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Time regularity in Gevrey classes of solutions to
general nonlinear partial differential equations

By

HIDETOSHI TAHARA®

Abstract

The paper considers general nonlinear partial differential equations
(E) F (t’ €L, {(a/at)j(a/ax)au}jﬁmJOélSL) =0

(with 1 <m < L) in Gevrey classes, and gives a sufficient condition for the following assertion
to be valid: if a solution u(t,z) is in C™ class with respect to the time variable ¢ and in the
Gevrey class £ {o} in the space variable z, then it is in the Gevrey class £1*} also with respect to
the time variable ¢ for a suitable s. In [4] we have discussed this problem in a class of nonlinear
partial differential equations; in this paper we will discuss the problem in the general case (E).

§1. Introduction

We denote by ¢ the time variable in R;, and by x = (x1,...,z,) the space variable
in R?. We use the notations: N ={0,1,2,...}, N*={1,2,...}, a = (aq,...,a,) € N
la| =a1+ -+ an, O, = 0/0t, 0y = (0p,,...,0;,) with 0,, = 0/0x; (i=1,...,n) and
Oy = 0gl -+ 0.

For 0 > 1 and an open subset V of R” we denote by £{7} (V) the set of all functions
f(x) € C(V) satisfying the following: for any compact subset K of V' there are C' > 0
and h > 0 such that

max |02 f(z)| < Chl¥l|all?, VYo e N™.
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A function in the class £17H(V) is called a function of the Gevrey class of order o.
If o = 1, the class £{1}(V) is nothing but the set of all analytic functions on V and
usually it is denoted by A(V). If 1 < 01 < 03 < 0o we have

AWV) c glnr(v) c glo2h(vy c c=(v).

Thus, functions in the class £{71}(V) are closer to analytic functions than those in
2} (V); in this sense, we can say that functions in £{71}(V) are more regular than
those in £172} (V).

For an interval [0,7] = {t € R; 0 <t < T} we denote by C*([0,T], £{7}(V)) the
set of all infinitely differentiable functions u(t,z) in t € [0,T] with values in £17}(V)
equipped with the usual locally convex topology (see [2]).

Similarly, for s > 1 and o > 1 we denote by £1:7}([0, T] x V') the set of all functions
u(t,x) € C(]0,T] x V) satisfying the following: for any compact subset K of V' there
are C' > 0 and h > 0 such that

max  |0F0%u(t,z)| < CRFHIEEa)l”,  VY(k,a) € N x N",
(t,x)e[0,T]x K

Obviously, we have
5{5’0}([0,T] > V) C COO([O’T]’S{G}(V))

In the case s = o we write £177([0, T] x V) instead of E{7}([0,T] x V).

Let Q be an open subset of R; x R” x R%: the Gevrey class £{51:752}(Q) is defined
in the same way. In this case, s; denotes the Gevrey order in ¢, 0 denotes the Gevrey
order in x, and sy denotes the Gevrey order in z.

In this paper, we will consider the following nonlinear partial differential equation
(1.1) F(@% {agagu}jémﬁla|§L> =0

where 1 < m < L are positive integers, and F'(t,z,{zj o };j4|a|<m) is a suitable function
in a Gevrey class (for the precise assumptions, see §2). And, we will consider the
following problem on Gevrey regularity in time:

Problem 1.1. Let u(t,z) € C([0,T],£1°}(V)) be a solution of (1.1); can we
have the result u(t, z) € £157([0, T] x V) for a suitable s > 17 If this is true, determine
the precise bound of the index s of the time regularity.

In the previous paper [4], we have studied this problem for the equation

007w = F (4,2, {0]05u}jm jai<1)
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(with v > 0 and 1 < m < L). The purpose of this paper is to discuss the problem 1.1
for general equation (1.1).

§ 2. Formulation and main theorem

Let m € N* be fixed, Ay be a finite subset of {(j,a) € N x N"; j < m}, and set
A =AgU{(m,0)} and d = #A. We denote by z = {2j.a}(j.a)ca the variable in RZ. Let
Q) be an open subset of R; x R? x R, let F(t,z,2) be a C* function on 2, and let us
consider the following nonlinear partial differential equation:

2 Pt D3) =0 with D = (2008}

Let sy > 1 and 0 > so > 1 be real numbers, V be an open subset of R”, and T" > 0.

Our basic assumptions are:
aj)m>1,s >1and 0 > s9 > 1;
az) A= Ao U{(m,0)} and Ay is a finite subset of {(j, ) € N x N"; j < m},
az) F(t,z,z) € Es1:9521(Q),
ag) u(t,z) € C=([0,T],E17H(V)) is a solution of (2.1) on [0,7T] x V; this includes
the property: (t,z) € [0,T] x V = (t,z, Du(t,z)) € Q.

Let us define

Definition 2.1. (1) Let u(t) be a C*°-function in a neighborhood of ¢ = ty; we
define the order of zero of u(t) at t = to (which we denote by ord;—, (u(t))) by the
following;:

ord;—;, (u(t)) = min{k € N; u® (t) # 0}

(if u®) (tg) = 0 for all k € N we set ords—y, (u(t)) = o).

(2) Let W be an open subset of Ry x RZ, and let f(¢t,z) € C°(W). We define a
N U {oo}-valued function ¢(tg, xo; f) on W in the following way. Take any (tg,xq) € W;
then f(t, zo) is a C°>°-function in a neighborhood of t = ¢y and so we can define the order
ordy—, (f(t,z0)) of zero of f(t,x0) at t = tg. We set q(to, zo; f) = ordi—¢, (f(t, x0))-

Under the conditions ay), az), az) and ay) we set

(2.2) kja(to, zo0) = q(to, xo; (0F/0zj,4)(t, x, Du(t, x)))
= Ordtzto ((aF/aZj,a)(ta Lo, (Du) (tv xo)))



122 HIDETOSHI TAHARA

(which is the order of zero of (0F/0z;4)(t, xo, (Du)(t,z0)) at t = t9) and suppose:

(M) For any (to,z¢) € [0,T] x V there are v € N and a neighborhood V}
of zg € V which satisfy the following properties:
1) kpm.o(to,z) =~ for any x € Vp;
2) kjo(to,x) >~v—m+j for any x € Vj,
3) kjalto,x) >y —m+j+1 for any z € Vp, if |a| > 0.
In the condition (M), the constant v may depends on (tg, xg) and so we may write
v = ~(to, zp): this function (¢, z) is locally constant with respect to x. Thus, if (M) is
satisfied, we can take any connected neighborhood of xy as Vj in the condition (M).
For any fixed (to, o) € [0,T] x V, by using v = 7(to, ) and a connected neigh-
borhood Vj of zg we set

kjao(to, Vo) = m1‘1/1 kja(to,z) (for (j,a) € Ag), and

A

So(to, ‘/0) =1+ max

( j+ola)—m )
0, max - - -
(j.)€No,|a|>0 \ min{k; o (to, Vo) — v+ m — j,m — j}

Note that these k; o (to, Vo) and so(to, Vo) depend on (tg,x0) € [0,7] x V and Vp, and
that by 2) and 3) we have the conditions: k;o(to, Vo) > v —m + j, and k; (to, Vo) >
v—m+j+1if |a] > 0. We also note that if V; C Vy we have k; o (to, V1) > kj.o(to, Vo)
and so we have sq(tg, V1) < so(to, Vo).

By using these indices so(to, Vo) (for (to,z0) € [0,7] x V and V) we define the
index sg > 1 by the following:

(2.3) so=  sup ( inf so(to,Vo)>.

(to,x0)€[0,T]xXV Vodzo

We note:

Lemma 2.2.  Under the above situation, for any (to,xo) € [0,T] x V and any
sufficient small neighborhood Vi of xy we have sq > s(tg, Vo).

Proof. We set

K = sup k’j,a(to,VO).
\GCEED)

If K = oo, for any N > 0 we can take a Vj such that k; o(to, Vo) > N and so we have
min{k; o (to, Vo) —v+m —j,m —j} = m— j for any sufficiently small V;. If K < oo, by
the condition that k; (to, Vo) is a N-valued function we see that k; o (to, Vo) = K holds
for any sufficiently small V. Thus, by the definition of sq(tg, V) we can conclude that
so(to, Vo) is independent of Vj if Vj is sufficiently small. This proves Lemma 2.2. O

The following result is the main theorem of this paper.
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Theorem 2.3.  Suppose the conditions a1), az2), as), as) and (M); then we have
u(t,x) € E1591([0,T] x V) for any s > max{sg, 51, 52}

§3. Proof of Theorem 2.3

Take any s > max{sg,s1,s2}. To prove Theorem 2.3, it is enough to show the
following assertion: for any (to,xo) € [0,T] x V we can find a 6 > 0 and a small
compact neighborhood Vi of xo such that u(t,z) € E157 ([to,to + 6] x V1) (or u(t,z) €
E9t([tg — 8,t9] x V1)) holds. By changing the variable t — t — t(, we have only to
discuss the case tg = 0.

Take any (0, zo) and fix it. Let v = (0, zp) and take a sufficiently small connected
neighborhood Vj of xp: then by Lemma 2.2 we have sy > s(to, V). For simplicity we
set kj.o = kja(0,Vh) (for (j,a) € Ap). Take a sufficiently small Ty > 0, and we have
u(t,z) € C([0,Tp), 174 (Vy)). Since Ky 0(0,2) =~ holds on Vy, we have

#0 on V.

(3.1) [t—v aaF (. Du)] g

Zm,0

Moreover, we have kjo > y—m+j, and k; o > y—m+j+1if |o| > 0. By the condition
s > max{sp, s1,s2} we have s > max{sj, s2} and

(3.2) s > 14 max|0, max ( _ J tolal - = , > .
(j.@)€Ao,lal>0 \ min{k; , — v+ m —j,m —j}

We will consider the equation only on [0, Tp] x V.
Let us reduce our equation (2.1) to an equation discussed in [4]. First, we take an
integer g with

(3-3) qg=v+m+1

and set
-1

u(t,z) = @(t, x) + t'w(t,x) with p(t,z) =)

(0F0)(0.7) .
k!

Y

then we have ¢(t,2) € EIL7HR x Vp) and w(t, z) € C>([0, Ty, £17H(Vp)). Since
Du = Dy + {t"7[td; + q];05 w0} (ja)en

(where [AJo = 1 and [Al, = A(A—=1)---(A—p+1) for p > 1), and since u(t,z) is a
solution of (2.1) we have

(3.4) F(t,2, D + {177 [t; + ql;05w} aren ) =0
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which is regarded as an equation with respect to w(t,z). To see the result u(t,x) €
£15:91([0,6] x V1), it is enough to show the condition: w(t,z) € £157}(]0, ] x V}).
Let us do a further reduction. By the formula

Adj =+ +g—1)-A+g—j+1)= D ¢\,
0<i<s

we define the constants ¢;; (0 <7 < j <m): we see that ¢;; = 1 holds. Set

Z(t,Z) = {Zj,a(t,z)}(j’a)eA with Zj,a(t,z) = tq_j Z Cji%i,05
0<i<y

H(t,z,z) = x F(t,z, Do(t,z) + Z(t, 2)),

taty—m
O*w = {(t0;) 9Sw}(jayen and z* = (0*w)(0,zp) € RY.

By the definition we have Z; ,(t, 0*w) = t477[td; + q|;0%w for any (j,a) € A, and so
we have Do(t,z) + Z(t,©*w) = Du(t,z). By the same argument as in [§3, [4]] we have

Lemma 3.1.  Under the above situation we have the following results:

(1) Set Qo = {(t,z,2) € Ry x Vo x RY; (t, 2, Dp(t,x) + Z(t,2)) € Q}; then we have
(0,20, 2*) € Qo and H(t,z,z) € E1557523(Q) for s* = max{s, so}.

(2) w(t,x) € C>=([0, Tp], E17H (V) is a solution of

(3.5) H(t,z,®"w) =0, on[0,Ty] x Vo,

and we have (t,z,0*w(t,z)) € Qo for any (t,z) € [0,Ty] x V.
(3) H(0,z0,2*) =0 and (0H/02zm 0)(0,x0,2*) # 0. In addition we have

OH .
(3.6) %(t,x,@ w(t, z)) - #0 on V.

(4) We set

(3.7) Gj.o = min (ordtzo((aﬂ/azj,a)(t,x, @*w(t,x)))), (j, @) € Ao.

zeVy

Then we have gjo > 1 if |a] > 0. Moreover we see that the condition (3.2) implies

(3.8) s> 1+ max|0, max ( ']—I—J|a|—m. ) .
(,0)€Ao,Jal>0 \ min{g; a,m — j}

Proof. By the condition (M) and (3.3) we have

O@—™%) onVy, iflal=0,

8F 8Z‘a t7x7D t’x = ]
(OF/0zj,0)( p(t,2)) {O(t’y—m‘H‘H) on Vp,if |a] >0
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(where f(t,x) = O(t*) means that f(t,2) = O(t*) uniformly in z (as t — 40)). In
particular, in the case (j,a) = (m,0) we have (0F/0zm0)(t,x, Dp(t,z)) = O(t7) and
by (3.1) we have

F
lt“’ 88 (t,z, Dgo)] #0 on V.
Zm30 t=0

Therefore, by (3.4) and Taylor’s formula we have

0= F(t,z,Dp(t,x)) + Z a—F(t,x,Dgo)O(tq_j)-l- Z Ot )O(t17)

(j,Oé)GA Zj’a (j,a),(i,,B)EA
= F(t,z, Do(t,z)) + Z O™ x O(1977) 4 O(t24=2m)
(j,)EA

= F(t,z,Dp(t,z)) + O™ ~™) on Vj:

this shows that F(t,x, Dp(t,z)) = O(t?7~™) holds on V;. Hence, by the definition of
H(t,z,z) we have

H(t,x,z) =

pravvm F(t,x,Do(t,z) + Z(t,2))

— t‘J+’1Y—m {F(t,x,Dw(taw)) + 2

(4,@)

OF (1 2, Dg)O(t7) + 0122
8Zj a

1
©taty—m

{O(tq”_m) + )0 ) x Ot ) + O(th—Qm)}
(4,a)
(where f(t,z,z) = O(t*) means that f(¢,x, z) = O(t*) uniformly in (z, 2) (ast — +0)):
this proves that H(t,x, z) is well-defined as a C*° function on 4. By Proposition 5.1
(in Appendix) we have the condition: H(t,x,z) € £{8752}(Q) with s* = max{s;, s2}.
This proves (1).
(2) is clear from the definition of H(t,x, z) and . Since

0H 1 OF
—( Fw(t = ——(t,z, Du(t
5o (t.2.6u(t.2)) = 55 (ta, Du(t.2)
holds, by (3.1) we have the result (3). Since
OH 1 OF

—(t,x, 0" w(t,x)) =

t,z, Du(t,z))t9 ey
- (1,2, Du(t, 2))19 ey

= ZO(tk"’“_%Lm_l) on Vp,
1>j
we have the result (4). O

Now, let us apply the implicit function theorem [Theorem 5.2 (with o3 = ¢ and
09 = s9) in Appendix] to the functional equation

(3.9) H(t,z,z) =0 in a neighborhood of (0, zg, 2*).
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/% *

We write 2* = (2%, 25, o) and z = (2', zim0). Since

H(0,29,2*) =0 and (0H/02m,0)(0,20,2") #0
hold, we can find an open neighborhood Q; of (0, zg, 2”*) € Ry x Vo x R4~ and a function
G(t,x,2') on 1 which satisfy the following properties:
1) G(t,z,2') € o521 (Qy);
2) 2 G(0, zg, 2™);

m,0 —
3) the functional relation (3.9) is equivalent to z, 0 = G(t,z, 2’);
4) if we take 6 > 0 and an open neighborhood V;(C Vj) of xg sufficiently small,
we have (t,z,Quw(t,z)) € Q for any (¢,z) € [0,d] x V1 and the function w(t,z) €
C*([0,4], 471 (171)) is a solution of the equation

(3.10) (t0)"w = G(t,z,0w) with Ow = {(t0:)? 0w} (j.a)eAo-

Moreover, we have

Lemma 3.2. We set
q_j,a(G) = min (Ordt:O((aG/azj,a)(ta 33, @w(ta .CC)))) 9 (.], Oé) € AO-

:CEVl

Then we have qj(G) > 1 if |a] > 0, and that the condition (3.2) implies

(3.11) s> 1—|—max[0, max ( jtolal—m )]

(j.@)EAg,|a|>0 \ min{g; o (G), m — j}

We denote by so(G) the right-hand side of (3.11).

Proof. By the implicit function theorem we have

oG _ (0H/0zj4)(, z, O w(t, x))
(t:2, 00t 2)) = = (5 /20 0) (6 2. O w(t, 7))

82]‘,05
Since (3.6) holds, we have
ord;— ((0G/0zj,0)(t, z, Qw(t, z)))
= ordy—o ((0H/0z;o)(t, x, 0% w(t,x))), Vz eV

and by the condition Vi C Vi we have ¢;(G) > gjo for any (j,a) € Ay, where g;
((4,«) € Ap) are the ones in (3.7). Thus, by (3.8) we have (3.11). O

Thus, we have seen that w(t,x) is a solution of (3.10). Since (3.10) is just an
equation discussed in [4], by [Theorems 5.0.1 and 6.1 in [4]] we have the following result
which proves Theorem 2.3.
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Theorem 3.3.  Under the above situation, we have w(t,z) € E1573([0,8] x V1)
for any s > max{so(G), s*} with s* = max{si,s2}.

§4. Application

In this section, we will consider the equation (2.1) under the assumption
(4.1) F(t,z,z) € E173(Q)
for some ¢ > 1, and we will consider the following problem:

Problem 4.1.  Let u(t,z) € C*®([0,T],E1}(V)) be a solution of (2.1); can we
have the result u(t,z) € E17H([0,T] x V)?

By using Theorem 2.3, let us give a sufficient condition for this problem to be
affirmative. We see: by Theorem 2.3 (with s; = so = o) we have the result u(t,z) €
19} ([0,T] x V) if the condition o > s¢ holds, that is, if for any (tg,z¢) € [0,T] x V and
a sufficiently small neighborhood Vj of ¢ we have

(4.2) o > 1+ max

( j+olal—m )
0, max - - :
(j,@)€Ao,lal>0 \ min{k; o (to, Vo) — v +m — j,m — j}
which is equivalent to

(4.3) m — j —min{k; o (to, Vo) =7 +m — j,m — j}
> o(|al — min{k; o (to, Vo) — v +m — j,m — j})
for any (j,a) € Ag with |a] > 0.

If 5 + |a] > m holds for some (j,«) € Ay, we have

j+olal—m >1+j+a|a|—m: olal -

1+ — - — > - -
min{k; o (to, Vo) —v +m —j,m — j} m—j m—j

This shows that if Ag ¢ {(j,a) € N x N"; j + |a] < m} the condition (4.2) is not
satisfied.
Let us consider the case:

(4.4) Ao C {(j,@) e N N"; j+|af <m}.

If o < min{k; «(to, Vo) — v+ m — j,m — j} holds, the condition (4.3) is clear from
the fact that the right-hand side is nonpositive and the left-hand side is nonnegative. If
la| > min{k; o (to, Vo) —v+ m — j,m — j} holds, by the condition |a| < m — j we have
m —j = |af >min{k;q(to, Vo) — v +m —j,m — j}
= kjal(to,Vo) =y +m—j
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and so the inequality (4.3) is equivalent to

m—j = (Kjalto, Vo) =y +m—j) _, m—j—l|o|
= ol = (kja(to, Vo) =7 +m —j) | = (Kja(to, Vo) =7 +m —j)

Therefore, if we set A = {(j,a) € Ag; kja(to, Vo) — v+ m — j < |a|}, our condition
(4.2) is equivalent to

(4.5) 1<o<1+min

00, min ( m—j— )
“Gajea\lal = (kjalto, Vo) — v +m —j)
Thus, summinig up we have the following result. Set

(4.6) A(to, Vo) = {(j,a); kjalto, Vo) =y +m —j <lal},

(47) Uo(to, Vo) = 1+ min

00 min ( m—j—|af >
" Gha)EA(t, Vo) \ || — (Kj.a(to, Vo) — v +m — 7)
where v = v(tg, z¢). We have:

Theorem 4.2.  Let 0 > 1. Suppose the conditions (4.1), (4.4), a4), (M), and

4.8 o < inf sup ool(to, Vo) ) :
Y B (t0»$0)€[0,T]><V(V09€0 o(to 0))

then we have u(t,z) € EL7H([0,T] x V).

§5. Appendix

In §3, we have used two results: one is a result on the composition of Gevrey
functions, and the other is the implicit function theorem in Gevrey classes. We present
here precise formulations and their proofs.

First, let us show a result on the composition of Gevrey functions. We write t € Ry,
r=(21,...,2,) ER? and z = (21,...,24) € RZ. We have

Proposition 5.1. Lets>1,s51>1,8,>1,0>1, let Q and W be open subsets
of Ry x R” x Re. If the conditions
1) F(t,x,z) € Els1o521(Q),
2) ui(t,x, 2) € EW89s2X(W) (i =1,...,d),
3) W (te,z) = (t,x,u(t,z, z)) € Q, where u = (uq,...,uq),
4) 0 > s9 and s > max{si, sa}
hold, we have F(t,z,u(t,x,z)) € E{sos2H(W),
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Proof. Take any compact subset Z of W; then the image L of Z by the mapping
(t,x,2) — (t,z,u(t, x, z)) is also a compact subset of (2. We take constants A, ,, >0
and B; 1.3, > 0 so that

F®av) (¢
o max (7$,Z) SAp,q,up!SI_llun_l|V|!S2_la
(t,x,z)EL plq!v!
(k:B,7)
U, (t, 7, 2) ~1 1 -1
e max L < B; kE—1)!° 17 270 it k> 1,
(twzezl KBl S Bidp (k= DB =
(0,8,7)
U, (tv‘%"z) —1 -1
e max < B; — 17 19275 if > 1,
[ < B, (18] - D1 8] 2
(0,0,7)
; t
. max u, ( aCU,Z)‘ < Bi,0,0,7(|7| o 1)!32—1, if |’7| > 1,
(t,z,2)eZ ’)/'

where pe N, g e N*, v e N¢ k€N, € N*, and v € N¢. We set also

G(t,xz,z) = Z Ap g tPziz”,
p+lal+|v|>0

wi(t,z,z) = Z Bi’k’gﬁtkatﬁz”, i=1,...,d.
k+|8|+|vI>1

Then, G(t,x,2z) = G(t,z,z1,...,2q) and w;(t,x,z) (i = 1,...,d) are convergent in a
neighborhoof of (¢, x,z) = (0,0,0), and so the function

H(t,z,z) = G(t,z,wi(t,z,2),...,wq(t,z, 2))

v
= Z Ap»qutpwq< Z Bk 8, 1 th g Z%) X

p+lal+|v|=0 ki+|B1l+|y1]>1
Vd
X o0 X ( Z Bd,kd,ﬁd,Wdtkdl'ﬁdzvd)
ka+|Bal+|val=1
(with v = (v1,...,vq)) is also convergent in a neighborhood of (t,z, z) = (0,0,0). If we
set
H(t,z,z) = Z Coa,put™ ™zt

(m,a,pu) ENXN? XN

we have Cp 0 = Ap,0,0 and for m + |a| + |u] > 1

d v,
(5.1) Conop= Y, Apgu > HH(Bi,kxj),m(j)m(j))a

1<p-+|q|+|v| |k*|=m—p  i=1j=1
<m|al+|pl s(B(v))=a—q
v))=p

s(y
ki (5)+18i (D) |+1vi ()1 >1
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where |k*| = Zle(ki(l) + -+ ki(v;)) and

d v d v
800 =S5 B() €N, s(1) = 303 i) € N

i=1 j=1 i=1 j=1

Since H(t,x,z) is a holomorphic function in a neighborhood of (t,x,z) = (0,0,0), by
Cauchy’s inequality we have Cy, o, < MymHel+el (m 4 o) + |4 = 0,1,2,...) for
some M > 0 and n > 0. Therefore, to see the condition h(t,x,z) = F(t,z,u(t,x, z)) €
glso52}(7) it is sufficient to prove the following inequalities:

1 1
max
mIs—Halle=1|u152 =1 (t2,2)ez | mlalp!

< 3(m+|a|+|”|)(s2_1)0m’a’u for any m + |a| + || > 1.

(5.2) R (¢, 2)

Now, let us recall that by Fad di Bruno’s formula (see [1]) or [[4], Lemma 4.3] we
have

1 h(m,a,,u,) — E 1 F(Pv(JvV) %
mlaly! plq!v!
1<p+lq|+|v|<m+|al|+|ul

d v
Z 1 (ki(j),ﬁi(j),m(j)))
2 (ki(])!ﬁz‘(])!'ﬁ(])!

|k*|l=m—p i=1j=1
s(B(v))=a—q
()=

s(y
ki (3)+18: (3) |1 +1v: (4)[>1

Thereofre, by using estimates (1/plg!v!)|F®Pav)| < A, , ,p!*1 7 g|!"Hw[1*2=1 on L and
(1/k B ™77 < By g (k= 61)171(8] = 62)17 2 (7] — 85)*2 1 (where (81, 62, 03) =
(1,0,0) if k > 1, (81, 82,03) = (0,1,0) if k = 0 and |3 > 1, and (81, d2,33) = (0,0,1) if
k=0,8=0and |y|>1) on Z, we have

(5.3)

1 1
mlsT[ale—T[[1s1 ’

1 -1 -1 -1
= mls—1q|lo—1|ylls2—1 Z Apqup!™ g p[t*2 7 x
1<p+lgl+Iv|<m+|al+|p]

d V;
>< > TTIT Bkt () — 50

|k*|=m—p i=1j=1
s(B(v))=a—q

s(y(v))=p

ki (7)+18: () 1417 (4) 21 x (18] = 02)' (|17 (5)| — 53)!82—1>

(m,a,,u)‘
mlalu!
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i
< Z Ap»qv’/ m!s—l|a|!a—l|u|!52—l
1<ptlgl+vI<m+lal Hul
X Z ([E*| = n)" 7 (1BW)*| = n2)1 |y (v)*] — mg)1®> !
|k |=m—p
s(B(v))=a—q
kGBI T ()21 T
D= < [TTI(Birsns)
i=1j=1

where |B(v)* = 0L, 355, 1B )] V)| = iy S5y (i) ma = #4(6,4) s k() >

| =
1}’ ng = {( ) (]) - Ov |ﬁz(])| Z 1}a and n3 = #{(7”])’ z(]) = Oaﬁz(]) =

0,|v(y)| = 1}. Since ny +ng +ng = ||, s > s9 and o > s3 hold, we have

|52t < (3|”|n1!n2!n3!)82_1 < gWllsa=1)p ps=1p o1y 52— 1
and so
!31—1 !0'—1 v !32—1
P!t gl |

P (= )l (8 = o)1 ()| = )1

- p!s—l|q|!a—1 % 3|I/|(82—1)n1!S—1n2!0—1n3!82—1

m!s—1|a|!a—l|,u|!82—l X

X (m —p—n) Lo = |gl = 12)1" (|| — mg)152 L
_ gl PP m —p =)

mls—1
" g]!7 ! (o] = g = n2)!7 ! ma!*2 T (Ju] — ng)! !
a1 lteT

< glvi(s2=1) < gmtlal+ul)(s2—1)

Thus, by applying this to (5.3) we obtain

L | 1 pm)
m!s=Hale =1 152 =1 I mlalu!
d V;
—1
< gm0 30 HH(Bi,ki(j),ﬁi(j)m(j))
1<p+|q|+|v| |k*|=m—p i=1j=1
<mAt|al+|ul S(ﬁ(r/)) a—q

y(v)=
ki (J)+|Bz(])|+h’z(])|>l
_ gomtlaltehe: -1 o

s Xy

on Z. This proves (5.2). O

Some versions of the implicit function theorem in ultra-differentiable classes are

given in Komatsu [3] and Yamanaka [5]. For the self-containedness, we will give here
an implicit function theorem which is used in §3.
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As before, we write t € Ry, © = (x1,...,2,) € R?, 2 = (21,...,24) € R? and
w € Ry. Let © be an open neighborhood of (0,0,0,0) € R; x R? x R% x R,,, let
F(t,z,z,w) be a C*°-function on €, let s; > 1, s9 > 1, 07 > 1 and 02 > 1, and
suppose: o; > s for i = 1,2. We have

Theorem 5.2. Suppose the following conditions: F(t,z,z,w) € E{s1:91:02:521(Q),
F(0,0,0,0) =0 and (OF/0w)(0,0,0,0) # 0. Then, there are an open neighborhood W
of (0,0,0) € Ry x R? xR? and a function ¢(t,x,z) € C°(W) which satisfy ¢(0,0,0) =0
and the following properties:

(5.4) W (e, z) = (tz,z 92 2) €0,
(5.5) F(t,z,z,¢(t,x,2)) =0 on W.

Moreover, we have ¢(t,x,z) € EL571:92X (W) for any s > max{s, s2}.

Proof. The former half of the result is nothing but the result of the implicit func-
tion theorem in the C'*° class, and so we know that there are an open neighborhood W
of (0,0,0) € Ry x R? x R? and a function ¢(t, z, 2) € C° (W) which satisfy ¢(0,0,0) = 0,
(5.4) and (5.5).

Let us show that ¢(t,z,2) € £1571:72H (W) holds for any s > max{s;,s»}. Since
the problem is set in a local sense, without loss of generality we may suppose that
(OF/0w)(t,x,z,w) # 0 holds on . Then, by (5.5) we have the equality

. Ft(t,fl]',z,d))
N RO
F, .
Gz, (t,,2) = — —((f;fjj;)), i=1,...,n,
_ Ftrz0)
¢, (t,z,2) = ma J=1...,4,

where ¢, = 0¢/0t, F, = OF/0t, ¢, = 0¢/0x;, Fy, = OF /Ox; and so on. Therefore, if
weset G(t,z,z) = —(Fy/Fy)(t,x, z,w), Hi(t,z,z) = —(Fy, /Fy)(t,x,z,w) (i=1,...,n)
and K;(t,z,z,w) = —(F., /Fy)(t,z,z,w) (j = 1,...,d) we have the system of equations
¢t = G(ta €, z, ¢)7
(5.6) G, = Hi(t,z,2,0), i=1,...,n,
b, = Kj(t,z,¢), j=1,...,d
Since Fy,(t, ,z,w) # 0 on , by the condition F(t,x, z,w) € £{s1:71:92:52}(Q) we have

o G(t,z,z,w) € ELs1o1o252}(Q),
(5.7) o Hi(t,x, z,w) € Elsvovozs2bQ) =1, n,
o Kj(t,x,z,w) € 5{81"’1"’2’82}(9), j=1,....,d.
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Thus, to complete the proof of Theorem 5.2 it is enough to show

Proposition 5.3. Let s1 > 1, s9 > 1, 04 > 1 and 09 > 1. Suppose the condi-
tions (5.7) and o; > so for i = 1,2. If ¢(t,x,z) € C°(W) is a solution of (5.6), we
have ¢(t,x,z) € E171:21 (W) for any s > max{s, s2}.

Proof of Proposition 5.3. Let Z be a compact subset of W, and let L be the image
of Z by the mapping: (t,x,z2) — (t,z,2,¢(t,x,2)) € Q. We take Ap 4, 0.6 > 0 (p €N,
G eN, g eNand keN), BY  >0(@G=1,...,n,q1 €N", g € N’ and k € N)
and C’g?k >0(j=1,...,d, ¢ € NYand k € N) so that

GPa1:02:k) (¢ 2. 2 w)

L4 max < A k 1s1—1 i jo1—1 9 jo2—1p1s2—1
(t»x»sz)eL p!ql!q2!k! ‘ - P>41,92, p |q | |q | ?
07(11»(12716)
H! t,x,z,w ~
* (o) Z ! (ll;l’ ’ )’ < BY)  dlan 17 ot
t,x,z,w)EL q1:'q2 K: e
(0707q27k7)
Kj (t’x’z’w) (4) oa—17,152—1
. ( max) T <O klae! 7 kT
t,x,z,w)EL q2'K: ’

Let us consider the following functional equation:

(5.8) Y =t > Ap g1 qo kBP0 292 (3527 1Y)
p+lai|+lg2|+k>0
d

Y Y EeneeaY s Y et

=1 |qi|+|g2|+k=0 7=l lg2|+k=0

Since this is an analytic functional equation, by the implicit function theorem in holo-
morphic category we see that (5.8) has a unique holomorphic solution Y (t,z,z) in a
neighborhood of (0,0,0) € C} x C? x C4 satisfying Y (0,0,0) = 0. Let

Y(t,z,2) = E Yinaq.ant 292,
m+|ai|+|az|>1

be the Taylor expansion of Y (¢, x, z). We see that the coefficients Y, a, 0, (M + 1| +
|ag| > 1) are determined by the following recurrent formulas:

Y1,0,0 = 40,000, Y0,e,,0 = B(()Z;()),o (i=1,...,n), Yoo,; = (()?()) (j=1,...,d)

(where e; = (1,0,...,0),...,e, = (0,...,0,1) € N® and ¢; = (1,0,...,0),...,€q =
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(0,...,0,1) € N%), and for M = m + |ay| + |az| > 2 we have

(5'9) Yimai,00 = Z Ap,fh 1q2,k Z H 377 N(l) B1(1),B2(1)

0<p+|q1|+lgz|+k<M—1 [u*|=m—p—1 =1
s(Bp)=a1—a1
s(B5)=a2—qz

+> > B(gzl)thk > H2 2 Yu),8:(0,82 (1)

1=1 0<q1|+|g2|+E<M—1 | [=m
s(By)=a1—q1—e;
S(ﬁé‘):az—qz

d
DDA HY(l)Bl(l)Bz(l)’

5=10<|qz|+k<M—1 ln*|=m

where i = u(1) + -+ (k). s(67) = Sf_y A1(1) and s(55) = b, f2(1). We have

Lemma 5.4.  Toke any s > max{sy,sa}. Then, we have:

PUman.a2) (4 ) . . e
RS ’<Y m— D)o 170 ag|172 7 ifm > 1,
@ (t,x,2)€Z mlag!las! < Yin,ar.as( ) |a | oo fm >
¢(0 a1, az)(t z, Z X 1
2 max ‘<Y a1 — DI a2 if lag| > 1,
( ) (t,z,2)EZ Oé]_'OéQ Oal’a2(| 1| ) | | f| 1|
A GEIE) G
3 max ’ <Y, as — 117271 if lag| > 1.
) (tyz,z)eZ ao! < Yo,0,0z (2| = 1) f || >

Proof of Lemma 5.4. We will prove this by induction on M = m + |a;| + |az|. By
(5.6) we have |¢¢| = |G(t,2,2,)| < A00,00 = Y100, |6a:| = [Hilt,z,2,0)| < BSo =
Yoero (i = 1,...,n) and |¢.,| = |K;(t,2,2,0)| < C) = Yoo, (j =1,...,d). This
proves the case M = 1.

Suppose that M = m + |ay| + |az| > 2. If m > 1, by (5.6) we have

AR ()

m!oq!ag!
(m_170513052)
l 1
t (,x,z): am 18a18a2G(txZ¢)
mlaq!as! mlaq!as!

1 Z G(P»Ch’(h,k) Z H ¢(H(l) ﬁl(l) ﬁz(l))
T m la:1ao k! ' ' NI

" 0<ptlar|+lgalHR<M -1 Pa'gah! | mmep—1 =1 D'B1(1)!B2(1)!

s(B] )=a1—q1

s(B3)=a2—q2
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and therefore

(5.10)
‘¢(m,a1,a2)(t, z, Z) ’

m!(}fll(}fgl

1
E s1—1 o1—1 o2—17152—1
= E AP’Q17Q2J€p! |Q1|! |C]2|! k! X
0<p+|q1|+]|gz| +k<M—1

k
< > TYaw.s .80 (@) = 60)* (1B (D) = )17 (|B2(1)] — 82)172 "

" |=m—p-1 I=1

s(By)=a1—aq1

5(B3)=02—q2
where (dg, d1,02) = (1,0,0) if pu(l) > 1, (o, d1,d2) = (0,1,0) if u(l) =0 and |B1(1)| > 1,
and (dg,01,02) = (0,0,1) if p(l) = 0, f1(l) = 0 and |B2(I)] > 1. If we set ng =
U ) = 1}, m = {1 pd) = 0,[6:(0)] = 1} and ng = #{l; u(l) = 0,6.(1) =
0,[82(1)| > 1}, then we have ng + ny + ny = k and

k1271 < (3Fnglng Ing!) 21 < 3F2mpglemlp 17 I, 1o2

By applying this to (5.10) and by using s > s; we have

plmane2)(t, z, z) ‘
m!ozllagl

1
s—1 o1—1 oo—1 s—1 o1—1 oo—1
< — E Ap ar.ao kP @V T @217 T X!t ing 17T g7 T X
0<p+|q1|+|g2|+k<M—1

x (m—p—1—no)" (Jar]| = 1| = )1 " (Jaa| — |ga| — no)!2 !

k
DD | E e AOENONAT

|u* |=m—p—1 I=1
s(B])=a1—q1
5(B3)=02—q2

< (m — 1)1y 17 o172

k
1 Z Z H S0
X E AP’CI1»(12J€ 3 : IYN(Z)vﬁl(l)vﬁQ(l)

0<p+|q1|+|g2|+k<M -1 |[p*|=m—p—1 I=1
S(ﬂi)=a1—q1
s(B3)=a2—q2

< (m — 1)!5_1|051|!01_1|042|!02_1 X Ym’alaQZ'

This proves (1).

By using ¢,, = H;(t,z,2,¢) (i =1,...,n) and ¢., = K;(t,7,2,¢) (j =1,...,d)
we can prove (2) and (3) in the same way. O
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Completion of the proof of Proposition 5.5. Since Y (t,x, z) is a holomorphic func-
tion in a neighborhood of (0,0,0) € C; x C? x C¢, by Cauchy’s inequality we can take

C > 0and h > 0 so that
< Opmtlaal+laz

Ym,al s =

holds for all m € N, a; € N” and a» € N¢. By combining this with Lemma 5.4 we have

the result: ¢(t,z,z) € £15:91:92} (7). This proves Proposition 5.3. O
This completes the proof of Theorem 5.2. O
References

[1] Johnson, W. P., The curious history of Faa di Bruno’s formula, Amer. Math. Monthly,
109 (2002), 217-234.

[2] Komatsu, H., Introduction to generalized functions, Iwanami, 1978, in Japanese.

[3] Komatsu, H., The implicit function theorem for ultradifferentiable mappings. Proc. Japan
Acad. Ser. A Math. Sci., 55 (1979), 69-72.

[4] Tahara, H., Gevrey regularity in time of solutions to nonlinear partial differential equa-
tions, J. Math. Sci. Univ. Tokyo, 18 (2011), 67-137.

[5] Yamanaka, T., Inverse map theorem in the ultra-F-differentiable class, Proc. Japan Acad.,
65 (1989), 199-202.



