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Borel summability of a formal solution for Cauchy
problem of some linear partial differential equations

By

HIROSHI YAMAZAWA*

Abstract

In this paper we study the Borel summability of a certain divergent formal power series
solution for some linear partial differential equations. We show the Borel summability of the
formal solution under the condition that an initial value function ¢(x) is an entire function of
exponential order at most 2.

§1. Introduction

Let (t,z) € C2. In this paper we consider the following Cauchy problem:

0 0 )2 j 0\j, 0\a
(E) au(t,x) = (%) u(t,x)+ | Z | aj,at]+a_2(ta) (a_x) U(t,{L’)
2<j+a<m,j>0
u(0,2) = 6(x)

where aj, € C and a,, o # 0 and the initial value function ¢(x) is a holomorphic

function in a neighbourhood of the origin.

Let us introduce the following notations. Let Dr = {x € C; |z| < R} and Sgqp =
{€ € C\{0}; |[d—arg&| < 0}. O(DpR) (resp. O(Sqp x DR)) is the set of all holomorphic
functions on Dg (resp. Sq9 x Dr). O(Dg)([t] := {> o wi(@)t; ui(z) € O(DRr)}.
Let us introduce some known results. We consider the following example:

(1.1) %“(t’@ = a(%)QU(t,x) + bt(t%)gu(t,x)

u(0, ) = ¢(x)
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where a and b are any complex numbers.

Let us recall some known results. If a = 1 and b = 0, then the equation (1.1) is the
heat equation. Then we have the following two results i) and ii).

i) Assume that the initial value function ¢(x) is an entire function and satisfies
with some positive constants C' and K,

lp(x)] < ceXl for 2z eC.

Then the formal power series solution u(t,z) € O(Dg)|[[t]] of (1.1) is holomorphic in a
neighborhood of ¢ = 0. This is a classical result (see [2]).

ii) The following result is that of Lutz-Miyake-Schéfke in [3]. The following two
statements a) and b) are equivalent: Let d € R be fixed.
a). The initial value function ¢(z) is analytic on Qo = Sg/29 U Sg/2479 U Dr and
satisfies with some positive constants C' and K,

|qz5(a:)|§C’eK|w|2 on .

b). The formal power series solution 4(t,z) € O(Dg)|[t]] of (1.1) is Borel summable in
a direction d.

If @ = 0, then Ouchi treated this type some linear/nonlinear partial differential
equations in [5] and [6] (°02,’06).

Set Zg = {re’?;r > 0,0 = —(1/2)arg (b) mod (7)} for the equation (1.1) with
a = 0. By the result of Ouchi [5] we have: Assume that the initial value function ¢(z)
is in O(Dpg). Then the formal solution 4(t,z) € O(Dg)[[t]] is Borel summable in a
direction d with Sg9 NZg = 0.

Author considered the case ab # 0 as the mixed type equations of [3] and [5],
and had a result of the Borel summability of the formal solution 4(t,z) € O(Dg)[[t]]
for (1.1) in [8]: Under the condition that the initial value function ¢(z) is an entire
function with |¢(z)| < CeX1#I* on C, the formal solution @(z) € O(Dg)[[t] (VR > 0) is
Borel summable in a direction d with Sy NZg = 0.

This result is not obvious. In the case of b = 0 the formal solution 4(¢, x) of (1.1)
converges in a neighborhood of the origin ¢ = 0. But in the case a = b = 1 and
¢(x) = e*", the formal solution a(t,z) = oo ui(x)tt of (1.1) satisfies for z € R

i—2\13
ﬂ(g)élgb(x) > ABii!(%>4¢(a:) i>2,i:even

ox

1 (T)' (i—2)18 (%>2¢(x) > AB%!(%)QQMJZ) i >3, i:odd.

By the estimate (1.2), the formal solution 4(t,z) € O(Dg)[[t]] (VR > 0) is a certain
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divergent power series. So it is our purpose to study the summability of the formal
solution 4(t,x) of (1.1).

Let us show the estimate (1.2). For the Cauchy problem (1.1) we have a formal
solution a(t,z) = > u;(z)t" with

uo(z) = ¢(z)
iui(r) = (%)2%_1(27) + (i — 2)3u;_o(x),

where u_;(z) = 0 for ¢ > 1. By the above relations the coefficients wu;(x) have the
following form.

! d .\ 2; : J 2 )
’U,Z(l') = Z C()’i’j(%) ]¢($) = Z CO,i,j Z Cl,j7k$2k€ with CO,i,j > 0, Cl,j,k > 0.
J=0 Jj=0 k=0

Then we have u;(z) > 0 for x € R and ¢ > 0. In the case i = 2n > 2 we have

u;(x) > ( _.2)3%‘—2

(i-2°@GE-4° 2° _ (20722 (- 2)/2)1
e I S A Gy B ey TR G2
and 2us(7) = (d/dx)*ug(x) = (d/dx)*¢(x). Hence we get the estimate (1.2) by the
estimate (1.3). In the case i = 2n + 1 we can show the estimate (1.2) by a similar way

(1.3)

to the case ¢ = 2n.
In this paper we will study the Borel summaility of formal solutions for the Cauchy
problem (E) as a general case of the Cauchy problem (1.1).

§2. Definition and Main result

In this section we give a definition of the Borel summability and the main theorem.
Let us give a definition of the Borel summability.

Definition 2.1.  Let a(t,z) = Y .0, vi(2)t" € O(Dg)[[t]]. Then the formal Borel
transform (Ba)(€, ) is defined by

(Bi)(€.2) = vo(@)3(§) + 3 PE“’)) gim1

where 0(£) means the delta function with support at £ = 0. In the following the notation

£71/T(0) means §(&).

Definition 2.2.  The formal series u(t,z) € O(Dg)][t]] is Borel summable in a
direction d if one can find some 0 < r < R so that the following two properties hold:
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1. The series V (€, z) = (Ba)(€, ) — vo(2)d(€) converges for |¢] < p and z € D,.

2. There exists a # > 0 such that for any z € D, the function V (£, ) can be holo-
morphically continued with respect to £ into the sector Sg9. Moreover for any
0 < 01 < 0 there exist constants C', K > 0 such that
sup |V (& x)| < CeXlEl for ¢e S0,
|| <r
Then vo(x)+ (L4V)(t, x) is called the Borel summation in a direction d of 4(t, x), where
L, is the Laplace transform that is defined by

d

e = [ e (- (§))ote e

Let us introduce the main result. For the equation (E) set
m
(2.1) Ap(§) =1-) ajo& ™.
j=2

Definition 2.3. Set Z = {&; Ap(§) = 0}. A singular direction is an argument of
an element of Z. We denote by = the totality of singular directions.

Remark.  For the example (1.1), set Ag(&) = 1—b&2. Then Zy = {re'?;r > 0,0 =
—(1/2)arg (b) mod (m)} by Ap(€) = 0.

Theorem 2.4 (Main theorem).  Assume that the initial value function ¢(x) is
an entire function and satisfies

|qz$(a:)|§C’eK|‘”|2 on C.

Then the Cauchy problem (E) has a formal power series solution 4(t,x) € O(Dg)|[[t]]
(YR > 0) and the formal solution is Borel summable in a direction d with Sqg NE = ()
for a sufficiently small 6 > 0.

§ 3. Formal solution

In this section we will get a formal power series solution of the Cauchy problem (E)
and give an estimate to all coefficients of the formal power series solution. Moreover we
will introduce the Newton polygon as a tool to give the estimate.

If the initial value function ¢(z) is in O(Dpg), then for (E) we have a formal solution
a(t,z) = 3% o ui(z)t" with
(3.1)

uo(z) = ()

iui(x) = (%)2%—1(%) + > aja(i = (J+a— 1))j(%)aui—(j+a—1)($)

2<j4+a<m,j>0
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where u_;(z) = 0 for i > 1. By the relation (3.1) we have the formal solution 4(t,x) €
O(Dr)|[t]]-

§3.1. Newton polygon

We want to give an estimate for the coefficients u;(z). Then let us define the

Newton polygon for the equation (E). For an operator t77.« (%)] (%)a, we set

Y(j, @) = {(a,b) e R*a < j+a,b>0j0—j}

(j+a,0j,a _J)

Set an operator

finite
g.;, 0
_ . 40j.a j «@
L= (]Ea) aj ol (_t) (—$) .

Then for the operator L let us define the Newton polygon NP(L) by

finite

NP(L) = CH |J {2(j.0);a;.4 # 0},

(4,a)

where CH{-} denotes the convex hull of a set {-}.
Then the Newton polygon N P(FE) for the equation (E) is the following figure:

(m,m —2)

(17 _1)
The Newton polygon N P(FE) has the side with a slope 1.

§3.2. Formal Gevrey estimate

We give an estimate for the coefficients u;(z). The estimate is characterized by the
Newton polygon and is called the formal Gevrey estimate. For some linear or non linear
partial differential equations, the formal Gevrey estimate of a formal solution is given
by many mathematicians (M. Miyake, S. Ouchi, etc). We omit a proof of the following
lemma. We refer the details to Ouchi [4].
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Lemma 3.1.  Assume that for the Cauchy problem (E), the initial value function
@(z) is in O(Dg). Then for the formal solution u(t,x) = > o u;(x)t', there exist
positive constants A and B such that

(3.2) luj(z)| < AB'T(i+1) on D, for 0<r<R.

§4. Preparatory lemmas

In order to prove Theorem 2.4, we give a definition of the convolution and two
lemmas (Lemma 1.4 and 3.1) in [5]. For two lemmas we omit the proof.

Definition 4.1.  Let ¢;(§,2) € O(Sap x Dr) (i = 1,2) satisfying |¢:(§, z)| <
Cl€]<7L for € > 0. Then the convolution of ¢ (£, x) and ¢o(€, ) is defined by

3
(0% 62)(6.0) = [ 01(6 = ma)onlon.)dn
Let us introduce two lemmas in [5].

Lemma 4.2 (Lemma 1.4 in [5]).  Assume that functions ¢;(§,x) € O(Sq,0x Dr)

satisfy
€
|#i(&,2)] < sz on Sape x Dpg
with s; > 0 for 1 =1,2. Then the convolution ¢ * ¢o satisfies
o+t
[(p1 % ¢2) (&, )| < Cngm on Sap X Dpg.

[on S
>

Lemma 4.3 (Lemma 3.1 in [5]).  For a series 0(t,x) = >_-o  vp(2)t" set (

n 1 )(5733) =
V(& x). For 1 <k <§ we have

o 6 (s+1)

B(té(ta Zoks (58 (5,:10))

where numbers Ci s (1 < s < k) are constant numbers in [5] and satisfy
(4.1) Cii=1, Cis=—-5Ck1s+Cr_1,5-1 fork>2,

with Ci o = Cx—1., = 0. By the relation (4.1) we have Cyy, =1 for k > 1.

85. Proof of Main theorem

In this section we will give a proof of Theorem 2.4. Firstly we shall construct a
convolution equation from the Cauchy problem (E). Secondly we shall show that the
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convolution equation has a unique solution Vj,.(§, ) which is holomorphic in a neigh-
borhood of (§,z) = (0,0) (Lemma 5.2). Moreover we shall show that the convolution
equation has an analytic solution Vg(&,x) on Sz x D, (0 < r < R) with the exponen-
tial growth estimate of order at most 1 there (Corollary 5.5). Finally we shall give that
Vioe(&,2) = Vg (&, x) on Sgo N{E; €| < p} x D, (Proposition 5.6).

Let us construct a convolution equation from the Cauchy problem (E). We substi-
tute u(t,x) = ¢(x) + v(t, x) into the equation (E), where the function v(¢,z) is a new
unknown function. Then we get the following equation:

9
ox

Polta)t Dt ) (o) ()

0
(1) po(ta) = () + ( .
2<j+a<m,j>0

ot

where ¢(z) = (£5)¢(x).
Set 0(t, ) = u(t, z)—¢p(x) where u(t, z) is the formal soution of the Cauchy problem
(E). Then the formal series 0(t, z) is a formal solution of the equation (5.1).

Set V(&,z) = (B0)(&,z). By Lemma 3.1 we have the following result.

Lemma 5.1.  The series V(§,x) converges on {£ € C: €| < p} x Dr (VR > 0)
for a sufficiently small p > 0.

Let us find a formal convolution equation that V' (&, x) satisfies. We multiply each
term of the equation (5.1) by t2, and apply the formal Borel transform. Then we get
the following convolution equation by Lemma 4.3:

EV(E ) = Eplw) + € (o V(e )
(5.2) ' gita—(s+1)

J
0
+ Z aj,azcj,s,— * (£5(==)*V (&, 7).
2<j+a<m,j>0 s=1 F(j+a—s) ox

Lemma 5.2.  The function V (&, x) in Lemma 5.1 is a solution of the convolution
equation (5.2) on {€ € C: [£] < p} x Dg for a sufficiently small p > 0.

Let Vioe (&, x) be the solution in Lemma 5.2. We will show that the solution Vj,.(§, )
is holomorhically extensible to Sg¢ x D, for 0 < r < R. In order to show that,
we construct another solution Vs (¢, x) of the convolution equation (5.2) on Sy X D;.
Moreover we show Vjoe(&, ) = Vg(§,x) on Sqe(p) X D, where Sqo(p) = SqoN{{ € C:
€] < p < 1}

Set A(&) =& — Z;nzz aj0&’. Then we have A(§) = £Ao(€) where Ag(€) is defined
in (2.1). By
5—1
I'(0)

Cij * (EV(6,2)) = 8(8) * £V (& 2)) =€V (€, )
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we can rewrite the equation (5.2) as follows;

(CE) AQV(E,0) = o) +Ex (S PVED+ Y B+ Y BialV)

2<j<m 2<j+a<m,j,a>0
where

5] (s+1) '
* (£5V (&, 2)) forj=2,...,m, and

_aJOE : BT

J — 1)
£]+C¥ (s+
Bja(V) =00 Y Cj,sm

s=1

€ (Ve ) for2<jta<mand ja>0

Let us construct a solution of the equation (CE) on Sg¢. Then for the equation (CE)
we determine a sequence {Vj (&, 2)}72, by the following recurrences:

(5.3)

(A©)Vo(8,7) = €p()

AQVA(E ) = € (3-)2Vi2(6,2)
+ Z Bj(Vk_Q(f,iU))—F Z Bj,a(Vk_a(é,x)) for ]CZl

\ 2<j<m 2<j+as<m,j,a>0

where V_i(&,2) = 0 for k > 1. Set Qq9(p) = {|£] < p}USae with SgoNZE = ). Then we
see that Vi (€, 2) € O(Qa0(p) x Dg) and Vs (&, z) := > 7o, Vi(&, 2) is a formal solution
of the equation (CE).

For each Vi (£, x) let us give an estimate. To estimate functions Vi (§, x) we need
the following lemma, which can be found in [2] and [7].

Lemma 5.3.  The following two statements are equivalent:
(i) A function ¢(x) is an entire function and satisfies that there exist positive constants
C and K such that
lp(z)] < ceKllP on .

(i) For any R > 0, there exist positive constants D and E depending on R such that

0 Py
”(8_33) ¢||lr < DE F(§ +1)

for alli > 0 where || - [|r = supj,<gr |- |-
The following proposition is important to show the main theorem.

Proposition 5.4.  For the initial value function p(x) = (%)Q(ﬁ(a:), we assume

0 . L
)t < T
2 elln < DET(Z +1)
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for all i > 0. Then we have that for k = 0,1,..., there exist positive constants Dy and
K such that
i+k 3k
F1)— €] i
2 E'z(k+ 1)z

9 .
||(%)2Vk||3 < DoE""PKFI( for €€ Qao(p)
for all i > 0.

We give a proof of Proposition 5.4 in Section 6.
By Proposition 5.4, we have the following corollary.

Corollary 5.5.  For the solution Vs(§,z) = 3 35 V(€. 2), we have that there
exist positive constants ¢ and Dy such that

[Vs||r < DyelSl for €€ Qqa(p).

Proof. By Proposition 5.4 there exist positive constants D’ and E’ such that

(54) ||Vl~c||R S D/Elkllf—lg fOI‘ 5 € Qd’g(p).
I'(s+1)
By the estimate (5.4) we get Corollary 5.5. O

Let us show the uniqueness of the solution of (CE) on Qg4¢(p) X Dg.

Proposition 5.6.  Let Vj,.(&,z) be the solution in Lemma 5.2 and Vs(§,x) be
the solution in Corollary 5.5. Then we have Vioe(&,x) = Vs(§,x) on Sqe(p) X Dg for
0<pxkl.

We give a proof of Proposition 5.6 in Section 6.

Let us give a proof of the main theorem.

Proof. By Lemma 5.2, Corollary 5.5 and Proposition 5.6, the formal solution
u(t, x) of the Cauchy problem (E) is Borel Summable in a direction d. O

§6. Proof of Proposition 5.4 and 5.6

In this section we shall give a proof on Proposition 5.4 and 5.6.
Proof of Proposition 5.4.

Proof. We can give a proof by Lemma 4.2. For Ap(£) in (2.1) we have

(6.1) {Ao©} < Collg™ ™ +1)71 for €€ Qaplp).



172 HIROSHI YAMAZAWA

If £ =0, by the relation (5.3) and the estimate (6.1) we have

o . i
1(==)"Vol|r < CoDE'T(= +1) for &€ Quolp).
ox 2

Then by taking Dy = CyD we get the estimate in Proposition 5.4 on k = 0.

For £ > 1 we use an inductive method on k. Let us give an estimate for each
term of the right hand side in the relation (5.3). For the first term, by the induction’s
assumption we have

itk—2 Hen

0
2 +1%k—m%w-4ﬂ%

(6.2) II(%)in—zllR < DoE" KL

for all # > 0. Then we have

0

A e NARALFIE R
X

2 )w—ayak—u&

for all ¢ > 0. Here we use the following inequality

(%5 _
(k—2)13(k—1)2T(52+3) = (k=23 —1)!2 (F+2)k ~ 7 Kl2(k+1)12

) 1 ) 1 L _p 1

Then by Lemma 4.2 we get

+k (k=2 4 1) |£|¥+3—1
z—|—2v <D E’L-‘rkKk 21’\ i +1 2
(63) ||£ ( ) k— 2||R 0 ( 2 )(k—Q)!%(k‘—l)!% 1—\(%4_3)
. kg
< poEE k-2 (LR | gy JEET
2 kI (k+1)13

Let us give an estimate for the term B;(V;_2). By the estimate (6.2) and Lemma 4.2
fors=1,...,5 —1 we get

gj—(s-i-l) .0
It * (€ (5 Vi)l
k2 ko k= 2 T(s+52+1) g+
<DoEFEKN N (——— +1) = T e
(k=2)z(k - 1)1z T(j + %5~ +1)
' k-2 1 kg2
oo ) (i g S R | AN
2 (k—2)F(k— ) (G + 52)
) k=2 . 1 1
<ppmith-apck-e ISP itk (k= DR+ DE
- KE(k+1)15 2 1 B2
For 2 < j < m we have
k—1)3k(k+1)3
=PRI < op
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Therefore we get

? = - itk [
6.4 —)'B.:(V; < C DoEFKF=2T 1
64) 1) BaVie2)ln < asol 3 1Csel 7 Rl ey
for all ¢ > 0.
Let us give an estimate for the term Bj,(Vi—o). By induction’s assumption we
have
0. SPPNY J Ry gy €=
_’LV— <DEZ—|—k aKk aI\ 1
(55 ) Vi—allr < Do T )(k—a)!%(k—aﬂ)!%
for all # > 0. Then we have
+k [
s Z—|—av o <D E’H—kKk: am i +1
€ (52 Vol R

forall i > 0. For 2<j+a <mand j,a >0 we get

£j+a—(s—|—l) s z—|—aV
HF(j—I——Oz—) {€ ( ) k—atllr
, ; T k—a 4 q Jto+ize
<DyE*FKFer (L un 1) (ST D) =y i —
2 (k—a)z(k—a+1D)2T({+a+ 52 +1)

by Lemma 4.2. For s =1,...,7 we have

T(s+ %52 +1) 1 < g0 1
(k—a)z(k—a+ 2T +a+552+1) =7 kla(k+1)2

Therefore we get

k4o

4 kte
z+k+1) €] 1
2 k'z (k4 1)!2

(6.5) 1I(5; ) Bjo(Vie— a)||R<20|a]a|Z|st|D Btk ko

s=1

for all i > 0. For |¢]7T(*+)/2 we remark 1+§ Sj—l—’H'TO‘ Sj—l—oz—i—% < m—l—%
We take a sufficiently large K > 0 so that

Jj—1 J
1
1> CO(K2 +4 E |aj,0l E :|CJ S|E2K2 + E 2% aj,al E |Cj78|ﬁ)'
2<j<m s=1 2<j+a<m,j,a>0 s=1

Hence we complete a proof of Proposition 5.4 by the estimates (6.3), (6.4) and (6.5). O

Proof of Proposition 5.6



174 HIROSHI YAMAZAWA

Proof. Set U(&,z) = Vipe(&, ) — Vs(&,z). The the function U(, x) is a solution
of the following equation:
(6.6)

AQUER) =+ GPUED+ Y BUEa)+ Y BiaUE).

2<j<m 2<j+a<m,j,a>0

Further by Lemma 5.2 and Corollary 5.5, we have
[[Ullr < Dy for £ € Sg(p)

for some D4 > 0. Then by the Cauchy’s integral theorem we have

(6.7 I

—x)iU||r < Dy(E,)"! for € € Sqe(p)
where F,. =2/(R —r) for 0 < r < R.

We estimate the left hand side in the equation (6.6) by substituting the estimate
(6.7) into the right hand side in (6.6). By a similar way to Proposition 5.4, we get for
all k > 0,

|U||» < Dy(E K, )¥|E[F/2 for € € Sae(p)

where K, > 0 satisfies

4 j—1 1 J
1> Co(7z +2 > lajol > 1Cs e T > 2%(aj.al ) 1Cjis
r s=1 s=1

2<j<m T 2<j+a<m,j,a>0

1
K5

By letting k — oo then we have U(&,2) =0 on Sqe(p) x D, for 0 < p < 1. O
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