(t_{j}-t_{k})\neq 0,
the coefficient matrix (T_{j}(x, y)^{k-1};j, k=1, 6) is invertible in a neighborhood of

x=y=0 . Therefore we can rewrite (2.21) as follows:

(2.22) \left\{\begin{array}{ll}
Z(T_{j+1}(x, y))=0, T_{j+1}(0,0)=t_{j+1}, & \\
\partial_{x}^{5-j}\partial_{y}^{j}f(x, y)=G_{j}(\nabla f, \nabla^{2}f, \nabla^{3}f, \nabla^{4}f, T_{1}, & T_{6}) ,\\
(0\leq j\leq 5) , & 
\end{array}\right.
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where G_{j} (j=0, 5) are analytic functions of \nabla f, \nabla^{2}f, \nabla^{3}f, \nabla^{4}f, T_{1}, T_{6} . In par‐

ticular, we know that f is a C^{6}‐class function in a neighborhood of the origin. Hence f
satisfies all the assumptions in Theorem 1.5, and so we obtain the analyticity of f(x, y)
at x=y=0 . On the other hand, it is easy to see that all the Taylor coefficients at

the origin of f(x, y) are determined successively by the Taylor coefficients c_{0}, c_{2}, d_{*}, e_{*}

at the origin. Thus the proof of the former part of Theorem 0.2 is completed. Now we

suppose the additional conditions

d_{0}=d_{1}=d_{2}=d_{3}=0

at (0,0) . Since a=b=c_{1}=d_{0}=d_{1}=d_{2}=d_{3}=0 at (0,0) , by the explicit forms of

N(T) , B_{10}(T) in Proposition 1.3 we get N(T;0,0)=0 . Hence by equations (2.21) we

obtain

\partial_{x}^{5-j}\partial_{y}^{j}f(0,0)=0 (0\leq j\leq 5) .

To get some necessary conditions on the values c_{0}, c_{2}, e_{0}, e_{4} at the origin for a solution

f(x, y) ,
we find sixth‐order derivatives of f at the origin by using the differential equa‐

tions (2.21). Precisely speaking, we find the following coefficients g_{j}, h_{j}(j=0,1, 5)

\displaystyle \frac{\partial_{x}^{5-j}\partial_{y}^{j}f(x,y)}{(5-j)!j!}=g_{j^{x}}+h_{j}y+O(x^{2}+y^{2})
as x, y\rightarrow 0 . Since all the fifth order derivatives of f vanish at the origin, concerning

a, b, c_{*}, d_{*}, e_{*} we have

a\equiv 2c_{0}^{*}x, b\equiv 2c_{2}^{*}y, c_{0}\equiv c_{0}^{*}, c_{1}\equiv 0, c_{2}\equiv c_{2}^{*},

d_{0}\equiv 4e_{0}^{*}x+e_{1}^{*}y, d_{1}\equiv 3e_{1}^{*}x+2e_{2}^{*}y, d_{2}\equiv 2e_{2}^{*}x+3e_{3}^{*}y, d_{3}\equiv e_{3}^{*}x+4e_{4}^{*}y,

e_{0}\equiv e_{0}^{*}, e_{1}\equiv e_{1}^{*}, e_{2}\equiv e_{2}^{*}, e_{3}\equiv e_{3}^{*}, e_{4}\equiv e_{4}^{*}.

Here, c_{j}^{*}, e_{j}^{*} mean their values at the origin, and A\equiv 0 �
means A=O(x^{2}+y^{2})

as x, y\rightarrow 0
�

. Concerning T(x, y) , noting  K(T)\equiv 2T(c_{0}^{*}+c_{2}^{*}T^{2})-2c_{2}^{*}T(T^{2}+1)\equiv
 2T(c_{0}^{*}-c_{2}^{*}) ,

we have

Z(T)\displaystyle \equiv 4(c_{0}^{*}-c_{2}^{*})^{2}T^{2}((T^{2}+1)\sum_{j=0}^{4}e_{j}^{*}T^{j}-(c_{2}^{*}T^{2}+c_{0}^{*})^{3}) .

Therefore, since Z'(T)\neq 0 ,
we obtain T_{j}(x, y)\equiv t_{j}(j=1, 6) . From now on, c_{*}, e_{*}

mean their values at x=y=0 . By Proposition 1.3 we have the following:

N(T)\equiv 20(c_{0}-c_{2})^{2}T^{2}(A_{1}(T)x+A_{2}(T)y) ,

where

A_{1}(T)=\{-(T^{2}+1)^{2}E'(T)+2TC(T)^{2}(2C(T)+c_{0}-c_{2})\}
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\times(4E(T)-TE'(T))+4c_{0}C(T)^{2}\{(T^{2}+1)E'(T)-4c_{2}TC(T)^{2}\},
A_{2}(T)=E'(T)\{-(T^{2}+1)^{2}E'(T)+2TC(T)^{2}(2C(T)+c_{0}-c_{2})\}

+4c_{2}TC(T)^{2}\{(T^{2}+1)E'(T)-4c_{2}TC(T)^{2}\}.
Since we have the equations

\displaystyle \sum_{k=0}^{5}(t_{j})^{k}(g_{k^{X}}+h_{k}y)\equiv\frac{N(t_{j})}{5R(t_{j})K(t_{j})^{3}}\equiv\frac{N(t_{j})}{40(c_{0}-c_{2})^{3}t_{j}^{3}(t_{j}^{2}+1)}
for j=1 , 2, 6, we get the following equations for g_{j}, h_{j} :

5 5

\displaystyle \sum(t_{j})^{k}g_{k}=\frac{A_{1}(t_{j})}{2(c_{0}-c_{2})t_{j}(t_{j}^{2}+1)}, \sum(t_{j})^{k}h_{k}=\frac{A_{2}(t_{j})}{2(c_{0}-c_{2})t_{j}(t_{j}^{2}+1)}k=0 k=0

for j=1 , 2, 6. On the other hand, since \{t_{j}\} are the non‐zero real roots of the char‐

acteristic polynomial P(t) ,
we have Q(t_{j})=0 for j=1 , 6 with Q(t)=\displaystyle \sum_{j=0}^{6}q_{j}t^{j} :=

(t^{2}+1)E(t)-C(t)^{3} . Therefore we can find (g_{0}, g_{5}) , (h_{0}, h_{5}) by using Lemma

2.5 and some Mathematica program. Since g_{j}=\partial_{x}^{6-j}\partial_{y}^{j}f(0,0)/(j!(5-j)!) , h_{j}=

\partial_{x}^{5-j}\partial_{y}^{j+1}f(0,0)/(j!(5-j)!) ,
we have 5 compatibility conditions:

f_{1}:=5h_{0}-g_{1}=0 f_{2}:=2h_{1}-g_{2}=0, f_{3}:=h_{2}-g_{3}=0,

f_{4}:=h_{3}-2g_{4}=0, f_{5}:=h_{4}-5g_{5}=0.

We put f_{j}^{*}=2(c_{0}-c_{2})(c_{0}^{3}-e_{0})(c_{2}^{3}-e_{4})f_{j} . Then we obtain the following expressions:

f_{2}^{*}=(c_{0}^{3}-e_{0})(3c_{0}^{2}c_{2}-e_{0}-e_{2})e_{3}^{2}-24(c_{0}^{3}-e_{0})(c_{2}^{3}-e_{4})e_{1}e_{3}

-(9c_{0}^{3}-6c_{0}^{2}c_{2}-7e_{0}+2e_{2})(c_{2}^{3}-e_{4})e_{1}^{2},

f_{4}^{*}=-24(c_{0}^{3}-e_{0})(c_{2}^{3}-e_{4})e_{1}e_{3}+(c_{0}^{3}-e_{0})(6c_{0}c_{2}^{2}-9c_{2}^{3}-2e_{2}+7e_{4})e_{3}^{2}

+(c_{2}^{3}-e_{4})(3c_{0}c_{2}^{2}-e_{2}-e_{4})e_{1}^{2}.

In particular we have

0=f_{2}^{*}-f_{4}^{*}=(c_{0}^{3}-e_{0})(3c_{0}^{2}c_{2}-6c_{0}c_{2}^{2}+9c_{2}^{3}-e_{0}+e_{2}-7e_{4})e_{3}^{2}

-(c_{2}^{3}-e_{4})(9c_{0}^{3}-6c_{0}^{2}c_{2}+3c_{0}c_{2}^{2}-7e_{0}+e_{2}-e_{4})e_{1}^{2}.

Hence if (c_{0}^{3}-e_{0})(3c_{0}^{2}c_{2}-6c_{0}c_{2}^{2}+9c_{2}^{3}-e_{0}+e_{2}-7e_{4})\neq 0 ,
we get e_{3}=te_{1} with

t=\pm\sqrt{\frac{(c_{2}^{3}-e_{4})(9c_{0}^{3}-6c_{0}^{2}c_{2}+3c_{0}c_{2}^{2}-7e_{0}+e_{2}-e_{4})}{(c_{0}^{3}-e_{0})(3c_{0}^{2}c_{2}-6c_{0}c_{2}^{2}+9c_{2}^{3}-e_{0}+e_{2}-7e_{4})}},
and so from f_{2}^{*}=0 we have

((c_{0}^{3}-e_{0})(3c_{0}^{2}c_{2}-e_{0}-e_{2})t^{2}-24(c_{0}^{3}-e_{0})(c_{2}^{3}-e_{4})t
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-(9c_{0}^{3}-6c_{0}^{2}c_{2}-7e_{0}+2e_{2})(c_{2}^{3}-e_{4}))e_{1}^{2}=0.
Therefore we conclude that, for generic c_{0}, c_{2}, e_{0}, e_{2}, e_{4} ,

we have e_{1}=e_{3}=0 . On

the other hand, under c_{1}=d_{*}=e_{1}=e_{3}=0 we can apply Proposition 2.1. Hence

there exists a unique germ M' of a general cyclide at the origin with the same data

a, b, c_{*}, d_{*}, e_{*} at the origin. Since the characteristic polynomial of M' at the origin
coincides with P(t) ,

it has the six distinct non‐zero characteristic roots t_{1}, t_{6} with

C(t_{j};0,0)\neq 0(\forall j) . Indeed C(t_{j};0,0)\neq 0 follows from the assumptions on M at

(0,0) and (i) of Theorem 1.2. Therefore by Lemma 2.6 we know that M' includes 6

continuous families of circular arcs corresponding to characteristic roots t_{1}, t_{6} ,
and

it is conformally equivalent to a general cyclide of type (0.4). Hence by the former part

of Theorem 0.2 we conclude that M' coincides with our surface germ z=f(x, y) . This

completes the proof except for the proof of Lemma 2.6, which is given independently of

Theorem 0.2.

Lemma 2.6. Let M=\{z=f(x, y)\} be a C^{4} ‐class surfa ce germ at (0,0,0) with

the following Ta ylor expansion at (0,0) :

f(x, y)=c_{0}x^{2}+c_{2}y^{2}+e_{0}x^{4}+e_{2}x^{2}y^{2}+e_{4}y^{4}+o((x^{2}+y^{2})^{2}) ,

where c_{0}, c_{2}, e_{0}, e_{2}, e_{4} are real coefficients with c_{0}-c_{2}\neq 0 . We suppose that M is a

general cyclide as a germ at the origin, and that the characteristic polynomial P(t) at

(0,0) of M has 6 distinct non‐zero real roots t_{1}, t_{6} with C(t_{j};0,0)\neq 0(\forall j) . Then by
some conformal transfO rmation  $\Phi$, M is transfO rmed into a germ at  $\tau$=(0,0, *) of the

following 6‐circle Blum cyclide:

(2.23) (x^{2}+y^{2}+z^{2})^{2}-2a_{1}x^{2}-2a_{2}y^{2}-2a_{3}z^{2}+a_{4}^{2}=0,

where a_{1}>a_{3}>a_{4}>0, -a_{2}>a_{4} . In particular this surfa ce (2.23) has the same

characteristic roots \{t_{k}\}_{k=1}^{6} at  $\tau$
,

and for every  j=1 , 6 the continuous family of
circular arcs corresponding to t_{j} is transfO rmed by $\Phi$^{-1} into the continuous family of
circular arcs on M corresponding to t_{j}.

Remark. Takeuchi [6] proved that a general cyclide can be transformed into (0.4)
by a conformal transformation. The arguments there are geometrically very interesting,
but they are not germ‐fixing arguments. Indeed, it is not so easy to construct a similar

conformal transformation fixing the reference point.

In October 2011, we found in the internet arXiv (110.2338\mathrm{v}1) with title:

A surface containing a line and a circle through each point is a quadric

by Fedor Nilov and Mikhail Skopenkov concerning surfaces including several circular

arcs. They found a surface which is not a cyclide, but includes 2 families of circles:

(x^{2}+y^{2}+z^{2})^{2}-4y^{2}z^{2}-4x^{2}=0 \Leftrightarrow x=\sqrt{1-y^{2}}+\sqrt{1-z^{2}},
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where y=Const. ,
z=Const. becomes circles. Further they proved the following:

Theorem 2.7. Let  $\Phi$ be a smooth closed surfa ce in \mathbb{R}^{3} homeomorphic to either a

sphere or a torus. If through each point of the surfa ce one can draw at least 4 distinct

circles fully contained in the surface (and continuously depending on the point)
then the surfa ce is a cyclide.

They extended Takeuchi�s idea on intersection numbers of fundamental groups and

used a classical theorem on the relationship between cospherical circles and cyclides.
So the proof relies on the global information of the surface. On the other hand their

counter example is not a closed surface, but a surface with singularities. At the same

time, they gave a conjecture (also see [5]):
3 distinct continuous families of circles \Rightarrow cyclides.
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