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Smooth‐integrable and analytic‐nonintegrable
resonant Hamiltonians

By

Masafumi YOSHINO *

Abstract

This paper studies smooth integrability of an analytic‐nonintegrable Hamiltonian system
with resonance. In proving smooth integrability we construct first integrals as formal power

series with an exponential factor, then we take the Borel sum of a formal integral with respect
to the resonance variable. A first integral with an exponential factor was used in [3] or [5].
In this paper such factor is necessary because of a singular behavior caused by the resonance

variables.

§1. Introduction

In [3] Bolsinov and Taimanov showed that there exists a Hamiltonian system related

with geodesic flow on a Riemannian manifold which is C^{\infty} ‐integrable and not C^{$\omega$_{-}}

integrable. They also showed that non C^{$\omega$_{-}} integrability is closely related with the non

Abelian property of the fundamental group of the manifold or with the monodromy of

the geodesic flow. Then Gorni and Zampieri, [5] showed similar phenomena in the local

analytic setting. In fact, their Hamiltonian has the form H=-q_{2}p_{2}\partial_{q_{1}}r+(r^{2}+q_{2}\partial_{q_{2}}r)p_{1}
in \mathbb{R}^{4}

,
where r=q_{1}^{2}+q_{2}^{2} . Note that H has no linear part and has four resonance

variables. In [3] and [5], the C^{ $\omega$} ‐nonintegrability was proved by geometrical arguments
or elementary calculus, while C^{\infty} ‐integrability was proved by concrete construction of

smooth and non analytic first integrals.
Motivated by these results we will show that a similar phenomenon occurs for

certain Hamiltonians with a pair of resonance variables. In fact we have C^{$\omega$_{-}} noninte‐

grability as well as smooth integrability of the Hamiltonian system. Our main point in
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this note is to introduce a method to show smooth integrability which does not depend
on the concrete expression of a nonanalytic first integral. This is done in the following

way. We first construct formal first integrals in a series containing an exponential fac‐

tor. This idea comes from the fact that the first order system of n ordinary differential

equations has an n‐parameter family of formal solutions which are expanded in the se‐

ries containing exponential factor. Moreover, an n‐parameter family of formal solutions

corresponds to n‐ functionally independent commuting formal first integrals. Next, for

a formal first integral with an exponential factor, we give a meaning to the formal series

by the Borel sum with respect to the resonance variable. We thus obtain functionally

independent first integrals defined on some sector domain. In section 3 we will show

smooth integrability as well as sectorial integrability by virtue of these summed first

integrals.
This paper is organized as follows. In section 2 we construct functionally inde‐

pendent formal first integrals which are Borel summable in the resonance variable. In

section 3 we study smooth integrability and sectorial integrability. In section 4 we briefly
state C^{$\omega$_{-}} nonintegrability of our Hamiltonian system. The proof of the theorem in the

last section will be published in [8].

§2. Construction of formal exponential series and summability

We write the variables in \mathbb{R}^{n} or in \mathbb{C}^{n}(n\geq 2) in the form

(q_{1}, q_{2}, q_{3}, \cdots, q_{n})=(q_{1}, q) , (p_{1},p_{2},p_{3}, \cdots,p_{n})=(p_{1}, p)

in order to indicate the resonance variables q_{1} and p_{1} . For an integer  $\sigma$\geq llet  H=

H_{0}+H_{1} be the Hamiltonian function with H_{0} and H_{1} given, respectively, by

(2.1) H_{0}=q_{1}^{2 $\sigma$}p_{1}+\displaystyle \sum_{j=2}^{n}$\lambda$_{j}q_{j}p_{j},
(2.2) H_{1}=\displaystyle \sum_{j=2}^{n}q_{j}^{2}B_{j}(q_{1}, q_{1}^{2 $\sigma$}p_{1}, q) ,

where B_{j}(q_{1}, s, t) �s are holomorphic at the origin with respect to (q_{1}, s, t)\in \mathbb{C}\times \mathbb{C}\times \mathbb{C}^{n-1}.
Consider the Hamiltonian system

(2.3) \displaystyle \frac{dq_{j}}{dt}=\frac{\partial H}{\partial p_{j}}, \displaystyle \frac{dp_{j}}{dt}=-\frac{\partial H}{\partial q_{j}}, j=1 , 2, . . .

,
n.

For the Hamitonian function H
,

define the Hamiltonian vector field $\chi$_{H} by

(2.4) $\chi$_{H}:=\displaystyle \{H, \}=\sum_{j=1}^{n}(\frac{\partial H}{\partial p_{j}}\frac{\partial}{\partial q_{j}}-\frac{\partial H}{\partial q_{j}}\frac{\partial}{\partial p_{j}}) ,
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where } denotes the Poisson bracket. We say that  $\phi$ is the first integral of  $\chi$_{H}

if $\chi$_{H} $\phi$=0 . We say that v is the formal integral of $\chi$_{H} if $\chi$_{H}v=0 as a formal

power series. Eq. (2.3) is said to be C^{ $\omega$} ‐Liouville integrable if there exist first integrals

$\phi$_{j}\in C^{ $\omega$} (j=1, . . :, n) which are functionally independent on an open dense set and

Poisson commuting, i.e., \{$\phi$_{j}, $\phi$_{k}\}=0, \{H, $\phi$_{k}\}=0 . If $\phi$_{j}\in C^{\infty} (j=1, . . :; n) ,
then we

say C^{\infty}- Liouville integrable.
We assume

(2.5) B_{j}=B_{j}(q_{1}, q_{1}^{2 $\sigma$}p_{1}, q)=B_{j,0}(q_{1}, q)+q_{1}^{2 $\sigma$}p_{1}B_{j,1}(q_{1}, q) , 2\leq j\leq n,

where B_{j,0} and B_{j,1} are analytic at q_{1}=0, q=0 . Moreover, we suppose

(2.6) $\lambda$_{j}(j=2,3, \ldots; n) are linearly independent over \mathbb{Z}.

Set

(2.7) E_{c}\displaystyle \equiv E_{c}(q_{1}):=\exp(\frac{cq_{1}^{-2 $\sigma$+1}}{(2 $\sigma$-1)})
and look for the formal first integral v in the form (cf. [1], [4])

(2.8) v=$\phi$^{( $\alpha$)}(q_{1},p_{1}, q,p)E^{ $\alpha$},

where E^{ $\alpha$}=E_{$\lambda$_{2}}^{$\alpha$_{2}}\cdots E_{$\lambda$_{n}}^{$\alpha$_{n}} ,
and $\phi$^{( $\alpha$)}(q_{1},p_{1}, q, p) is a formal power series of q_{1}, q, p_{1} and

p . Denote by e_{j} the j‐th unit vector, (0, \cdots; 1, \cdots 0)(j=2,3, . . :; n) . Then we have

Theorem 2.1. Assume (2. 5) and (2. 6). Then $\chi$_{H} has 2 (n-1) functionally

independent formal first integrals $\phi$_{j}^{(0)} and $\phi$^{(e_{j})}E^{e_{j}} with  $\alpha$=0 and  $\alpha$=e_{j} in (2. 8),
respectively such that

(2.9) $\phi$_{j}^{(0)}(q_{1}, p_{1}, q,p)=p_{j}(q_{j}+A_{j}(q_{1},p_{1}, q))+\tilde{A}_{j}(q_{1}, p_{1}, q) ,

(2.10) $\phi$^{(e_{j})}(q_{1}, p_{1}, q,p)=p_{j}(q_{j}^{2}+C_{j}(q_{1},p_{1}, q))+\tilde{C}_{j}(q_{1},p_{1}, q) ,

and

(2.11) A_{j}(q_{1},p_{1}, q) , \tilde{A}_{j}(q_{1},p_{1}, q)=O(|q|^{2}) , C_{j}(q_{1}, p_{1}, q) , \tilde{C}_{j}(q_{1},p_{1}, q)=O(|q|^{3}) ,

when q\rightarrow 0 and where A_{j} , Ã, C_{j} and \tilde{C}_{j} are polynomials of p_{1} forj=2 , 3, . .

:;
n.

Although Theorem 2.1 can be proved by the similar method as in [7], we give the

proof because the expressions of the formal first integrals like (2.9) and (2.10) are used

in the next section.

Proof. By definition we have, for \mathcal{L}:=\{H_{0}, \} and R:=\{H_{1},

(2.12) \displaystyle \mathcal{L}=q_{1}^{2 $\sigma$}\frac{\partial}{\partial q_{1}}-2 $\sigma$ q_{1}^{2 $\sigma$-1}p_{1}\frac{\partial}{\partial p_{1}}+\sum_{j=2}^{n}$\lambda$_{j}(q_{j}\frac{\partial}{\partial q_{j}}-p_{j}\frac{\partial}{\partial p_{j}}) ,
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(2.13) R=

\displaystyle \sum_{j=2}^{n}(-2q_{j}B_{j}\frac{\partial}{\partial p_{j}}+q_{j}^{2}(\partial_{p_{1}}B_{j})\frac{\partial}{\partial q_{1}}-q_{j}^{2}(\partial_{q_{1}}B_{j})\frac{\partial}{\partial p_{1}}-q_{j}^{2}\nabla_{q}B_{j}\cdot\frac{\partial}{\partial p}) .

By using the formula

\displaystyle \partial_{p_{1}}B_{j}=B_{j,1}q_{1}^{2 $\sigma$}, q_{1}^{2 $\sigma$}(\partial/\partial q_{1})E^{ $\alpha$}=-(\sum_{j=2}^{n}$\lambda$_{j}$\alpha$_{j})E^{ $\alpha$}=-\langle $\lambda$,  $\alpha$\rangle E^{ $\alpha$},
we have

(2.14) \displaystyle \mathcal{L}($\phi$^{( $\alpha$)}E^{ $\alpha$})=E^{ $\alpha$}(q_{1}^{2 $\sigma$}\frac{\partial}{\partial q_{1}}-2 $\sigma$ q_{1}^{2 $\sigma$-1}p_{1}\frac{\partial}{\partial p_{1}}

+\displaystyle \sum_{j=2}^{n}$\lambda$_{j}(q_{j}\frac{\partial}{\partial q_{j}}-p_{j}\frac{@}{\partial p_{j}}-$\alpha$_{j}))$\phi$^{( $\alpha$)},
and

(2.15) R($\phi$^{( $\alpha$)}E^{ $\alpha$})=E^{ $\alpha$}(-\displaystyle \langle $\lambda$,  $\alpha$\rangle\sum_{j=2}^{n}q_{j}^{2}B_{j,1}+R)$\phi$^{( $\alpha$)}.
It follows that if v=E^{ $\alpha$}$\phi$^{( $\alpha$)} is a formal first integral of $\chi$_{H} ,

then $\phi$^{( $\alpha$)} satisfies

(2.16) (q_{1}^{2 $\sigma$}\displaystyle \frac{\partial}{\partial q_{1}}-2 $\sigma$ q_{1}^{2 $\sigma$-1}p_{1}\frac{\partial}{\partial p_{1}}+\sum_{j=2}^{n}$\lambda$_{j}(q_{j}\frac{\partial}{\partial q_{j}}-p_{j}\frac{\partial}{\partial p_{j}}-$\alpha$_{j}))$\phi$^{( $\alpha$)}
+(-\displaystyle \sum_{j=2}^{n}\langle $\lambda$,  $\alpha$\rangle q_{j}^{2}B_{j,1}+R)$\phi$^{( $\alpha$)}=0.

Expand $\phi$^{( $\alpha$)} into the formal power series

(2.17) $\phi$^{( $\alpha$)}=\displaystyle \sum_{ $\nu$,k,\ell}$\phi$_{ $\nu$,k,\ell}^{( $\alpha$)}(q_{1})p_{1}^{ $\nu$}p^{k}q^{p},
then, insert the expansion into (2.16) and compare the coefficients of p_{1}^{ $\nu$}p^{k}q^{\ell} . One can

easily see that the first term of the left‐hand side of (2.16) yields

(2.18) (q_{1}^{2 $\sigma$}\displaystyle \frac{\partial}{\partial q_{1}}-2 $\sigma$ q_{1}^{2 $\sigma$-1}v+ $\lambda$\cdot(P-k- $\alpha$))$\phi$_{ $\nu$,k,l}^{( $\alpha$)}(q_{1}) .

Hence we obtain the recurrence relation like

(2.19) (q_{1}^{2 $\sigma$}\displaystyle \frac{\partial}{\partial q_{1}}-2 $\sigma$ q_{1}^{2 $\sigma$-1}v+ $\lambda$\cdot(P-k- $\alpha$))$\phi$_{ $\nu$,k,l}^{( $\alpha$)}(q_{1})=F,
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where F denotes terms which appear from the second term of the left‐hand side of

(2.16).
In order to get the detailed expression of F we first note

(2.20) -2q_{j}B_{j}\displaystyle \frac{\partial}{\partial p_{j}}$\phi$^{( $\alpha$)}=-2B_{j}\sum$\phi$_{ $\nu$,k+e_{j},\ell-e_{j}}^{( $\alpha$)}(q_{1})p_{1}^{ $\nu$}p^{k}q^{\ell}(k_{j}+1) .

Expand B_{j} into the power series of q and compare the coefficients of p_{1}^{ $\nu$}p^{k}q^{p} of the

right‐hand side. One can see that the terms containing $\phi$_{ $\nu$,k+e_{j}, $\mu$}^{( $\alpha$)}(q_{1}) ,  $\mu$\leq\ell-e_{j} appear

from (2.20). Similar terms appear from q_{j}^{2}\nabla_{q}B_{j} \displaystyle \frac{\partial}{\partial p}$\phi$^{( $\alpha$)} and q_{j}^{2}(\displaystyle \partial_{q_{1}}B_{j})\frac{\partial}{\partial p_{1}}$\phi$^{( $\alpha$)} . In the

latter case there appear terms $\phi$_{ $\nu$+1,k, $\mu$}^{( $\alpha$)}(q) with  $\mu$\leq\ell-2e_{j} . In the same way one can

see that there appear terms containing the quantities

$\phi$_{ $\nu$,k, $\mu$}^{( $\alpha$)}(q_{1}) , q_{1}^{2 $\sigma$}B_{j,1}\displaystyle \frac{\partial}{\partial q_{1}}$\phi$_{ $\nu$,k, $\mu$}^{( $\alpha$)}(q_{1}) ,  $\mu$\leq P-2e_{j}
from -$\lambda$_{j}$\alpha$_{j}q_{j}^{2}B_{j,1}$\phi$^{( $\alpha$)} and q_{j}^{2}q_{1}^{2 $\sigma$}B_{j,1}\displaystyle \frac{\partial}{\partial q_{1}}$\phi$^{( $\alpha$)}.

Let  $\alpha$ be given. We will show that if  $\alpha$ and \ell satisfy \ell- $\alpha$\not\in \mathbb{Z}_{+}^{n-1} ,
then $\phi$_{ $\nu$,k,l}^{( $\alpha$)}=0

for all v . Indeed, we have \ell-k- $\alpha$\neq 0 for every k\in \mathbb{Z}_{+}^{n-1} . We want to determine

$\phi$_{ $\nu$,k,\ell}^{( $\alpha$)}(q_{1}) . By the nonresonance condition (2.6) we have  $\lambda$\cdot(\ell-k- $\alpha$)\neq 0 if and only if

\ell-k- $\alpha$\neq 0 . In the right‐hand side of (2.20) there appear $\phi$_{ $\nu$,k,l- $\beta$}^{( $\alpha$)\prime}\mathrm{s} for which  $\beta$\geq 0,

 $\beta$\neq 0 . It follows that  $\alpha$ and \ell- $\beta$ satisfy \ell- $\alpha$- $\beta$\not\in \mathbb{Z}_{+}^{n-1} . Expand $\phi$_{ $\nu$,k,l}^{( $\alpha$)} into the

formal power series of q_{1} and insert it into (2.19). One easily sees that every coefficient

is uniquely determined if the right‐hand side F is known, i.e., $\phi$_{ $\nu$,k,l- $\beta$}^{( $\alpha$)\prime}\mathrm{s} $\beta$\neq 0 are

given. Next we substitute $\phi$_{ $\nu$,k,\ell- $\beta$}^{( $\alpha$)} in F with the recurrence relations for $\phi$_{ $\nu$,k,l- $\beta$}^{( $\alpha$)\prime}\mathrm{s}
which can be constructed similarly as $\phi$_{ $\nu$,k,\ell}^{( $\alpha$)}(q_{1}) . By repeating the same argument, we

finally arrive at the relation that the right‐hand side of (2.20) vanishes, i.e., F=0

because we have \ell- $\beta$\not\in \mathbb{Z}_{+}^{n-1} after finite times of substitutions. Hence, by (2.19) we

obtain the assertion.

We will construct the formal solutions in the cases  $\alpha$=0 and  $\alpha$=e_{j}(2\leq j\leq n)
so that (2.9) and (2.10) are satisfied, respectively. First we consider the case  $\alpha$=0.

The argument is similar in the case  $\alpha$=e_{j}.

We shall solve (2.19) inductively with respect to \ell, |\ell|=0 , 1, 2, . . .. Let \ell=0.

Because F in (2.19) vanishes, we have $\phi$_{ $\nu$,k,0}^{(0)}=0 if k\neq 0 . If k=0 ,
then we have

(q_{1}\displaystyle \frac{\partial}{\partial q_{1}}-2 $\sigma$ v)$\phi$_{ $\nu$,0,0}^{(0)}=0 . We have

(2.21) $\phi$_{ $\nu$,0,0}^{(0)}=c_{ $\nu$}q_{1}^{2 $\sigma \nu$},

where c_{ $\nu$} is an arbitrary constant. By taking c_{ $\nu$}=0 for v=0 , 1, 2, .

:.,
we have $\phi$_{ $\nu$,k,0}^{(0)}=0

for all v and k.
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Let |\ell|=1, \ell\geq 0 . By the definition of F the nonvanishing term in F has the

form $\phi$_{ $\nu$,k+e_{i}, $\mu$}^{(0)},  $\mu$\leq\ell-e_{i} for some i . Note that we have | $\mu$|=0 since |\ell|=1, \ell\geq 0,

and hence F=0 by induction. Let |k|\geq|\ell| . If \ell\neq k ,
then we have $\phi$_{ $\nu$,k,l}^{(0)}=0

for all v . On the other hand, if \ell=k
, then, by the same argument as in (2.21) we

have $\phi$_{ $\nu$,k,k}^{(0)}=c_{ $\nu$,k,k}^{(0)}q_{1}^{2 $\sigma \nu$} ,
where c_{ $\nu$,k,k}^{(0)} is an arbitrary constant. We choose c_{ $\nu$,k,k}^{(0)} so that

c_{0,e_{j},e_{j}}^{(0)}=1 for some 2\leq j\leq n ,
and c_{ $\nu$,k,k}^{(0)}=0 if otherwise. Note that the nonvanishing

term $\phi$_{ $\nu$,k,k}^{(0)} is given by $\phi$_{0,e_{j},e_{j}}^{(0)}=1 . In the case |k|<|\ell| ,
we have k=0, \ell-k\neq 0 ,

and

we can recursively determine $\phi$_{ $\nu$,k,\ell}^{(0)} as the formal power series of q_{1}.

Let |\ell|=2 and consider the case |k|\geq|\ell|=2 . Then the corresponding terms

in F of (2.19) vanish by definition and the inductive assumption. If  k\neq\ell ,
then we

have $\phi$_{ $\nu$,k,l}^{(0)}=0 for all v
, while, for  k=\ell

,
we have $\phi$_{ $\nu$,k,\ell}^{(0)}=c_{ $\nu$,k,l}^{(0)}q_{1}^{2 $\sigma \nu$} for all v . We

set c_{ $\nu$,k,\ell}^{(0)}=0 and we obtain $\phi$_{ $\nu$,k,l}^{(0)}=0 for all v and |k|\geq|\ell| . On the other hand, if

|k|<|\ell|=2 ,
then one can determine $\phi$_{ $\nu$,k,\ell}^{(0)} from the recurrence relation. In order to

see that $\phi$_{ $\nu$,k,\ell}^{( $\alpha$)}=0 if k\neq e_{j} and k\neq 0 we note that the right‐hand side F vanishes if

k\neq e_{j} and k\neq 0 . Hence, by solving (2.19) we obtain $\phi$_{ $\nu$,k,\ell}^{( $\alpha$)}=0 if k\neq e_{j} and k\neq 0.
We can similarly argue by induction on |\ell|\geq 3 and show the existence of formal first

integrals satisfying (2.9).
Next we consider the case  $\alpha$=e_{j} for some 2\leq j\leq n . We make similar argument

as in the case  $\alpha$=0 . Let |\ell|=0 . Then we have \ell- $\alpha$=-e_{j}\not\in \mathbb{Z}_{+}^{n-1} . It follows that

$\phi$_{ $\nu$,k,0}^{( $\alpha$)}=0 for all v and k . Next we consider the case |\ell|=1 . If \ell- $\alpha$\not\in \mathbb{Z}_{+}^{n-1} ,
then we

have $\phi$_{ $\nu$,k,0}^{( $\alpha$)}=0 . If \ell- $\alpha$\in \mathbb{Z}_{+}^{n-1} ,
then we have \ell= $\alpha$ since |\ell|=| $\alpha$|=1 . Because F

consists of terms of the form $\phi$_{ $\nu$,k+e_{i}, $\mu$}^{( $\alpha$)},  $\mu$\leq\ell-e_{i} for some i
,

we have F=0 . Noting

\ell= $\alpha$ we obtain  $\phi$_{ $\nu$,k, $\alpha$}^{( $\alpha$)}=c_{ $\nu$,k, $\alpha$}^{( $\alpha$)}q_{1}^{2 $\sigma \nu$} . Summing up the above we have

(2.22) $\phi$_{ $\nu$,k,l}^{( $\alpha$)}=0 (v=0,1, . :.) if \ell- $\alpha$-k\neq 0, |k|\geq|\ell- $\alpha$|,

$\phi$_{ $\nu$,k,l}^{( $\alpha$)}=c_{ $\nu$,k,l}^{( $\alpha$)}q_{1}^{2 $\sigma \nu$}, (v=0,1, . :.) if \ell- $\alpha$-k=0,

( $\alpha$)where c_{ $\nu$,k,\ell} is an arbitrary constant. Note that \ell- $\alpha$-k=0 implies k=0 by the above

argument. Set c_{ $\nu$,0, $\alpha$}^{( $\alpha$)}=0 for every v . Then we obtain $\phi$_{ $\nu$,k,\ell}^{( $\alpha$)}=0 for all v, k and |\ell|\leq 1.
We consider the case |\ell|=2 . One may assume \ell- $\alpha$\geq 0 . By arguing as in the

previous case we have F=0 and we obtain (2.22). Set c_{ $\nu$,k,l}^{( $\alpha$)}=1 for v=0, k= $\alpha$,

\ell=2 $\alpha$
,

while  c_{ $\nu$,k,\ell}^{( $\alpha$)}=0 if otherwise.

We proceed as in the case  $\alpha$=0 . Let |\ell|=3 . We have $\phi$_{ $\nu$,k,l}^{( $\alpha$)}=0 if |k|\geq|\ell- $\alpha$|
and \ell- $\alpha$-k\neq 0 . If \ell- $\alpha$-k=0 ,

then the resonance term may appear. We set

the arbitrary constants to be zero and we finally obtain $\phi$_{ $\nu$,k,\ell}^{( $\alpha$)}=0 if |k|\geq|\ell- $\alpha$| . On

the other hand, if |k|<|\ell- $\alpha$| ,
then one can determine $\phi$_{ $\nu$,k,\ell}^{( $\alpha$)} recurrently. It should

be noted that the same argument as in the case  $\alpha$=0 shows that $\phi$_{ $\nu$,k,\ell}^{( $\alpha$)}=0 if k\neq e_{j}



Nonintegrable resonant Hamiltonians 183

and k\neq 0 . The general case |\ell|\geq 3 can be proved by induction on |\ell| . Hence we have

(2.10). \square 

Summability of formal integrals.
We will give a meaning to the formal first integral constructed in the above. This

is done by the Borel summation. As for the definition of the Borel sum and detailed

argument we refer to [7] and [1]. For a given  $\alpha$\in \mathbb{Z}_{+}^{n} let $\phi$^{( $\alpha$)} be the formal first

integral constructed in the previous theorem. We define the set of singular directions

S_{0} associated with $\phi$^{( $\alpha$)} by

(2.23) S_{0}:=\{z\in \mathbb{C};\exists v\geq 0, \exists k\geq 0, \exists P\geq 0 ,
such that

(2 $\sigma$-1)z^{2 $\sigma$-1}+ $\lambda$\cdot(\ell- $\alpha$-k)=0, $\phi$_{ $\nu$,k,\ell}^{( $\alpha$)}\neq 0, P- $\alpha$-k\geq 0\}\backslash 0.
Suppose that there exist a neighborhood $\Omega$_{0} of the origin and the convex cone $\Omega$_{1}\neq\emptyset
with vertex at the origin such that the closure \overline{S_{0}} of S_{0} satisfies

(2.24) \overline{S_{0}}\cap($\Omega$_{0}\cup$\Omega$_{1})=\emptyset.

Then we have

Theorem 2.2. Assume (2. 5), (2. 6) and (2.24) for some  $\alpha$\in \mathbb{Z}_{+}^{n} . Let v=

E^{ $\alpha$}$\phi$^{( $\alpha$)} be the formal first integral constructed in Theorem 2.1 which is a polynomial
in p and p_{1} . Then v is (2 $\sigma$-1) ‐summable in every direction of $\Omega$_{1} with respect to q_{1}.

More precisely, for every  $\xi$\in$\Omega$_{1} there exists a neighborhood V_{0} of the origin q=0 such

that v is analytic in q\in V_{0} and (2 $\sigma$-1) ‐summable with respect to q_{1} in the direction  $\xi$.

This theorem was proved in [7]. Because the detailed proof is not used in this

paper, we refer the detailed proof to [7], where (2 $\sigma$-1)- summability of $\phi$^{( $\alpha$)} in (2.8)
and (2.17) for every  $\alpha$ was proved. By this theorem we have the summability of formal

first integrals except for directions in \overline{S_{0}} . Every direction in S_{0} is singular in the sense

that analytic continuation on the Borel plane of formal Borel transform of the formal

first integral has singularities on S_{0} in general.
We note that the Borel‐summed formal first integrals are, indeed, first integrals

where they are defined. For the sake of simplicity we use the same notation for the

summed first integral in the sequel.

§3. Smooth integrability

Let E^{ $\alpha$}$\phi$^{( $\alpha$)} be the first integral given in Theorem 2.2. Assume (2.24) and define

(3.1) $\Sigma$_{$\phi$^{( $\alpha$)}} :=\displaystyle \{z\in \mathbb{C};|\arg z-\arg $\xi$|<\frac{ $\pi$}{2(2 $\sigma$-1)},  $\xi$\in$\Omega$_{1}\}
Then we have
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Theorem 3.1. Assume (2.5), (2.6) and (2.24) for some  $\alpha$\in \mathbb{Z}_{+}^{n} . Then there

exists an $\epsilon$_{0}>0 such that $\phi$^{( $\alpha$)} is holomorphic in

(3.2) \{(q_{1}, q,p_{1},p);q_{1}\in$\Sigma$_{$\phi$^{( $\alpha$)}}, |q_{1}|<$\epsilon$_{0}, p_{1}\in \mathbb{C}, p_{j}\in \mathbb{C}, |q_{j}|<$\epsilon$_{0}, j=2, . . . , n\}.

Moreover, there exists a sector S_{1}\subset$\Sigma$_{$\phi$^{( $\alpha$)}} such that E^{ $\alpha$}$\phi$^{( $\alpha$)} is C^{\infty} at q_{1}=0 when

q_{1}\in S_{1}, q_{1}\rightarrow 0 and satises that all derivatives vanish at the origin.

Proof. Let v=$\phi$^{( $\alpha$)}E^{ $\alpha$} be the summed first integral. Because $\phi$^{( $\alpha$)} is (2 $\sigma$-1)-
summable in every direction in $\Omega$_{1}, $\phi$^{( $\alpha$)} is holomorphic in the domain (3.2). In order

to show the smoothness of v at the origin we recall that every $\phi$^{( $\alpha$)} is C^{\infty} when q_{1}\rightarrow 0,

q_{1}\in$\Sigma$_{$\phi$^{( $\alpha$)}} because $\phi$^{( $\alpha$)} has an asymptotic expansion. On the other hand, in view of

(3.3) E^{ $\alpha$}=\displaystyle \exp(\frac{q_{1}^{-2 $\sigma$+1}}{2 $\sigma$-1}\sum_{j=2}^{n}$\lambda$_{j}$\alpha$_{j})
and noting that the opening of $\Sigma$_{$\phi$^{( $\alpha$)}} is larger than  $\pi$/(2 $\sigma$-1) ,

there exists a sector

S_{1}\subset$\Sigma$_{$\phi$^{( $\alpha$)}} on which E^{ $\alpha$} together with its derivatives tends to zero when q_{1}\rightarrow 0 . Hence

v is C^{\infty} when q_{1}\rightarrow 0, q_{1}\in S_{1} as desired. \square 

Next we study the existence of commuting functionally independent first integrals
in a sector. Let $\phi$_{j}^{(0)} and $\phi$^{(e_{j})} (j=2,3, . . :; n) be the formal first integral constructed

in Theorem 2.1 satisfying (2.9) and (2.10), respectively.

Theorem 3.2. Suppose (2.5) and (2.6). Assume either that the convex hull of

\{$\lambda$_{j};j=2, 3, . ::, n\} does not contain the origin or that S_{0} is a finite set for $\phi$_{j}^{(0)} and $\phi$^{(e_{j})}
(j=2,3, \ldots; n) . Then, there exist a neighborhood U of the origin of \mathbb{C} , an $\epsilon$_{0}>0 and

a sector R with vertex at the origin such that $\chi$_{H} has 2(n-1) functionally independent

first integrals analytic on q_{1}\in R\cap U, p_{1}, p_{i}, q_{i}\in \mathbb{C}, |q_{i}|<$\epsilon$_{0}(i\geq 2) and smooth at the

origin when q_{1}\rightarrow 0, q_{1}\in R and p_{1}, p_{i}, q_{i} in some neighborhood of the origin. Moreover

the first integrals E^{e_{j}}$\phi$^{(e_{j})} (j=2,3, . . :; n) and H are mutually commuting.

Proof. We will show (2.24) for every  $\alpha$\geq 0 . If S_{0} is a finite set for $\phi$_{j}^{(0)} and

$\phi$^{(e_{j})} (j=2,3, . . :; n) ,
then one can choose the cone $\Omega$_{1}\neq\emptyset independent of  j and a

neighborhood of the origin $\Omega$_{0} so that (2.24) is verified. Assume that the convex hull

of \{$\lambda$_{j};j=2, 3, . . . ; n\} does not contain the origin. Let $\Gamma$_{0} be the closed convex cone

generated by $\lambda$_{ $\nu$} (v=2, \ldots; n) . Without loss of generality we may assume that $\Gamma$_{0} is

contained in the set \Re z>0 . Hence we see that the set of points  $\lambda$ (\ell- $\alpha$-k) for

\ell- $\alpha$-k\geq 0 does not accumulate to the origin, where  $\alpha$=0, e_{j} and k moves on a

finite set. Therefore, since  $\lambda$\cdot(\ell- $\alpha$-k) is contained in $\Gamma$_{0} for every \ell,  $\alpha$, k such that
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\ell- $\alpha$-k\geq 0 ,
the definition of S_{0} implies that one can choose the cone $\Omega$_{1}\neq\emptyset and

a neighborhood of the origin $\Omega$_{0} independent of  $\alpha$ satisfying (2.24). Moreover, we can

take  $\Omega$_{1} with opening greater than  $\pi$/(2 $\sigma$-1) . It follows from Theorem 2.2 that the

formal integrals $\phi$_{j}^{(0)} and $\phi$^{(e_{j})} (j=2,3, . :. ; n) are summable.

Let  $\Gamma$ Ó be the dual cone of  $\Gamma$_{0} , namely the set of vectors z satisfying \Re(z\cdot $\eta$)\geq 0
for all  $\eta$\in$\Gamma$_{0} . Note that  $\Gamma$ Ó is connected and contains positive real axis. Denote the

image of  $\Sigma$_{$\phi$^{( $\alpha$)}} under the map z\mapsto z^{2 $\sigma$-1} by \tilde{ $\Sigma$}_{$\phi$^{( $\alpha$)}} . We shall show that there exists

\tilde{ $\Sigma$}\subset\tilde{ $\Sigma$}_{$\phi$^{( $\alpha$)}} independent of  $\alpha$ such that \tilde{ $\Sigma$} \cap (  $\Gamma$ Ó) \neq\emptyset . Indeed, if the convex hull of

\{$\lambda$_{j};j=2, 3, . . :, n\} does not contain the origin, then one can take the opening of \tilde{ $\Sigma$}

sufficiently close to 2. We next consider the case where S_{0} is a finite set. In order to

show \tilde{ $\Sigma$} \cap (  $\Gamma$ Ó) \neq\emptyset for some $\Omega$_{1} we note that one can take $\Omega$_{1} as an arbitrary cone

outside a finitely many directions by the finiteness assumption of S_{0} . Because  $\Gamma$ Ó is an

open cone, one can take  $\Omega$_{1} as desired in view of the definition of $\Sigma$_{$\phi$^{( $\alpha$)}}.
We shall choose a sector R with vertex at the origin independent of j, (j=

2
, 3, . . .

; n) so that the integrals E^{e_{j}}$\phi$^{(e_{j})} and $\phi$_{j}^{(0)}, (j=2, 3, . ::, n) are smooth on

R with all derivatives vanishing at the origin when q_{1}\rightarrow 0, q_{1}\in R . We note that E^{ $\alpha$}

with  $\alpha$=e_{j} (j=2, \ldots; n) are smooth at the origin when  q_{1}^{-2 $\sigma$+1}\in −  $\Gamma$ Ó. On the other

hand  $\phi$^{( $\alpha$)} is smooth at the origin because it has an asymptotic expansion in $\Sigma$_{$\phi$^{( $\alpha$)}}.
In order to show the smoothness of $\phi$^{( $\alpha$)}E^{ $\alpha$} for all  $\alpha$ on  R ,

we take R\subset$\Sigma$_{$\phi$^{( $\alpha$)}} as an

inverse image of some cone in \tilde{ $\Sigma$} \cap (  $\Gamma$ Ó) such that  E^{ $\alpha$} and $\phi$^{( $\alpha$)} are smooth on R . Note

that we have the same assertion in the case where S_{0} is a finite set because we have

\tilde{ $\Sigma$} \cap (‐  $\Gamma$ Ó) \neq\emptyset for some $\Omega$_{1}.

By virtue of (2.9) the first integrals $\phi$_{j}^{(0)}(j=2,3, . ::, n) are functionally indepen‐
dent everywhere except for a set of measure zero. The same property holds for E^{e_{j}}$\phi$^{(e_{j})}
(j=2,3, . . :, n) by (2.10). Hence we have the functional independentness of the first

integrals $\phi$_{j}^{(0)}, E^{e_{j}}$\phi$^{(e_{j})}(j=2,3, \ldots, n) .

We will show the commutativity of first integrals v^{( $\alpha$)}:=E^{ $\alpha$}$\phi$^{( $\alpha$)} and v^{( $\beta$)}:=E^{ $\beta$}$\phi$^{( $\beta$)}
for  $\alpha$=e_{ $\nu$},  $\beta$=e_{ $\mu$} (;  $\mu$=2,3, . . :; n) . By the well‐known indentity we have

\{H, \{v^{( $\alpha$)}, v^{( $\beta$)}\}\}+\{v^{( $\beta$)}, \{H, v^{( $\alpha$)}\}\}+\{v^{( $\alpha$)}, \{v^{( $\beta$)}, H\}\}=0.

It follows that \{H, \{v^{( $\alpha$)}, v^{( $\beta$)}\}\}=0 . Set w:=\{v^{( $\alpha$)}, v^{( $\beta$)}\} . Because w is Borel

summable, w vanishes if its asymptotic expansion vanishes. By the definition of the

formal solution in Theorem 2.1 the resonant term in $\phi$^{( $\alpha$)} is given by q^{2 $\alpha$}p^{ $\alpha$} . Because

w can be written in the form E^{ $\alpha$+ $\beta$}\tilde{w} for some summable power series \tilde{w}
,

the resonant

term in \tilde{w} has the form cq^{ $\nu$+ $\alpha$+ $\beta$}p^{ $\nu$} where v=0,  $\alpha$,  $\beta$,  $\alpha$+ $\beta$ ,
and  c is a power series of

q_{1} and p_{1} . It follows that if the resonant term of w vanishes, then \{H, w\}=0 implies
w=0 as desired.
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We will calculate the resonant term in w . By definition we have

(3.4) w=E^{ $\alpha$}\displaystyle \frac{\partial}{\partial p_{1}}$\phi$^{( $\alpha$)}\frac{\partial}{\partial q_{1}}(E^{ $\beta$}$\phi$^{( $\beta$)})-E^{ $\beta$}\frac{\partial}{\partial p_{1}}$\phi$^{( $\beta$)}\frac{\partial}{\partial q_{1}}(E^{ $\alpha$}$\phi$^{( $\alpha$)})
+E^{ $\alpha$+ $\beta$}\nabla_{p}$\phi$^{( $\alpha$)}\cdot\nabla_{q}$\phi$^{( $\beta$)}-E^{ $\alpha$+ $\beta$}\nabla_{p}$\phi$^{( $\beta$)}\cdot\nabla_{q}$\phi$^{( $\alpha$)}.

We first consider the term corresponding to v=0, cq^{ $\alpha$+ $\beta$} . In the first and the second

terms of (3.4) the terms which do not contain the powers of p is o(q) by (2.11). This

proves that no term of the form cq^{ $\alpha$+ $\beta$} appears because | $\alpha$|=| $\beta$|=1 . On the other

hand, the terms which do not contain the powers of p in third and fourth terms of

(3.4) is O(|q|^{4}) . Therefore no resonance term corresponding to v=0 appears. Next we

consider the case  v= $\alpha$+ $\beta$ . In the third and fourth terms of (3.4) there appear no

term containing  p^{ $\alpha$+ $\beta$} . On the other hand, in view of the definition of $\phi$^{( $\alpha$)} the resonant

term in the first and the second terms of (3.4) with the form cq^{2( $\alpha$+ $\beta$)}p^{ $\alpha$+ $\beta$} vanishes by
virtue of (2.10) and (2.11). We consider the case  v= $\alpha$ or  v= $\beta$ . In the first and the

second terms of (3.4) the term which contains  p^{ $\alpha$} or p^{ $\beta$} is O(|q|^{3}) . Hence no resonance

term appears. Consider the third term of (3.4). If  $\alpha$=e_{j} and  $\beta$=e_{k}, (j\neq k) ,
then

only j‐th component of the homogeneous degree 2 part of \nabla_{p}$\phi$^{( $\alpha$)} does not vanish, while

the j‐th component of the homogeneous degree 2 part of \nabla_{q}$\phi$^{( $\beta$)} vanishes. Hence we

see that the resonance term in \nabla_{p}$\phi$^{( $\alpha$)} \nabla_{q}$\phi$^{( $\beta$)} vanishes. One can argue similarly for

the fourth term of (3.4) and show that no resonant term appears from the fourth term.

This proves the assertion and we have proved the theorem. \square 

We will study the smooth integrability on a line with respect to the resonance

variable.

Theorem 3.3. Suppose (2.5) and (2.6). Assume either the convex hull of

\{$\lambda$_{j};j=2, 3, . :. ; n\} does not contain the origin or that  $\sigma$=1 and S_{0} is a finite set for

$\phi$_{j}^{(0)} (j=2,3, \ldots; n) . Then there exists a ray R emenating from the origin such that

the Hamiltonian vector field $\chi$_{H} is smoothly integrable in a neighborhood of the origin
when q_{1}\in R\cup(-R)\cup\{0\}, p_{1}, p_{i}, q_{i}\in \mathbb{C}.

Proof. We continue to use the same notation as in the preceding theorem. Let

$\phi$_{i}^{(0)}, (i=2,3, \ldots, n) be the formal first integrals given in Theorem 2.1. By the same

argument as in the preceding theorem, they are summable. We want to show that

there exists a ray R such that $\phi$_{i}^{(0)} is smooth in some neighborhood of the origin of

q_{1}\in R\cup(-R)\cup\{0\} and p_{1}, p_{i}, q_{i}\in \mathbb{C} . Let S_{0} be the union of all singular directions of

$\phi$_{j}^{(0)}, (j=2,3, . . :; n) . If S_{0} is a finite set, then, by virtue of  $\sigma$=1 and the definition,

\displaystyle \bigcap_{j}$\Sigma$_{$\phi$_{j}^{(0)}} has the opening greater than  $\pi$ and contains  R\cup(-R) for some ray R . Hence

one can choose R as desired. If the convex hull of \{$\lambda$_{j};j=2, 3, . :. ; n\} does not contain
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the origin, then one can easily show that the opening of \displaystyle \bigcap_{j}\tilde{ $\Sigma$}_{$\phi$_{j}^{(0)}} is greater than  $\pi$.

Therefore, by considering the inverse image of \displaystyle \bigcap_{j}\tilde{ $\Sigma$}_{$\phi$_{j}^{(0)}} under the map z\mapsto z^{2 $\sigma$-1} and

by the summability of $\phi$_{j}^{(0)} we can choose R as desired.

By using the same argument as in the preceding theorem we can show the com‐

mutativity of $\phi$_{j}^{(0)}, (j=2,3, \ldots, n) . We next show the functional independentness of

$\phi$_{j}^{(0)} (j=2,3, \ldots; n) and H . Note that the functional independentness of $\phi$_{j}^{(0)\prime}\mathrm{s} follows

from the definitions of the formal power series expansion and their summability. Indeed,

by virtue of (2.9) and (2.11) and the independentness of pj�s, we have the functional

independentness of $\phi$_{j}^{(0)\prime}\mathrm{s}.
We will show the functional independentness of $\phi$_{j}^{(0)} (j=2, . . :; n) and H on an

open dense set. Suppose that there exists a smooth function F\equiv F(y, X)\in C^{\infty},
y= (y2, . ::; y_{n}) such that F($\phi$_{2}^{(0)}, \ldots, $\phi$_{n}^{(0)}, H)\equiv 0 with q_{1} and q being in some sector

with vertex at the origin and in some neighborhood of the origin, respectively, and

p_{1}\in \mathbb{C}, p\in \mathbb{C}^{n-1} . If there exists an open set  $\Omega$ such that \displaystyle \frac{\partial F}{\partial X}\equiv 0 for all  X\in $\Omega$ ,
then  F

is independent of X in  $\Omega$ . On the other hand, we have  H=q_{1}^{2 $\sigma$}p_{1}+ $\epsilon$ ,
where  $\epsilon$ can be

made arbitrarily small by taking  q sufficiently small and p_{1}, q_{1} and p bounded. We fix

q_{1}\neq 0 . Then there exists an open set in \mathbb{C} such that if p_{1} is on the open set and q stays
in a sufficiently small neighborhood of the origin, then we have  H\in $\Omega$ . It follows that

 F($\phi$_{2}^{(0)}, \ldots, $\phi$_{n}^{(0)}, 0)\equiv 0 on such a set because F is independent of X . This contradicts

the functional independentness of $\phi$_{j}^{(0)\prime}\mathrm{s}.
Next we assume that \displaystyle \frac{\partial F}{\partial X}(y^{(0)}, X^{(0)})\neq 0 for some y^{(0)} and X^{(0)} . We may assume

that there exists a neighborhood of (y^{(0)}, X^{(0)}) , W_{1}\times W_{2} such that the nonvanishing
relation holds for (y, X)\in W_{1}\times W_{2} . By virtue of (2.9) and (2.11) one can choose open

sets $\Omega$_{1} and $\Omega$_{2} in some neighborhood of the origin of 0\in \mathbb{C}^{n-1} and in \mathbb{C}^{n-1} , respectively
such that if q\in$\Omega$_{1} and p\in$\Omega$_{2} ,

then $\phi$^{(0)}=($\phi$_{2}^{(0)}, \ldots, $\phi$_{n}^{(0)}) is in W_{1} . By the similar

argument as above one can show that H\in W_{2} . Then we have \displaystyle \frac{\partial F}{\partial X}($\phi$^{(0)}, H)\neq 0.
Hence, by the implicit function theorem there exists a smooth function G such that

H=G($\phi$_{2}^{(0)}, \ldots, $\phi$_{n}^{(0)}) .

Let q_{1}\neq 0 and fix it. We have \displaystyle \frac{\partial H}{\partial p_{1}}=q_{1}^{2 $\sigma$}+\frac{\partial $\epsilon$}{\partial p_{1}} . One can make \displaystyle \frac{\partial $\epsilon$}{\partial p_{1}} arbitrarily
small if we take q sufficiently small. Therefore there exists C>0 independent of q such

that if q is in some neighborhood of the origin, then we have |\displaystyle \frac{\partial H}{\partial p_{1}}|\geq C>0 . On the

other hand, we have

\displaystyle \frac{\partial H}{\partial p_{1}}=\frac{\partial G}{\partial p_{1}}=\sum_{ $\nu$=2}^{n}\frac{\partial G}{\partial y_{ $\nu$}}($\phi$^{(0)})\frac{\partial$\phi$_{ $\nu$}^{(0)}}{\partial p_{1}}.
By (2.9) and (2.11) the quantity \displaystyle \frac{\partial$\phi$_{ $\nu$}^{(0)}}{\partial p_{1}} tends to zero when q tends to zero. This is

a contradiction because the left‐hand side is bounded from the below by a nonzero

constant independent of q . Hence we have the assertion. This ends the proof. \square 
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§4. C^{ $\omega$} ‐nonintegrability

In this section we briefly state the C^{ $\omega$} ‐nonintegrability of our Hamiltonian system.

Although the fact is not necessary in the proof of the preceding theorems, it implies
that our Hamiltonian system has a similar property like those in [3] and [5].

Let H:=H_{0}+H_{1} with H_{0} and H_{1} given, respectively, by

(4.1) H_{0}=A(q_{1}^{2 $\sigma$}p_{1})+\displaystyle \sum_{j=2}^{n}$\lambda$_{j}q_{j}p_{j},
(4.2) H_{1}=-\displaystyle \sum_{j=2}^{n}p_{j}^{2}B_{j}(q_{1}, q_{1}^{2 $\sigma$}p_{1},p) ,

where A(s) and B_{j}(q_{1}, s, t) are holomorphic at the origin with respect to (q_{1}, s, t)\in
\mathbb{C}\times \mathbb{C}\times \mathbb{C}^{n-1} ,

and

(4.3) A(0)=0, A'(0)=1.

Then we have

Theorem 4.1. Assume that the equation

(4.4) q_{1}^{2 $\sigma$}\displaystyle \frac{dv}{dq_{1}}-2$\lambda$_{k}v=B_{k}(q_{1},0,0)
has no analytic solution v at the origin fork=2 , 3, .

::,
n . Moreover, suppose (2.6).

Then, for any C^{ $\omega$} ‐first integral u of $\chi$_{H} there exists an analytic function  $\phi$(z) of one

variable in some neighborhood of the origin z=0 such that u= $\phi$(H) . Especially $\chi$_{H}

is not C^{ $\omega$} ‐Liouville integrable.

Remark 1. (i) Nonexistence of an analytic solution to (4.4) corresponds to the

non Abelian property of the fundamental group introduced in [3]. We can also prove

that the condition holds if and only if the monodromy of an analytic continuation of

every solution of (4.4) along a path encircling the origin does not vanish. (cf. Lemma 6

of [6]). We remark that if B_{k} is a polynomial, then the set of B_{k} satisfying the condition

is an open dense set.

(ii) Theorem 4.1 also holds for H_{1} given by (2.2) by exchanging the variables p and

q.

Example 4.2. Let  $\sigma$\in \mathbb{N}, c\in \mathbb{C}\backslash \{0\} . Consider the Hamiltonian

(4.5) H_{1}:=\displaystyle \sum_{j=2}^{n}B_{j}(q_{1})p_{j}^{2},
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where B(q) is an analytic function in some neighborhood of q_{1}=0 . Similar Hamilto‐

nian was considered in [3] in relation with a geodesic flow. Let A(s)=s+cs^{2} in H_{0} and

define H:=H_{0}+H_{1} . Assume (2.6) and suppose that (4.4) has no analytic solution for

every k . Then H satisfies the conditions of Theorem 4.1. Hence $\chi$_{H} is not C^{ $\omega$} ‐Liouville

integrable.

The proof of Theorem 4.1 will be published in [8].
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