Time regularity in Gevrey classes of solutions to general nonlinear partial differential equations

By

HIDETOSHI TAHARA*

Abstract

The paper considers general nonlinear partial differential equations

(E)
$$F\left(t, x, \{(\partial/\partial t)^{j}(\partial/\partial x)^{\alpha}u\}_{j \leq m, |\alpha| \leq L}\right) = 0$$

(with $1 \leq m \leq L$) in Gevrey classes, and gives a sufficient condition for the following assertion to be valid: if a solution u(t,x) is in C^{∞} class with respect to the time variable t and in the Gevrey class $\mathcal{E}^{\{\sigma\}}$ in the space variable x, then it is in the Gevrey class $\mathcal{E}^{\{s\}}$ also with respect to the time variable t for a suitable t. In [4] we have discussed this problem in a class of nonlinear partial differential equations; in this paper we will discuss the problem in the general case (E).

§ 1. Introduction

We denote by t the time variable in \mathbb{R}_t , and by $x = (x_1, \ldots, x_n)$ the space variable in \mathbb{R}_x^n . We use the notations: $\mathbb{N} = \{0, 1, 2, \ldots\}$, $\mathbb{N}^* = \{1, 2, \ldots\}$, $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $\partial_t = \partial/\partial t$, $\partial_x = (\partial_{x_1}, \ldots, \partial_{x_n})$ with $\partial_{x_i} = \partial/\partial x_i$ $(i = 1, \ldots, n)$ and $\partial_x^{\alpha} = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n}$.

For $\sigma \geq 1$ and an open subset V of \mathbb{R}^n_x we denote by $\mathcal{E}^{\{\sigma\}}(V)$ the set of all functions $f(x) \in C^{\infty}(V)$ satisfying the following: for any compact subset K of V there are C > 0 and h > 0 such that

$$\max_{x \in K} |\partial_x^{\alpha} f(x)| \le C h^{|\alpha|} |\alpha|!^{\sigma}, \quad \forall \alpha \in \mathbb{N}^n.$$

Received March 3, 2012, Accepted August 6, 2012.

²⁰¹⁰ Mathematics Subject Classification(s): Primary 35B65; Secondary 35G20.

Key Words: Time regularity, Gevrey regularity, Gevrey class, solution, nonlinear PDE.

This research was partially supported by the Grant-in-Aid for Scientific Research No. 22540206 of Japan Society for the Promotion of Science.

^{*}Department of Information and Communication Sciences, Sophia University, Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan. Email: h-tahara@hoffman.cc.sophia.ac.jp

^{© 2013} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

A function in the class $\mathcal{E}^{\{\sigma\}}(V)$ is called a function of the Gevrey class of order σ .

If $\sigma = 1$, the class $\mathcal{E}^{\{1\}}(V)$ is nothing but the set of all analytic functions on V and usually it is denoted by $\mathcal{A}(V)$. If $1 < \sigma_1 < \sigma_2 < \infty$ we have

$$\mathcal{A}(V) \subset \mathcal{E}^{\{\sigma_1\}}(V) \subset \mathcal{E}^{\{\sigma_2\}}(V) \subset C^{\infty}(V).$$

Thus, functions in the class $\mathcal{E}^{\{\sigma_1\}}(V)$ are closer to analytic functions than those in $\mathcal{E}^{\{\sigma_2\}}(V)$; in this sense, we can say that functions in $\mathcal{E}^{\{\sigma_1\}}(V)$ are more regular than those in $\mathcal{E}^{\{\sigma_2\}}(V)$.

For an interval $[0,T] = \{t \in \mathbb{R} : 0 \le t \le T\}$ we denote by $C^{\infty}([0,T], \mathcal{E}^{\{\sigma\}}(V))$ the set of all infinitely differentiable functions u(t,x) in $t \in [0,T]$ with values in $\mathcal{E}^{\{\sigma\}}(V)$ equipped with the usual locally convex topology (see [2]).

Similarly, for $s \geq 1$ and $\sigma \geq 1$ we denote by $\mathcal{E}^{\{s,\sigma\}}([0,T] \times V)$ the set of all functions $u(t,x) \in C^{\infty}([0,T] \times V)$ satisfying the following: for any compact subset K of V there are C > 0 and h > 0 such that

$$\max_{(t,x)\in[0,T]\times K} |\partial_t^k \partial_x^\alpha u(t,x)| \le C h^{k+|\alpha|} k!^s |\alpha|!^\sigma, \quad \forall (k,\alpha) \in \mathbb{N} \times \mathbb{N}^n.$$

Obviously, we have

$$\mathcal{E}^{\{s,\sigma\}}([0,T]\times V)\subset C^{\infty}([0,T],\mathcal{E}^{\{\sigma\}}(V)).$$

In the case $s = \sigma$ we write $\mathcal{E}^{\{\sigma\}}([0,T] \times V)$ instead of $\mathcal{E}^{\{\sigma,\sigma\}}([0,T] \times V)$.

Let Ω be an open subset of $\mathbb{R}_t \times \mathbb{R}_x^n \times \mathbb{R}_z^d$: the Gevrey class $\mathcal{E}^{\{s_1,\sigma,s_2\}}(\Omega)$ is defined in the same way. In this case, s_1 denotes the Gevrey order in t, σ denotes the Gevrey order in x, and s_2 denotes the Gevrey order in z.

In this paper, we will consider the following nonlinear partial differential equation

(1.1)
$$F\left(t, x, \{\partial_t^j \partial_x^\alpha u\}_{j \le m, |\alpha| \le L}\right) = 0$$

where $1 \leq m \leq L$ are positive integers, and $F(t, x, \{z_{j,\alpha}\}_{j+|\alpha|\leq m})$ is a suitable function in a Gevrey class (for the precise assumptions, see §2). And, we will consider the following problem on Gevrey regularity in time:

Problem 1.1. Let $u(t,x) \in C^{\infty}([0,T], \mathcal{E}^{\{\sigma\}}(V))$ be a solution of (1.1); can we have the result $u(t,x) \in \mathcal{E}^{\{s,\sigma\}}([0,T] \times V)$ for a suitable $s \geq 1$? If this is true, determine the precise bound of the index s of the time regularity.

In the previous paper [4], we have studied this problem for the equation

$$t^{\gamma} \partial_t^m u = F\left(t, x, \{\partial_t^j \partial_x^{\alpha} u\}_{j < m, |\alpha| \le L}\right)$$

(with $\gamma \geq 0$ and $1 \leq m \leq L$). The purpose of this paper is to discuss the problem 1.1 for general equation (1.1).

§ 2. Formulation and main theorem

Let $m \in \mathbb{N}^*$ be fixed, Λ_0 be a finite subset of $\{(j,\alpha) \in \mathbb{N} \times \mathbb{N}^n ; j < m\}$, and set $\Lambda = \Lambda_0 \cup \{(m,0)\}$ and $d = \#\Lambda$. We denote by $z = \{z_{j,\alpha}\}_{(j,\alpha)\in\Lambda}$ the variable in \mathbb{R}^d_z . Let Ω be an open subset of $\mathbb{R}_t \times \mathbb{R}^n_x \times \mathbb{R}^d_z$, let F(t,x,z) be a C^{∞} function on Ω , and let us consider the following nonlinear partial differential equation:

(2.1)
$$F(t, x, Du) = 0 \quad \text{with } Du = \{\partial_t^j \partial_x^\alpha u\}_{(i,\alpha) \in \Lambda}.$$

Let $s_1 \geq 1$ and $\sigma \geq s_2 \geq 1$ be real numbers, V be an open subset of \mathbb{R}^n_x , and T > 0. Our basic assumptions are:

- a_1) $m \ge 1$, $s_1 \ge 1$ and $\sigma \ge s_2 \ge 1$;
- a_2) $\Lambda = \Lambda_0 \cup \{(m,0)\}$ and Λ_0 is a finite subset of $\{(j,\alpha) \in \mathbb{N} \times \mathbb{N}^n ; j < m\}$,
- $a_3) \ F(t, x, z) \in \mathcal{E}^{\{s_1, \sigma, s_2\}}(\Omega),$
- $a_4)$ $u(t,x) \in C^{\infty}([0,T], \mathcal{E}^{\{\sigma\}}(V))$ is a solution of (2.1) on $[0,T] \times V$; this includes the property: $(t,x) \in [0,T] \times V \Longrightarrow (t,x,Du(t,x)) \in \Omega$.

Let us define

Definition 2.1. (1) Let u(t) be a C^{∞} -function in a neighborhood of $t = t_0$; we define the order of zero of u(t) at $t = t_0$ (which we denote by $\operatorname{ord}_{t=t_0}(u(t))$) by the following:

$$\operatorname{ord}_{t=t_0}(u(t)) = \min\{k \in \mathbb{N} ; u^{(k)}(t_0) \neq 0\}$$

(if $u^{(k)}(t_0) = 0$ for all $k \in \mathbb{N}$ we set $\operatorname{ord}_{t=t_0}(u(t)) = \infty$).

(2) Let W be an open subset of $\mathbb{R}_t \times \mathbb{R}_x^n$, and let $f(t,x) \in C^{\infty}(W)$. We define a $\mathbb{N} \cup \{\infty\}$ -valued function $q(t_0, x_0; f)$ on W in the following way. Take any $(t_0, x_0) \in W$; then $f(t, x_0)$ is a C^{∞} -function in a neighborhood of $t = t_0$ and so we can define the order $\operatorname{ord}_{t=t_0}(f(t,x_0))$ of zero of $f(t,x_0)$ at $t=t_0$. We set $q(t_0,x_0;f) = \operatorname{ord}_{t=t_0}(f(t,x_0))$.

Under the conditions a_1 , a_2 , a_3 and a_4) we set

(2.2)
$$k_{j,\alpha}(t_0, x_0) = q(t_0, x_0; (\partial F/\partial z_{j,\alpha})(t, x, Du(t, x)))$$
$$= \operatorname{ord}_{t=t_0}((\partial F/\partial z_{j,\alpha})(t, x_0, (Du)(t, x_0)))$$

(which is the order of zero of $(\partial F/\partial z_{j,\alpha})(t,x_0,(Du)(t,x_0))$ at $t=t_0$) and suppose:

- (M) For any $(t_0, x_0) \in [0, T] \times V$ there are $\gamma \in \mathbb{N}$ and a neighborhood V_0 of $x_0 \in V$ which satisfy the following properties:
 - 1) $k_{m,0}(t_0, x) = \gamma$ for any $x \in V_0$;
 - 2) $k_{j,0}(t_0, x) \ge \gamma m + j$ for any $x \in V_0$,
 - 3) $k_{j,\alpha}(t_0, x) \ge \gamma m + j + 1$ for any $x \in V_0$, if $|\alpha| > 0$.

In the condition (M), the constant γ may depends on (t_0, x_0) and so we may write $\gamma = \gamma(t_0, x_0)$: this function $\gamma(t, x)$ is locally constant with respect to x. Thus, if (M) is satisfied, we can take any connected neighborhood of x_0 as V_0 in the condition (M).

For any fixed $(t_0, x_0) \in [0, T] \times V$, by using $\gamma = \gamma(t_0, x_0)$ and a connected neighborhood V_0 of x_0 we set

$$k_{j,\alpha}(t_0, V_0) = \min_{x \in V_0} k_{j,\alpha}(t_0, x) \quad \text{(for } (j, \alpha) \in \Lambda_0), \quad \text{and}$$

$$s_0(t_0, V_0) = 1 + \max \left[0, \max_{(j,\alpha) \in \Lambda_0, |\alpha| > 0} \left(\frac{j + \sigma |\alpha| - m}{\min\{k_{j,\alpha}(t_0, V_0) - \gamma + m - j, m - j\}} \right) \right].$$

Note that these $k_{j,\alpha}(t_0, V_0)$ and $s_0(t_0, V_0)$ depend on $(t_0, x_0) \in [0, T] \times V$ and V_0 , and that by 2) and 3) we have the conditions: $k_{j,0}(t_0, V_0) \ge \gamma - m + j$, and $k_{j,\alpha}(t_0, V_0) \ge \gamma - m + j + 1$ if $|\alpha| > 0$. We also note that if $V_1 \subset V_0$ we have $k_{j,\alpha}(t_0, V_1) \ge k_{j,\alpha}(t_0, V_0)$ and so we have $s_0(t_0, V_1) \le s_0(t_0, V_0)$.

By using these indices $s_0(t_0, V_0)$ (for $(t_0, x_0) \in [0, T] \times V$ and V_0) we define the index $s_0 \ge 1$ by the following:

(2.3)
$$s_0 = \sup_{(t_0, x_0) \in [0, T] \times V} \left(\inf_{V_0 \ni x_0} s_0(t_0, V_0) \right).$$

We note:

Lemma 2.2. Under the above situation, for any $(t_0, x_0) \in [0, T] \times V$ and any sufficient small neighborhood V_0 of x_0 we have $s_0 \ge s(t_0, V_0)$.

Proof. We set

$$K = \sup_{V_0 \ni x_0} k_{j,\alpha}(t_0, V_0).$$

If $K = \infty$, for any N > 0 we can take a V_0 such that $k_{j,\alpha}(t_0, V_0) > N$ and so we have $\min\{k_{j,\alpha}(t_0, V_0) - \gamma + m - j, m - j\} = m - j$ for any sufficiently small V_0 . If $K < \infty$, by the condition that $k_{j,\alpha}(t_0, V_0)$ is a \mathbb{N} -valued function we see that $k_{j,\alpha}(t_0, V_0) = K$ holds for any sufficiently small V_0 . Thus, by the definition of $s_0(t_0, V_0)$ we can conclude that $s_0(t_0, V_0)$ is independent of V_0 if V_0 is sufficiently small. This proves Lemma 2.2.

The following result is the main theorem of this paper.

Theorem 2.3. Suppose the conditions a_1 , a_2 , a_3 , a_4 and (M); then we have $u(t,x) \in \mathcal{E}^{\{s,\sigma\}}([0,T] \times V)$ for any $s \geq \max\{s_0, s_1, s_2\}$.

§ 3. Proof of Theorem 2.3

Take any $s \ge \max\{s_0, s_1, s_2\}$. To prove Theorem 2.3, it is enough to show the following assertion: for any $(t_0, x_0) \in [0, T] \times V$ we can find a $\delta > 0$ and a small compact neighborhood V_1 of x_0 such that $u(t, x) \in \mathcal{E}^{\{s, \sigma\}}([t_0, t_0 + \delta] \times V_1)$ (or $u(t, x) \in \mathcal{E}^{\{s, \sigma\}}([t_0 - \delta, t_0] \times V_1)$) holds. By changing the variable $t \longrightarrow t - t_0$, we have only to discuss the case $t_0 = 0$.

Take any $(0, x_0)$ and fix it. Let $\gamma = \gamma(0, x_0)$ and take a sufficiently small connected neighborhood V_0 of x_0 : then by Lemma 2.2 we have $s_0 \geq s(t_0, V_0)$. For simplicity we set $k_{j,\alpha} = k_{j,\alpha}(0, V_0)$ (for $(j, \alpha) \in \Lambda_0$). Take a sufficiently small $T_0 > 0$, and we have $u(t, x) \in C^{\infty}([0, T_0], \mathcal{E}^{\{\sigma\}}(V_0))$. Since $k_{m,0}(0, x) = \gamma$ holds on V_0 , we have

(3.1)
$$\left[t^{-\gamma} \frac{\partial F}{\partial z_{m,0}}(t, x, Du) \right]_{t=0}^{t} \neq 0 \quad \text{on } V_0.$$

Moreover, we have $k_{j,0} \ge \gamma - m + j$, and $k_{j,\alpha} \ge \gamma - m + j + 1$ if $|\alpha| > 0$. By the condition $s \ge \max\{s_0, s_1, s_2\}$ we have $s \ge \max\{s_1, s_2\}$ and

(3.2)
$$s \ge 1 + \max \left[0, \max_{(j,\alpha) \in \Lambda_0, |\alpha| > 0} \left(\frac{j + \sigma |\alpha| - m}{\min\{k_{j,\alpha} - \gamma + m - j, m - j\}} \right) \right].$$

We will consider the equation only on $[0, T_0] \times V_0$.

Let us reduce our equation (2.1) to an equation discussed in [4]. First, we take an integer q with

$$(3.3) q > \gamma + m + 1$$

and set

$$u(t,x) = \varphi(t,x) + t^q w(t,x) \quad \text{with } \varphi(t,x) = \sum_{k=0}^{q-1} \frac{(\partial_t^k u)(0,x)}{k!} t^k;$$

then we have $\varphi(t,x) \in \mathcal{E}^{\{1,\sigma\}}(\mathbb{R} \times V_0)$ and $w(t,x) \in C^{\infty}([0,T_0],\mathcal{E}^{\{\sigma\}}(V_0))$. Since

$$Du = D\varphi + \{t^{q-j}[t\partial_t + q]_j \partial_x^{\alpha} w\}_{(j,\alpha) \in \Lambda}$$

(where $[\lambda]_0 = 1$ and $[\lambda]_p = \lambda(\lambda - 1) \cdots (\lambda - p + 1)$ for $p \ge 1$), and since u(t, x) is a solution of (2.1) we have

(3.4)
$$F\left(t, x, D\varphi + \left\{t^{q-j}[t\partial_t + q]_j\partial_x^\alpha w\right\}_{(j,\alpha)\in\Lambda}\right) = 0$$

which is regarded as an equation with respect to w(t,x). To see the result $u(t,x) \in \mathcal{E}^{\{s,\sigma\}}([0,\delta] \times V_1)$, it is enough to show the condition: $w(t,x) \in \mathcal{E}^{\{s,\sigma\}}([0,\delta] \times V_1)$.

Let us do a further reduction. By the formula

$$[\lambda + q]_j = (\lambda + q)(\lambda + q - 1) \cdots (\lambda + q - j + 1) = \sum_{0 \le i \le j} c_{j,i} \lambda^i,$$

we define the constants $c_{j,i}$ $(0 \le i \le j \le m)$: we see that $c_{j,j} = 1$ holds. Set

$$Z(t,z) = \{Z_{j,\alpha}(t,z)\}_{(j,\alpha)\in\Lambda} \quad \text{with} \quad Z_{j,\alpha}(t,z) = t^{q-j} \sum_{0 \le i \le j} c_{j,i} z_{i,\alpha},$$

$$H(t,x,z) = \frac{1}{t^{q+\gamma-m}} \times F(t,x,D\varphi(t,x) + Z(t,z)),$$

$$\Theta^* w = \{(t\partial_t)^j \partial_x^\alpha w\}_{(j,\alpha)\in\Lambda} \quad \text{and} \quad z^* = (\Theta^* w)(0,x_0) \in \mathbb{R}^d.$$

By the definition we have $Z_{j,\alpha}(t,\Theta^*w) = t^{q-j}[t\partial_t + q]_j\partial_x^{\alpha}w$ for any $(j,\alpha) \in \Lambda$, and so we have $D\varphi(t,x) + Z(t,\Theta^*w) = Du(t,x)$. By the same argument as in [§3, [4]] we have

Lemma 3.1. Under the above situation we have the following results:

(1) Set $\Omega_0 = \{(t, x, z) \in \mathbb{R}_t \times V_0 \times \mathbb{R}_z^d ; (t, x, D\varphi(t, x) + Z(t, z)) \in \Omega\};$ then we have $(0, x_0, z^*) \in \Omega_0$ and $H(t, x, z) \in \mathcal{E}^{\{s^*, \sigma, s_2\}}(\Omega_0)$ for $s^* = \max\{s_1, s_2\}.$

(2)
$$w(t,x) \in C^{\infty}([0,T_0], \mathcal{E}^{\{\sigma\}}(V_0))$$
 is a solution of

(3.5)
$$H(t, x, \Theta^* w) = 0, \quad on [0, T_0] \times V_0,$$

and we have $(t, x, \Theta^*w(t, x)) \in \Omega_0$ for any $(t, x) \in [0, T_0] \times V_0$.

(3) $H(0,x_0,z^*) = 0$ and $(\partial H/\partial z_{m,0})(0,x_0,z^*) \neq 0$. In addition we have

(3.6)
$$\frac{\partial H}{\partial z_{m,0}}(t,x,\Theta^*w(t,x))\Big|_{t=0} \neq 0 \quad on \ V_0.$$

(4) We set

(3.7)
$$q_{j,\alpha} = \min_{x \in V_0} \left(\operatorname{ord}_{t=0}((\partial H/\partial z_{j,\alpha})(t, x, \Theta^* w(t, x))) \right), \quad (j, \alpha) \in \Lambda_0.$$

Then we have $q_{j,\alpha} \geq 1$ if $|\alpha| > 0$. Moreover we see that the condition (3.2) implies

(3.8)
$$s \ge 1 + \max \left[0, \max_{(j,\alpha) \in \Lambda_0, |\alpha| > 0} \left(\frac{j + \sigma |\alpha| - m}{\min\{q_{j,\alpha}, m - j\}} \right) \right].$$

Proof. By the condition (M) and (3.3) we have

$$(\partial F/\partial z_{j,\alpha})(t,x,D\varphi(t,x)) = \begin{cases} O(t^{\gamma-m+j}) & \text{on } V_0, & \text{if } |\alpha| = 0, \\ O(t^{\gamma-m+j+1}) & \text{on } V_0, & \text{if } |\alpha| > 0 \end{cases}$$

(where $f(t,x) = O(t^a)$ means that $f(t,x) = O(t^a)$ uniformly in x (as $t \to +0$)). In particular, in the case $(j,\alpha) = (m,0)$ we have $(\partial F/\partial z_{m,0})(t,x,D\varphi(t,x)) = O(t^{\gamma})$ and by (3.1) we have

$$\left[t^{-\gamma} \frac{\partial F}{\partial z_{m,0}}(t, x, D\varphi)\right]\Big|_{t=0} \neq 0 \quad \text{on } V_0.$$

Therefore, by (3.4) and Taylor's formula we have

$$\begin{split} 0 &= F(t,x,D\varphi(t,x)) + \sum_{(j,\alpha) \in \Lambda} \frac{\partial F}{\partial z_{j,\alpha}}(t,x,D\varphi)O(t^{q-j}) + \sum_{(j,\alpha),(i,\beta) \in \Lambda} O(t^{q-j})O(t^{q-i}) \\ &= F(t,x,D\varphi(t,x)) + \sum_{(j,\alpha) \in \Lambda} O(t^{\gamma-m+j}) \times O(t^{q-j}) + O(t^{2q-2m}) \\ &= F(t,x,D\varphi(t,x)) + O(t^{q+\gamma-m}) \quad \text{on } V_0: \end{split}$$

this shows that $F(t, x, D\varphi(t, x)) = O(t^{q+\gamma-m})$ holds on V_0 . Hence, by the definition of H(t, x, z) we have

$$\begin{split} H(t,x,z) &= \frac{1}{t^{q+\gamma-m}} \times F(t,x,D\varphi(t,x) + Z(t,z)) \\ &= \frac{1}{t^{q+\gamma-m}} \bigg[F(t,x,D\varphi(t,x)) + \sum_{(j,\alpha)} \frac{\partial F}{\partial z_{j,\alpha}}(t,x,D\varphi) O(t^{q-j}) + O(t^{2q-2m}) \bigg] \\ &= \frac{1}{t^{q+\gamma-m}} \bigg[O(t^{q+\gamma-m}) + \sum_{(j,\alpha)} O(t^{\gamma-m+j}) \times O(t^{q-j}) + O(t^{2q-2m}) \bigg] \end{split}$$

(where $f(t, x, z) = O(t^a)$ means that $f(t, x, z) = O(t^a)$ uniformly in (x, z) (as $t \to +0$): this proves that H(t, x, z) is well-defined as a C^{∞} function on Ω_0 . By Proposition 5.1 (in Appendix) we have the condition: $H(t, x, z) \in \mathcal{E}^{\{s^*, \sigma, s_2\}}(\Omega_0)$ with $s^* = \max\{s_1, s_2\}$. This proves (1).

(2) is clear from the definition of H(t, x, z) and Ω_0 . Since

$$\frac{\partial H}{\partial z_{m,0}}(t,x,\Theta^*w(t,x)) = \frac{1}{t^{\gamma}} \frac{\partial F}{\partial z_{m,0}}(t,x,Du(t,x))$$

holds, by (3.1) we have the result (3). Since

$$\frac{\partial H}{\partial z_{j,\alpha}}(t, x, \Theta^* w(t, x)) = \frac{1}{t^{q+\gamma-m}} \sum_{l \ge j} \frac{\partial F}{\partial z_{l,\alpha}}(t, x, Du(t, x)) t^{q-l} c_{l,j}$$

$$= \sum_{l \ge j} O(t^{k_{l,\alpha}-\gamma+m-l}) \quad \text{on } V_0,$$

we have the result (4).

Now, let us apply the implicit function theorem [Theorem 5.2 (with $\sigma_1 = \sigma$ and $\sigma_2 = s_2$) in Appendix] to the functional equation

(3.9)
$$H(t, x, z) = 0 \text{ in a neighborhood of } (0, x_0, z^*).$$

We write $z^* = (z'^*, z_{m,0}^*)$ and $z = (z', z_{m,0})$. Since

$$H(0, x_0, z^*) = 0$$
 and $(\partial H/\partial z_{m,0})(0, x_0, z^*) \neq 0$

hold, we can find an open neighborhood Ω_1 of $(0, x_0, z'^*) \in \mathbb{R}_t \times V_0 \times \mathbb{R}^{d-1}$ and a function G(t, x, z') on Ω_1 which satisfy the following properties:

- 1) $G(t, x, z') \in \mathcal{E}^{\{s^*, \sigma, s_2\}}(\Omega_1);$
- 2) $z_{m,0}^* = G(0, x_0, z'^*);$
- 3) the functional relation (3.9) is equivalent to $z_{m,0} = G(t, x, z')$;
- 4) if we take $\delta > 0$ and an open neighborhood $V_1(\subset V_0)$ of x_0 sufficiently small, we have $(t, x, \Theta w(t, x)) \in \Omega_1$ for any $(t, x) \in [0, \delta] \times V_1$ and the function $w(t, x) \in C^{\infty}([0, \delta], \mathcal{E}^{\{\sigma\}}(V_1))$ is a solution of the equation

(3.10)
$$(t\partial_t)^m w = G(t, x, \Theta w) \text{ with } \Theta w = \{(t\partial_t)^j \partial^\alpha w\}_{(j,\alpha) \in \Lambda_0}.$$

Moreover, we have

Lemma 3.2. We set

$$q_{j,\alpha}(G) = \min_{x \in V_1} \left(\operatorname{ord}_{t=0}((\partial G/\partial z_{j,\alpha})(t, x, \Theta w(t, x))) \right), \quad (j, \alpha) \in \Lambda_0.$$

Then we have $q_{i,\alpha}(G) \geq 1$ if $|\alpha| > 0$, and that the condition (3.2) implies

(3.11)
$$s \ge 1 + \max \left[0, \max_{(j,\alpha) \in \Lambda_0, |\alpha| > 0} \left(\frac{j + \sigma|\alpha| - m}{\min\{q_{j,\alpha}(G), m - j\}} \right) \right].$$

We denote by $s_0(G)$ the right-hand side of (3.11).

Proof. By the implicit function theorem we have

$$\frac{\partial G}{\partial z_{j,\alpha}}(t,x,\Theta w(t,x)) = -\frac{(\partial H/\partial z_{j,\alpha})(t,x,\Theta^*w(t,x))}{(\partial H/\partial z_{m,0})(t,x,\Theta^*w(t,x))}.$$

Since (3.6) holds, we have

$$\operatorname{ord}_{t=0} ((\partial G/\partial z_{j,\alpha})(t, x, \Theta w(t, x)))$$

$$= \operatorname{ord}_{t=0} ((\partial H/\partial z_{j,\alpha})(t, x, \Theta^* w(t, x))), \quad \forall x \in V_1$$

and by the condition $V_1 \subset V_0$ we have $q_{j,\alpha}(G) \geq q_{j,\alpha}$ for any $(j,\alpha) \in \Lambda_0$, where $q_{j,\alpha}((j,\alpha) \in \Lambda_0)$ are the ones in (3.7). Thus, by (3.8) we have (3.11).

Thus, we have seen that w(t, x) is a solution of (3.10). Since (3.10) is just an equation discussed in [4], by [Theorems 5.0.1 and 6.1 in [4]] we have the following result which proves Theorem 2.3.

Theorem 3.3. Under the above situation, we have $w(t, x) \in \mathcal{E}^{\{s, \sigma\}}([0, \delta] \times V_1)$ for any $s \ge \max\{s_0(G), s^*\}$ with $s^* = \max\{s_1, s_2\}$.

§ 4. Application

In this section, we will consider the equation (2.1) under the assumption

(4.1)
$$F(t, x, z) \in \mathcal{E}^{\{\sigma\}}(\Omega)$$

for some $\sigma \geq 1$, and we will consider the following problem:

Problem 4.1. Let $u(t,x) \in C^{\infty}([0,T], \mathcal{E}^{\{\sigma\}}(V))$ be a solution of (2.1); can we have the result $u(t,x) \in \mathcal{E}^{\{\sigma\}}([0,T] \times V)$?

By using Theorem 2.3, let us give a sufficient condition for this problem to be affirmative. We see: by Theorem 2.3 (with $s_1 = s_2 = \sigma$) we have the result $u(t, x) \in \mathcal{E}^{\{\sigma\}}([0, T] \times V)$ if the condition $\sigma \geq s_0$ holds, that is, if for any $(t_0, x_0) \in [0, T] \times V$ and a sufficiently small neighborhood V_0 of x_0 we have

$$(4.2) \sigma \ge 1 + \max \left[0, \max_{(j,\alpha) \in \Lambda_0, |\alpha| > 0} \left(\frac{j + \sigma|\alpha| - m}{\min\{k_{j,\alpha}(t_0, V_0) - \gamma + m - j, m - j\}} \right) \right]$$

which is equivalent to

$$(4.3) m-j-\min\{k_{j,\alpha}(t_0,V_0)-\gamma+m-j,m-j\}$$

$$\geq \sigma(|\alpha|-\min\{k_{j,\alpha}(t_0,V_0)-\gamma+m-j,m-j\})$$
for any $(j,\alpha)\in\Lambda_0$ with $|\alpha|>0$.

If $j + |\alpha| > m$ holds for some $(j, \alpha) \in \Lambda_0$, we have

$$1 + \frac{j + \sigma|\alpha| - m}{\min\{k_{j,\alpha}(t_0, V_0) - \gamma + m - j, m - j\}} \ge 1 + \frac{j + \sigma|\alpha| - m}{m - j} = \frac{\sigma|\alpha|}{m - j} > \sigma.$$

This shows that if $\Lambda_0 \not\subset \{(j,\alpha) \in \mathbb{N} \times \mathbb{N}^n ; j+|\alpha| \leq m\}$ the condition (4.2) is not satisfied.

Let us consider the case:

(4.4)
$$\Lambda_0 \subset \{(j,\alpha) \in \mathbb{N} \times \mathbb{N}^n \, ; \, j + |\alpha| \le m \}.$$

If $|\alpha| \leq \min\{k_{j,\alpha}(t_0, V_0) - \gamma + m - j, m - j\}$ holds, the condition (4.3) is clear from the fact that the right-hand side is nonpositive and the left-hand side is nonnegative. If $|\alpha| > \min\{k_{j,\alpha}(t_0, V_0) - \gamma + m - j, m - j\}$ holds, by the condition $|\alpha| \leq m - j$ we have

$$m - j \ge |\alpha| > \min\{k_{j,\alpha}(t_0, V_0) - \gamma + m - j, m - j\}$$

= $k_{j,\alpha}(t_0, V_0) - \gamma + m - j$

and so the inequality (4.3) is equivalent to

$$\sigma \leq \frac{m - j - (k_{j,\alpha}(t_0, V_0) - \gamma + m - j)}{|\alpha| - (k_{j,\alpha}(t_0, V_0) - \gamma + m - j)} = 1 + \frac{m - j - |\alpha|}{|\alpha| - (k_{j,\alpha}(t_0, V_0) - \gamma + m - j)}$$

Therefore, if we set $\Delta = \{(j, \alpha) \in \Lambda_0 ; k_{j,\alpha}(t_0, V_0) - \gamma + m - j < |\alpha| \}$, our condition (4.2) is equivalent to

$$(4.5) 1 \leq \sigma \leq 1 + \min \left[\infty, \min_{(j,\alpha) \in \Delta} \left(\frac{m - j - |\alpha|}{|\alpha| - (k_{j,\alpha}(t_0, V_0) - \gamma + m - j)} \right) \right].$$

Thus, summing up we have the following result. Set

$$(4.6) \Delta(t_0, V_0) = \{(j, \alpha); k_{j,\alpha}(t_0, V_0) - \gamma + m - j < |\alpha|\},\$$

(4.7)
$$\sigma_0(t_0, V_0) = 1 + \min \left[\infty, \min_{(j,\alpha) \in \Delta(t_0, V_0)} \left(\frac{m - j - |\alpha|}{|\alpha| - (k_{j,\alpha}(t_0, V_0) - \gamma + m - j)} \right) \right]$$

where $\gamma = \gamma(t_0, x_0)$. We have:

Theorem 4.2. Let $\sigma \geq 1$. Suppose the conditions (4.1), (4.4), a_4), (M), and

(4.8)
$$\sigma \leq \inf_{(t_0,x_0)\in[0,T]\times V} \left(\sup_{V_0\ni x_0} \sigma_0(t_0,V_0) \right):$$

then we have $u(t,x) \in \mathcal{E}^{\{\sigma\}}([0,T] \times V)$.

§ 5. Appendix

In §3, we have used two results: one is a result on the composition of Gevrey functions, and the other is the implicit function theorem in Gevrey classes. We present here precise formulations and their proofs.

First, let us show a result on the composition of Gevrey functions. We write $t \in \mathbb{R}_t$, $x = (x_1, \dots, x_n) \in \mathbb{R}_x^n$ and $z = (z_1, \dots, z_d) \in \mathbb{R}_z^d$. We have

Proposition 5.1. Let $s \ge 1$, $s_1 \ge 1$, $s_2 \ge 1$, $\sigma \ge 1$, let Ω and W be open subsets of $\mathbb{R}_t \times \mathbb{R}_x^n \times \mathbb{R}_z^d$. If the conditions

- 1) $F(t, x, z) \in \mathcal{E}^{\{s_1, \sigma, s_2\}}(\Omega)$,
- 2) $u_i(t, x, z) \in \mathcal{E}^{\{s, \sigma, s_2\}}(W) \ (i = 1, \dots, d),$
- 3) $W \ni (t, x, z) \Longrightarrow (t, x, u(t, x, z)) \in \Omega$, where $u = (u_1, \dots, u_d)$,
- 4) $\sigma \ge s_2 \ and \ s \ge \max\{s_1, s_2\}$

hold, we have $F(t, x, u(t, x, z)) \in \mathcal{E}^{\{s, \sigma, s_2\}}(W)$.

Proof. Take any compact subset Z of W; then the image L of Z by the mapping $(t, x, z) \longrightarrow (t, x, u(t, x, z))$ is also a compact subset of Ω . We take constants $A_{p,q,\nu} \geq 0$ and $B_{i,k,\beta,\gamma} \geq 0$ so that

•
$$\max_{(t,x,z)\in L} \left| \frac{F^{(p,q,\nu)}(t,x,z)}{p!q!\nu!} \right| \le A_{p,q,\nu} p!^{s_1-1} |q|!^{\sigma-1} |\nu|!^{s_2-1},$$

•
$$\max_{(t,x,z)\in Z} \left| \frac{u_i^{(k,\beta,\gamma)}(t,x,z)}{k!\beta!\gamma!} \right| \le B_{i,k,\beta,\gamma}(k-1)!^{s-1}|\beta|!^{\sigma-1}|\gamma|!^{s_2-1}, \text{ if } k \ge 1,$$

•
$$\max_{(t,x,z)\in Z} \left| \frac{u_i^{(0,\beta,\gamma)}(t,x,z)}{\beta!\gamma!} \right| \le B_{i,0,\beta,\gamma}(|\beta|-1)!^{\sigma-1}|\gamma|!^{s_2-1}, \text{ if } |\beta| \ge 1,$$

•
$$\max_{(t,x,z)\in Z} \left| \frac{u_i^{(0,0,\gamma)}(t,x,z)}{\gamma!} \right| \le B_{i,0,0,\gamma}(|\gamma|-1)!^{s_2-1}$$
, if $|\gamma| \ge 1$,

where $p \in \mathbb{N}$, $q \in \mathbb{N}^n$, $\nu \in \mathbb{N}^d$, $k \in \mathbb{N}$, $\beta \in \mathbb{N}^n$, and $\gamma \in \mathbb{N}^d$. We set also

$$G(t, x, z) = \sum_{p+|q|+|\nu| \ge 0} A_{p,q,\nu} t^p x^q z^{\nu},$$

$$w_i(t, x, z) = \sum_{k+|\beta|+|\gamma| > 1} B_{i,k,\beta,\gamma} t^k x^{\beta} z^{\gamma}, \quad i = 1, \dots, d.$$

Then, $G(t, x, z) = G(t, x, z_1, ..., z_d)$ and $w_i(t, x, z)$ (i = 1, ..., d) are convergent in a neighborhoof of (t, x, z) = (0, 0, 0), and so the function

$$H(t, x, z) = G(t, x, w_1(t, x, z), \dots, w_d(t, x, z))$$

$$= \sum_{p+|q|+|\nu|\geq 0} A_{p,q,\nu} t^p x^q \left(\sum_{k_1+|\beta_1|+|\gamma_1|\geq 1} B_{1,k_1,\beta_1,\gamma_1} t^{k_1} x^{\beta_1} z^{\gamma_1} \right)^{\nu_1} \times \left(\sum_{k_d+|\beta_d|+|\gamma_d|\geq 1} B_{d,k_d,\beta_d,\gamma_d} t^{k_d} x^{\beta_d} z^{\gamma_d} \right)^{\nu_d}$$

(with $\nu = (\nu_1, \dots, \nu_d)$) is also convergent in a neighborhood of (t, x, z) = (0, 0, 0). If we set

$$H(t, x, z) = \sum_{(m,\alpha,\mu) \in \mathbb{N} \times \mathbb{N}^n \times \mathbb{N}^d} C_{m,\alpha,\mu} t^m x^{\alpha} z^{\mu}$$

we have $C_{0,0,0} = A_{0,0,0}$ and for $m + |\alpha| + |\mu| \ge 1$

(5.1)
$$C_{m,\alpha,\mu} = \sum_{\substack{1 \le p + |q| + |\nu| \\ \le m + |\alpha| + |\mu|}} A_{p,q,\nu} \sum_{\substack{|k^*| = m - p \\ s(\beta(\nu)) = \alpha - q \\ s(\gamma(\nu)) = \mu \\ k_i(j) + |\beta_i(j)| + |\gamma_i(j)| \ge 1}} \prod_{i=1}^d \prod_{j=1}^{\nu_i} \left(B_{i,k_i(j),\beta_i(j),\gamma_i(j)} \right),$$

where $|k^*| = \sum_{i=1}^{d} (k_i(1) + \dots + k_i(\nu_i))$ and

$$s(\beta(\nu)) = \sum_{i=1}^{d} \sum_{j=1}^{\nu_i} \beta_i(j) \in \mathbb{N}^n, \quad s(\gamma(\nu)) = \sum_{i=1}^{d} \sum_{j=1}^{\nu_i} \gamma_i(j) \in \mathbb{N}^d.$$

Since H(t, x, z) is a holomorphic function in a neighborhood of (t, x, z) = (0, 0, 0), by Cauchy's inequality we have $C_{m,\alpha,\mu} \leq M\eta^{m+|\alpha|+|\mu|}$ $(m+|\alpha|+|\mu|=0,1,2,...)$ for some M>0 and $\eta>0$. Therefore, to see the condition $h(t,x,z)=F(t,x,u(t,x,z))\in \mathcal{E}^{\{s,\sigma,s_2\}}(Z)$ it is sufficient to prove the following inequalities:

(5.2)
$$\frac{1}{m!^{s-1}|\alpha|!^{\sigma-1}|\mu|!^{s_2-1}} \max_{(t,x,z)\in Z} \left| \frac{1}{m!\alpha!\mu!} h^{(m,\alpha,\mu)}(t,x,z) \right| \\ \leq 3^{(m+|\alpha|+|\mu|)(s_2-1)} C_{m,\alpha,\mu} \quad \text{for any } m+|\alpha|+|\mu| \geq 1.$$

Now, let us recall that by Faá di Bruno's formula (see [1]) or [[4], Lemma 4.3] we have

$$\frac{1}{m!\alpha!\mu!}h^{(m,\alpha,\mu)} = \sum_{\substack{1 \le p + |q| + |\nu| \le m + |\alpha| + |\mu| \\ 1 \le p + |q| + |\nu| \le m + |\alpha| + |\mu| }} \frac{1}{p!q!\nu!}F^{(p,q,\nu)} \times \sum_{\substack{|k^*| = m - p \\ s(\beta(\nu)) = \alpha - q \\ s(\gamma(\nu)) = \mu \\ k_i(j) + |\beta_i(j)| + |\gamma_i(j)| > 1}} \frac{1}{p!q!\nu!}F^{(p,q,\nu)} \times \sum_{\substack{|k^*| = m - p \\ s(\beta(\nu)) = \alpha - q \\ k_i(j) + |\beta_i(j)| + |\gamma_i(j)| > 1}} \frac{1}{k_i(j)!\beta_i(j)!\gamma_i(j)!}u_i^{(k_i(j),\beta_i(j),\gamma_i(j))} \right).$$

Thereofre, by using estimates $(1/p!q!\nu!)|F^{(p,q,\nu)}| \leq A_{p,q,\nu}p!^{s_1-1}|q|!^{\sigma-1}|\nu|!^{s_2-1}$ on L and $(1/k!\beta!\gamma!)|u_i^{(k,\beta,\gamma)}| \leq B_{i,k,\beta,\gamma}(k-\delta_1)!^{s-1}(|\beta|-\delta_2)!^{\sigma-1}(|\gamma|-\delta_3)^{s_2-1}$ (where $(\delta_1,\delta_2,\delta_3)=(1,0,0)$ if $k\geq 1$, $(\delta_1,\delta_2,\delta_3)=(0,1,0)$ if k=0 and $|\beta|\geq 1$, and $(\delta_1,\delta_2,\delta_3)=(0,0,1)$ if k=0, $\beta=0$ and $|\gamma|\geq 1$) on Z, we have

$$(5.3) \frac{1}{m!^{s-1}|\alpha|!^{\sigma-1}|\mu|!^{s_{2}-1}} \left| \frac{1}{m!\alpha!\mu!} h^{(m,\alpha,\mu)} \right| \\ \leq \frac{1}{m!^{s-1}|\alpha|!^{\sigma-1}|\mu|!^{s_{2}-1}} \sum_{1 \leq p+|q|+|\nu| \leq m+|\alpha|+|\mu|} A_{p,q,\nu} p!^{s_{1}-1}|q|!^{\sigma-1}|\nu|!^{s_{2}-1} \times \\ \times \sum_{\substack{|k^{*}|=m-p\\s(\beta(\nu))=\alpha-q\\s(\gamma(\nu))=\mu\\k_{i}(j)+|\beta_{i}(j)|+|\gamma_{i}(j)| \geq 1}} \prod_{i=1}^{d} \prod_{j=1}^{\nu_{i}} \left(B_{i,k_{i}(j),\beta_{i}(j),\gamma_{i}(j)}(k_{i}(j)-\delta_{1})!^{s-1} \times (|\beta_{i}(j)|-\delta_{2})!^{\sigma-1}(|\gamma_{i}(j)|-\delta_{3})!^{s_{2}-1} \right)$$

$$\leq \sum_{1 \leq p+|q|+|\nu| \leq m+|\alpha|+|\mu|} A_{p,q,\nu} \frac{p!^{s_1-1}|q|!^{\sigma-1}|\nu|!^{s_2-1}}{m!^{s-1}|\alpha|!^{\sigma-1}|\mu|!^{s_2-1}} \times \\ \times \sum_{\substack{|k^*|=m-p\\s(\beta(\nu))=\alpha-q\\s(\gamma(\nu))=\mu\\k_i(j)+|\beta_i(j)|+|\gamma_i(j)| \geq 1}} (|k^*|-n_1)!^{s-1}(|\beta(\nu)^*|-n_2)!^{\sigma-1}(|\gamma(\nu)^*|-n_3)!^{s_2-1} \\ \times \prod_{i=1}^{d} \prod_{j=1}^{\nu_i} \Big(B_{i,k_i(j),\beta_i(j),\gamma_i(j)}\Big),$$

where $|\beta(\nu)^*| = \sum_{i=1}^d \sum_{j=1}^{\nu_i} |\beta_i(j)|, |\gamma(\nu)^*| = \sum_{i=1}^d \sum_{j=1}^{\nu_i} |\gamma_i(j)|, n_1 = \#\{(i,j); k_i(j) \ge 1\}, n_2 = \#\{(i,j); k_i(j) = 0, |\beta_i(j)| \ge 1\}, \text{ and } n_3 = \#\{(i,j); k_i(j) = 0, |\beta_i(j)| \ge 0, |\gamma_i(j)| \ge 1\}.$ Since $n_1 + n_2 + n_3 = |\nu|, s \ge s_2$ and $\sigma \ge s_2$ hold, we have

$$|\nu|!^{s_2-1} \le (3^{|\nu|}n_1!n_2!n_3!)^{s_2-1} \le 3^{|\nu|(s_2-1)}n_1!^{s-1}n_2!^{\sigma-1}n_3!^{s_2-1},$$

and so

$$\begin{split} \frac{p!^{s_1-1}|q|!^{\sigma-1}|\nu|!^{s_2-1}}{m!^{s-1}|\alpha|!^{\sigma-1}|\mu|!^{s_2-1}}(|k^*|-n_1)!^{s-1}(|\beta(\nu)^*|-n_2)!^{\sigma-1}(|\gamma(\nu)^*|-n_3)!^{s_2-1}\\ &\leq \frac{p!^{s-1}|q|!^{\sigma-1}\times 3^{|\nu|(s_2-1)}n_1!^{s-1}n_2!^{\sigma-1}n_3!^{s_2-1}}{m!^{s-1}|\alpha|!^{\sigma-1}|\mu|!^{s_2-1}}\times\\ &\qquad \qquad \times (m-p-n_1)!^{s-1}(|\alpha|-|q|-n_2)!^{\sigma-1}(|\mu|-n_3)!^{s_2-1}\\ &= 3^{|\nu|(s_2-1)}\,\frac{p!^{s-1}n_1!^{s-1}(m-p-n_1)!^{s-1}}{m!^{s-1}}\\ &\qquad \qquad \times \frac{|q|!^{\sigma-1}n_2!^{\sigma-1}(|\alpha|-|q|-n_2)!^{\sigma-1}}{|\alpha|!^{\sigma-1}}\frac{n_3!^{s_2-1}(|\mu|-n_3)!^{s_2-1}}{|\mu|!^{s_2-1}}\\ &\leq 3^{|\nu|(s_2-1)} < 3^{(m+|\alpha|+|\mu|)(s_2-1)}. \end{split}$$

Thus, by applying this to (5.3) we obtain

$$\begin{split} &\frac{1}{m!^{s-1}|\alpha|!^{\sigma-1}|\mu|!^{s_2-1}} \Big| \frac{1}{m!\alpha!\mu!} h^{(m,\alpha,\mu)} \Big| \\ &\leq 3^{(m+|\alpha|+|\mu|)(s_2-1)} \sum_{\substack{1 \leq p+|q|+|\nu| \\ \leq m+|\alpha|+|\mu| \\ k_i(j)+|\beta_i(j)|+|\gamma_i(j)| \geq 1}} A_{p,q,\nu} \sum_{\substack{|k^*|=m-p \\ s(\beta(\nu))=\alpha-q \\ s(\gamma(\nu))=\mu \\ k_i(j)+|\beta_i(j)|+|\gamma_i(j)| \geq 1}} \prod_{i=1}^{d} \prod_{j=1}^{\nu_i} \Big(B_{i,k_i(j),\beta_i(j),\gamma_i(j)} \Big) \\ &= 3^{(m+|\alpha|+|\mu|)(s_2-1)} C_{m,\alpha,\mu} \end{split}$$

on Z. This proves (5.2).

Some versions of the implicit function theorem in ultra-differentiable classes are given in Komatsu [3] and Yamanaka [5]. For the self-containedness, we will give here an implicit function theorem which is used in §3.

As before, we write $t \in \mathbb{R}_t$, $x = (x_1, \dots, x_n) \in \mathbb{R}_x^n$, $z = (z_1, \dots, z_d) \in \mathbb{R}_z^d$ and $w \in \mathbb{R}_w$. Let Ω be an open neighborhood of $(0,0,0,0) \in \mathbb{R}_t \times \mathbb{R}_x^n \times \mathbb{R}_z^d \times \mathbb{R}_w$, let F(t,x,z,w) be a C^{∞} -function on Ω , let $s_1 \geq 1$, $s_2 \geq 1$, $\sigma_1 \geq 1$ and $\sigma_2 \geq 1$, and suppose: $\sigma_i \geq s_2$ for i = 1, 2. We have

Theorem 5.2. Suppose the following conditions: $F(t, x, z, w) \in \mathcal{E}^{\{s_1, \sigma_1, \sigma_2, s_2\}}(\Omega)$, F(0, 0, 0, 0) = 0 and $(\partial F/\partial w)(0, 0, 0, 0) \neq 0$. Then, there are an open neighborhood W of $(0, 0, 0) \in \mathbb{R}_t \times \mathbb{R}_x^n \times \mathbb{R}_z^d$ and a function $\phi(t, x, z) \in C^{\infty}(W)$ which satisfy $\phi(0, 0, 0) = 0$ and the following properties:

$$(5.4) W \ni (t, x, z) \Longrightarrow (t, x, z, \phi(t, x, z)) \in \Omega,$$

(5.5)
$$F(t, x, z, \phi(t, x, z)) = 0 \quad on \ W.$$

Moreover, we have $\phi(t, x, z) \in \mathcal{E}^{\{s, \sigma_1, \sigma_2\}}(W)$ for any $s \ge \max\{s_1, s_2\}$.

Proof. The former half of the result is nothing but the result of the implicit function theorem in the C^{∞} class, and so we know that there are an open neighborhood W of $(0,0,0) \in \mathbb{R}_t \times \mathbb{R}_x^n \times \mathbb{R}_z^d$ and a function $\phi(t,x,z) \in C^{\infty}(W)$ which satisfy $\phi(0,0,0) = 0$, (5.4) and (5.5).

Let us show that $\phi(t, x, z) \in \mathcal{E}^{\{s, \sigma_1, \sigma_2\}}(W)$ holds for any $s \geq \max\{s_1, s_2\}$. Since the problem is set in a local sense, without loss of generality we may suppose that $(\partial F/\partial w)(t, x, z, w) \neq 0$ holds on Ω . Then, by (5.5) we have the equality

$$\phi_t(t, x, z) = -\frac{F_t(t, x, z, \phi)}{F_w(t, x, z, \phi)},$$

$$\phi_{x_i}(t, x, z) = -\frac{F_{x_i}(t, x, z, \phi)}{F_w(t, x, z, \phi)}, \quad i = 1, \dots, n,$$

$$\phi_{z_j}(t, x, z) = -\frac{F_{z_j}(t, x, z, \phi)}{F_w(t, x, z, \phi)}, \quad j = 1, \dots, d,$$

where $\phi_t = \partial \phi / \partial t$, $F_t = \partial F / \partial t$, $\phi_{x_i} = \partial \phi / \partial x_i$, $F_{x_i} = \partial F / \partial x_i$ and so on. Therefore, if we set $G(t, x, z) = -(F_t / F_w)(t, x, z, w)$, $H_i(t, x, z) = -(F_{x_i} / F_w)(t, x, z, w)$ ($i = 1, \ldots, n$) and $K_j(t, x, z, w) = -(F_{z_j} / F_w)(t, x, z, w)$ ($j = 1, \ldots, d$) we have the system of equations

(5.6)
$$\begin{cases} \phi_t = G(t, x, z, \phi), \\ \phi_{x_i} = H_i(t, x, z, \phi), & i = 1, \dots, n, \\ \phi_{z_j} = K_j(t, x, \phi), & j = 1, \dots, d. \end{cases}$$

Since $F_w(t, x, z, w) \neq 0$ on Ω , by the condition $F(t, x, z, w) \in \mathcal{E}^{\{s_1, \sigma_1, \sigma_2, s_2\}}(\Omega)$ we have

•
$$G(t, x, z, w) \in \mathcal{E}^{\{s_1, \sigma_1, \sigma_2, s_2\}}(\Omega),$$

(5.7)
$$\bullet H_i(t, x, z, w) \in \mathcal{E}^{\{s_1, \sigma_1, \sigma_2, s_2\}}(\Omega), \quad i = 1, \dots, n,$$

•
$$K_j(t, x, z, w) \in \mathcal{E}^{\{s_1, \sigma_1, \sigma_2, s_2\}}(\Omega), \quad j = 1, \dots, d.$$

Thus, to complete the proof of Theorem 5.2 it is enough to show

Proposition 5.3. Let $s_1 \geq 1$, $s_2 \geq 1$, $\sigma_1 \geq 1$ and $\sigma_2 \geq 1$. Suppose the conditions (5.7) and $\sigma_i \geq s_2$ for i = 1, 2. If $\phi(t, x, z) \in C^{\infty}(W)$ is a solution of (5.6), we have $\phi(t, x, z) \in \mathcal{E}^{\{s, \sigma_1, \sigma_2\}}(W)$ for any $s \geq \max\{s_1, s_2\}$.

Proof of Proposition 5.3. Let Z be a compact subset of W, and let L be the image of Z by the mapping: $(t, x, z) \longrightarrow (t, x, z, \phi(t, x, z)) \in \Omega$. We take $A_{p,q_1,q_2,k} \geq 0$ $(p \in \mathbb{N}, q_1 \in \mathbb{N}^n, q_2 \in \mathbb{N}^d \text{ and } k \in \mathbb{N}), B_{q_1,q_2,k}^{(i)} \geq 0$ $(i = 1, ..., n, q_1 \in \mathbb{N}^n, q_2 \in \mathbb{N}^d \text{ and } k \in \mathbb{N})$ and $C_{q_2,k}^{(j)} \geq 0$ $(j = 1, ..., d, q_2 \in \mathbb{N}^d \text{ and } k \in \mathbb{N})$ so that

$$\bullet \max_{(t,x,z,w)\in L} \left| \frac{G^{(p,q_1,q_2,k)}(t,x,z,w)}{p!q_1!q_2!k!} \right| \le A_{p,q_1,q_2,k} p!^{s_1-1} |q_1|!^{\sigma_1-1} |q_2|!^{\sigma_2-1} k!^{s_2-1},$$

•
$$\max_{(t,x,z,w)\in L} \left| \frac{H_i^{(0,q_1,q_2,k)}(t,x,z,w)}{q_1!q_2!k!} \right| \le B_{q_1,q_2,k}^{(i)}|q_1|!^{\sigma_1-1}|q_2|!^{\sigma_2-1}k!^{s_2-1},$$

$$\bullet \max_{(t,x,z,w)\in L} \left| \frac{K_j^{(0,0,q_2,k)}(t,x,z,w)}{q_2!k!} \right| \le C_{q_2,k}^{(j)} |q_2|!^{\sigma_2-1}k!^{s_2-1}.$$

Let us consider the following functional equation:

$$(5.8) \quad Y = t \sum_{p+|q_1|+|q_2|+k \ge 0} A_{p,q_1,q_2,k} t^p x^{q_1} z^{q_2} (3^{s_2-1}Y)^k$$

$$+ \sum_{i=1}^n x_i \sum_{|q_1|+|q_2|+k \ge 0} B_{q_1,q_2,k}^{(i)} x^{q_1} z^{q_2} (2^{s_2-1}Y)^k + \sum_{j=1}^d z_j \sum_{|q_2|+k \ge 0} C_{q_2,k}^{(j)} z^{q_2} Y^k.$$

Since this is an analytic functional equation, by the implicit function theorem in holomorphic category we see that (5.8) has a unique holomorphic solution Y(t, x, z) in a neighborhood of $(0,0,0) \in \mathbb{C}^n_t \times \mathbb{C}^n_x \times \mathbb{C}^d_z$ satisfying Y(0,0,0) = 0. Let

$$Y(t, x, z) = \sum_{m+|\alpha_1|+|\alpha_2| \ge 1} Y_{m,\alpha_1,\alpha_2} t^m x^{\alpha_1} z^{\alpha_2},$$

be the Taylor expansion of Y(t, x, z). We see that the coefficients Y_{m,α_1,α_2} $(m + |\alpha_1| + |\alpha_2| \ge 1)$ are determined by the following recurrent formulas:

$$Y_{1,0,0} = A_{0,0,0,0}, \ Y_{0,e_i,0} = B_{0,0,0}^{(i)} \ (i = 1, \dots, n), \ Y_{0,0,\epsilon_j} = C_{0,0}^{(j)} \ (j = 1, \dots, d)$$
(where $e_1 = (1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1) \in \mathbb{N}^n$ and $\epsilon_1 = (1, 0, \dots, 0), \dots, \epsilon_d = (1, 0, \dots, 0)$

 $(0,\ldots,0,1)\in\mathbb{N}^d$), and for $M=m+|\alpha_1|+|\alpha_2|\geq 2$ we have

$$(5.9) Y_{m,\alpha_{1},\alpha_{2}} = \sum_{0 \leq p+|q_{1}|+|q_{2}|+k \leq M-1} A_{p,q_{1},q_{2},k} \sum_{\substack{|\mu^{*}|=m-p-1\\s(\beta_{1}^{*})=\alpha_{1}-q_{1}\\s(\beta_{2}^{*})=\alpha_{2}-q_{2}}} \prod_{l=1}^{k} 3^{s_{2}-1} Y_{\mu(l),\beta_{1}(l),\beta_{2}(l)}$$

$$+ \sum_{i=1}^{n} \sum_{0 \leq |q_{1}|+|q_{2}|+k \leq M-1} B_{q_{1},q_{2},k}^{(i)} \sum_{\substack{|\mu^{*}|=m\\s(\beta_{1}^{*})=\alpha_{1}-q_{1}-e_{i}\\s(\beta_{2}^{*})=\alpha_{2}-q_{2}}} \prod_{l=1}^{k} 2^{s_{2}-1} Y_{\mu(l),\beta_{1}(l),\beta_{2}(l)}$$

$$+ \sum_{j=1}^{d} \sum_{0 \leq |q_{2}|+k \leq M-1} C_{q_{2},k}^{(j)} \sum_{\substack{|\mu^{*}|=m\\s(\beta_{1}^{*})=\alpha_{1}\\s(\beta_{2}^{*})=\alpha_{2}-q_{2}-\epsilon_{j}}} \prod_{l=1}^{k} Y_{\mu(l),\beta_{1}(l),\beta_{2}(l)},$$

where $|\mu^*| = \mu(1) + \dots + \mu(k)$, $s(\beta_1^*) = \sum_{l=1}^k \beta_1(l)$ and $s(\beta_2^*) = \sum_{l=1}^k \beta_2(l)$. We have

Lemma 5.4. Take any $s \ge \max\{s_1, s_2\}$. Then, we have:

$$(1) \max_{(t,x,z)\in Z} \left| \frac{\phi^{(m,\alpha_1,\alpha_2)}(t,x,z)}{m!\alpha_1!\alpha_2!} \right| \le Y_{m,\alpha_1,\alpha_2}(m-1)!^{s-1} |\alpha_1|!^{\sigma_1-1} |\alpha_2|!^{\sigma_2-1}, \quad \text{if } m \ge 1,$$

$$(2) \max_{(t,x,z)\in Z} \left| \frac{\phi^{(0,\alpha_1,\alpha_2)}(t,x,z)}{\alpha_1!\alpha_2!} \right| \le Y_{0,\alpha_1,\alpha_2}(|\alpha_1|-1)!^{\sigma_1-1}|\alpha_2|!^{\sigma_2-1}, \quad \text{if } |\alpha_1| \ge 1,$$

$$(3) \ \max_{(t,x,z)\in Z} \left|\frac{\phi^{(0,0,\alpha_2)}(t,x,z)}{\alpha_2!}\right| \leq Y_{0,0,\alpha_2}(|\alpha_2|-1)!^{\sigma_2-1}, \ if \ |\alpha_2| \geq 1.$$

Proof of Lemma 5.4. We will prove this by induction on $M = m + |\alpha_1| + |\alpha_2|$. By (5.6) we have $|\phi_t| = |G(t, x, z, \phi)| \le A_{0,0,0,0} = Y_{1,0,0}, |\phi_{x_i}| = |H_i(t, x, z, \phi)| \le B_{0,0,0}^{(i)} = Y_{0,e_i,0} \ (i = 1, ..., n)$ and $|\phi_{z_j}| = |K_j(t, x, z, \phi)| \le C_{0,0}^{(j)} = Y_{0,0,\epsilon_j} \ (j = 1, ..., d)$. This proves the case M = 1.

Suppose that $M = m + |\alpha_1| + |\alpha_2| \ge 2$. If $m \ge 1$, by (5.6) we have

$$\begin{split} &\frac{\phi^{(m,\alpha_1,\alpha_2)}(t,x,z)}{m!\alpha_1!\alpha_2!} \\ &= \frac{\phi_t^{(m-1,\alpha_1,\alpha_2)}(t,x,z)}{m!\alpha_1!\alpha_2!} = \frac{1}{m!\alpha_1!\alpha_2!}\partial_t^{m-1}\partial_x^{\alpha_1}\partial_z^{\alpha_2}G(t,x,z,\phi) \\ &= \frac{1}{m}\sum_{0 \leq p+|q_1|+|q_2|+k \leq M-1} \frac{G^{(p,q_1,q_2,k)}}{p!q_1!q_2!k!} \sum_{\substack{|\mu^*|=m-p-1\\s(\beta_2^*)=\alpha_2-q_2}} \prod_{l=1}^k \frac{\phi^{(\mu(l),\beta_1(l),\beta_2(l))}}{\mu(l)!\beta_1(l)!\beta_2(l)!} \end{split}$$

and therefore

(5.10)

$$\begin{split} & \left| \frac{\phi^{(m,\alpha_{1},\alpha_{2})}(t,x,z)}{m!\alpha_{1}!\alpha_{2}!} \right| \\ & \leq \frac{1}{m} \sum_{0 \leq p + |q_{1}| + |q_{2}| + k \leq M - 1} A_{p,q_{1},q_{2},k} p!^{s_{1}-1} |q_{1}|!^{\sigma_{1}-1} |q_{2}|!^{\sigma_{2}-1} k!^{s_{2}-1} \times \\ & \times \sum_{\substack{|\mu^{*}| = m - p - 1\\ s(\beta_{1}^{*}) = \alpha_{1} - q_{1}\\ s(\beta_{2}^{*}) = \alpha_{2} - q_{2}}} \prod_{l=1}^{k} Y_{\mu(l),\beta_{1}(l),\beta_{2}(l)} (\mu(l) - \delta_{0})!^{s-1} (|\beta_{1}(l)| - \delta_{1})!^{\sigma_{1}-1} (|\beta_{2}(l)| - \delta_{2})!^{\sigma_{2}-1} \end{split}$$

where $(\delta_0, \delta_1, \delta_2) = (1, 0, 0)$ if $\mu(l) \geq 1$, $(\delta_0, \delta_1, \delta_2) = (0, 1, 0)$ if $\mu(l) = 0$ and $|\beta_1(l)| \geq 1$, and $(\delta_0, \delta_1, \delta_2) = (0, 0, 1)$ if $\mu(l) = 0$, $|\beta_1(l)| = 0$ and $|\beta_2(l)| \geq 1$. If we set $n_0 = \#\{l; \mu(l) \geq 1\}$, $n_1 = \#\{l; \mu(l) = 0, |\beta_1(l)| \geq 1\}$ and $n_2 = \#\{l; \mu(l) = 0, \beta_1(l) = 0, |\beta_2(l)| \geq 1\}$, then we have $n_0 + n_1 + n_2 = k$ and

$$k!^{s_2-1} \le (3^k n_0! n_1! n_2!)^{s_2-1} \le 3^{k(s_2-1)} n_0!^{s-1} n_1!^{\sigma_1-1} n_2!^{\sigma_2-1}$$

By applying this to (5.10) and by using $s \ge s_1$ we have

$$\begin{split} & \frac{\left|\phi^{(m,q_1,q_2)}(t,x,z)\right|}{m!\alpha_1!\alpha_2!} \\ & \leq \frac{1}{m} \sum_{0 \leq p + |q_1| + |q_2| + k \leq M - 1} A_{p,q_1,q_2,k} p!^{s-1} |q_1|!^{\sigma_1 - 1} |q_2|!^{\sigma_2 - 1} \times n_0!^{s-1} n_1!^{\sigma_1 - 1} n_2!^{\sigma_2 - 1} \times \\ & \quad \times (m - p - 1 - n_0)!^{s-1} (|\alpha_1| - |q_1| - n_1)!^{\sigma_1 - 1} (|\alpha_2| - |q_2| - n_2)!^{\sigma_2 - 1} \\ & \quad \times \sum_{\substack{|\mu^*| = m - p - 1 \\ s(\beta_1^*) = \alpha_1 - q_1 \\ s(\beta_2^*) = \alpha_2 - q_2}} \prod_{l=1}^k 3^{s_2 - 1} Y_{\mu(l),\beta_1(l),\beta_2(l)} \\ & \leq (m - 1)!^{s-1} |\alpha_1|!^{\sigma_1 - 1} |\alpha_2|!^{\sigma_2 - 1} \times \\ & \quad \times \frac{1}{m} \sum_{\substack{0 \leq p + |q_1| + |q_2| + k \leq M - 1 \\ s(\beta_1^*) = \alpha_1 - q_1 \\ s(\beta_2^*) = \alpha_2 - q_2}} \prod_{l=1}^k 3^{s_2 - 1} Y_{\mu(l),\beta_1(l),\beta_2(l)} \\ & \leq (m - 1)!^{s-1} |\alpha_1|!^{\sigma_1 - 1} |\alpha_2|!^{\sigma_2 - 1} \times Y_{m,\alpha_1,\alpha_2}. \end{split}$$

This proves (1).

By using $\phi_{x_i} = H_i(t, x, z, \phi)$ (i = 1, ..., n) and $\phi_{z_j} = K_j(t, x, z, \phi)$ (j = 1, ..., d), we can prove (2) and (3) in the same way.

Completion of the proof of Proposition 5.3. Since Y(t, x, z) is a holomorphic function in a neighborhood of $(0,0,0) \in \mathbb{C}_t \times \mathbb{C}_x^n \times \mathbb{C}_z^d$, by Cauchy's inequality we can take C > 0 and h > 0 so that

$$Y_{m,\alpha_1,\alpha_2} \le Ch^{m+|\alpha_1|+|\alpha_2|}$$

holds for all $m \in \mathbb{N}$, $\alpha_1 \in \mathbb{N}^n$ and $\alpha_2 \in \mathbb{N}^d$. By combining this with Lemma 5.4 we have the result: $\phi(t, x, z) \in \mathcal{E}^{\{s, \sigma_1, \sigma_2\}}(Z)$. This proves Proposition 5.3.

This completes the proof of Theorem 5.2.

References

- [1] Johnson, W. P., The curious history of Faà di Bruno's formula, *Amer. Math. Monthly*, **109** (2002), 217-234.
- [2] Komatsu, H., Introduction to generalized functions, Iwanami, 1978, in Japanese.
- [3] Komatsu, H., The implicit function theorem for ultradifferentiable mappings. *Proc. Japan Acad. Ser. A Math. Sci.*, **55** (1979), 69-72.
- [4] Tahara, H., Gevrey regularity in time of solutions to nonlinear partial differential equations, J. Math. Sci. Univ. Tokyo, 18 (2011), 67-137.
- [5] Yamanaka, T., Inverse map theorem in the ultra-F-differentiable class, *Proc. Japan Acad.*, **65** (1989), 199-202.