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On the Borel summability of 0‐parameter solutions of

nonlinear ordinary differential equations

By
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Abstract

In this paper, we announce our recent results on the Borel summability of 0‐parameter
solutions of second order nonlinear ordinary differential equations with a large parameter. 0‐

parameter solutions are formal power series solutions with respect to a large parameter, and

we establish their Borel summability for a wide class of equations including Painlevé equations.
We also study the singularity structure of a 1‐form  $\omega$ for the Painlevé equations, which plays
an important role in our analysis.

§0. Introduction

The main purpose of this article is to announce the results of [KKo] on the Borel

summability of  0‐parameter solutions of second order nonlinear ordinary differential

equations with a large parameter.

The exact WKB analysis was initiated by A. Voros. He discussed WKB analysis
of a Schrödinger equation

(0.1) (\displaystyle \frac{d^{2}}{dx^{2}}-$\eta$^{2}Q(x)) $\psi$(x,  $\eta$)=0 (  $\eta$ : a large parameter)

using the Borel resummation method ([V]). To employ the exact WKB analysis, it

is important to know where the WKB solutions are Borel summable. In [\mathrm{K}\mathrm{o}\mathrm{S}1] and

[\mathrm{K}\mathrm{o}\mathrm{S}2] ,
such a problem was studied by considering a formal solution S(x,  $\eta$)= $\eta$ S_{-1}(x)+

 S_{0}(x)+$\eta$^{-1}S_{1}(x)+\cdots of the Riccati equation

(0.2)
\mathrm{d}\mathrm{S}

dx
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associated with (0.1). (See also [CDK] and [DLS] for the Borel summability of WKB

solutions.)
Following their results we will study in [KKo] the Borel summability of a formal

solution

(0.3)  $\lambda$(t,  $\eta$)=$\lambda$_{0}(t)+$\eta$^{-1}$\lambda$_{1}(t)+\cdots

of the second order nonlinear ordinary differential equations of the form

(0.4) \displaystyle \frac{d^{2} $\lambda$}{dt^{2}}=$\eta$^{2}\frac{P(t, $\lambda$)}{Q(t, $\lambda$)}+\frac{R_{1}(t, $\lambda$,\dot{ $\lambda$})}{R_{2}(t, $\lambda$)},
where P(t,  $\lambda$) , Q(t,  $\lambda$) , R_{2}(t,  $\lambda$)\in \mathbb{C}[t,  $\lambda$], R_{1}(t,  $\lambda$,\dot{ $\lambda$})\in \mathbb{C}[t,  $\lambda$, \dot{ $\lambda$}] and \dot{ $\lambda$}=d $\lambda$/dt ,

and

P, Q, R_{1}, R_{2} satisfy some suitable conditions. Typical examples of the above equation

(0.4) are Painlevé equations with a large parameter studied in [KT]. Therefore, following
the usage in [KT], we call (0.3) a0‐parameter solution of (0.4) in what follows. In our

study, a1‐form

(0.5)  $\omega$=\sqrt{\frac{(\partial_{ $\lambda$}P)(t,$\lambda$_{0}(t))}{Q(t,$\lambda$_{0}(t))}}dt
plays a central role when we determine regions in which a 0‐parameter solution  $\lambda$(t,  $\eta$)
is Borel summable; Indeed, the most important condition of the Borel summability of

 $\lambda$(t,  $\eta$) at t=t_{0} is that there exists a neighborhood V of t_{0} such that all of the integral
curves of {\rm Im} $\omega$=0 which pass through V run into singular points of  $\omega$ of order less than

or equal to -1.

This report consists of two sections: In §1, we explain core results of [KKo]. In

this report we mainly limit ourselves to the case R_{1}\equiv 0 in (0.4) to make our arguments
clear. In §2, we study the singularity structure of  $\omega$ for the Painlevé equations, which

is necessary to examine the Borel summability of their  0‐parameter solutions.

Acknowledgment.
The authors wish to thank Professor T. Kawai, Professor Y. Takei and their stu‐

dents for the valuable discussions with them and their suggestions.

§1. 0‐parameter solutions and their properties

The main purpose of this section is to give the conditions for the Borel summability
of 0‐parameter solutions of (0.4). For simplicity, we consider the case where R_{1}\equiv 0,

i.e.,

(1.1) \displaystyle \frac{d^{2} $\lambda$}{dt^{2}}=$\eta$^{2}\frac{P(t, $\lambda$)}{Q(t, $\lambda$)}.
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To begin with, let us construct a 0‐parameter solution. By multiplying (1.1) by

Q(t,  $\lambda$) ,
we obtain

(1.2) \displaystyle \frac{d^{2} $\lambda$}{dt^{2}}Q(t,  $\lambda$)=$\eta$^{2}P(t,  $\lambda$) .

By substituting (0.3) into (1.2) and comparing both sides degree by degree with respect

to  $\eta$ ,
we find that the coefficients of  $\eta$^{2} give

(1.3) P(t, $\lambda$_{0}(t))=0.

Therefore we choose $\lambda$_{0}(t) as a root of (1.3) and fix it in what follows. Then the lower

order terms $\lambda$_{1}, $\lambda$_{2}, \cdots are recursively and uniquely determined when

(1.4) \partial_{ $\lambda$}P(t, $\lambda$_{0}(t)) is not identically 0.

Indeed, by comparing the coefficients of  $\eta$ of (1.2), we find

(1.5) (@  $\lambda$ P) (t, $\lambda$_{0}(t))$\lambda$_{1}(t)=0.

Hence we obtain from (1.4) that

(1.6) $\lambda$_{1}(t)\equiv 0.

Next, by comparing the coefficients of constant terms of  $\eta$ in (1.2), we find

(1.7) \displaystyle \frac{d^{2}$\lambda$_{0}}{dt^{2}}Q(t, $\lambda$_{0})=(\partial_{ $\lambda$}P)(t, $\lambda$_{0})$\lambda$_{2}(t) .

Therefore $\lambda$_{2}(t) is given by

(1.8) $\lambda$_{2}(t)=\displaystyle \frac{Q(t,$\lambda$_{0})}{(\partial_{ $\lambda$}P)(t,$\lambda$_{0})}\frac{d^{2}$\lambda$_{0}}{dt^{2}}.
Then, proceeding the discussion, we can inductively confirm that, by comparing the

coefficients of $\eta$^{-n}(n=1,2, \cdots) , $\lambda$_{n+2}(t) are uniquely determined by $\lambda$_{0}(t) , \cdots, $\lambda$_{n+1}(t)
in such a way that

(1.9) $\lambda$_{2k+1}(t)\equiv 0 (k=1,2, \cdots) .

In this way, we can uniquely determine a 0‐parameter solution of the form

(1.10)  $\lambda$(t,  $\eta$)=\displaystyle \sum_{k=0}^{\infty}$\eta$^{-2k}$\lambda$_{2k}(t)
for each root $\lambda$_{0}(t) of (1.3).
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Remark 1.1. We immediately find that, if $\lambda$_{2}\equiv 0 ,
then $\lambda$_{2k}\equiv 0(k=2,3, \cdots) .

Therefore, in what follows, we assume that $\lambda$_{2} is not identically 0.

Since we cannot expect that the 0‐parameter solution (1.10) converges, we consider

its Borel sum

(1.11) $\lambda$_{0}(t)+\displaystyle \int_{0}^{\infty}e^{- $\eta$ y}\tilde{ $\lambda$}_{B}(t, y)dy
with respect to  $\eta$ (see, e.g., [B]). Here \tilde{ $\lambda$}(t,  $\eta$)= $\lambda$(t,  $\eta$)-$\lambda$_{0}(t) and

(1.12) \displaystyle \tilde{ $\lambda$}_{B}(t, y) :=\sum_{k=1}^{\infty}y^{2k-1}\frac{$\lambda$_{2k}(t)}{ $\Gamma$(2k)}
is the Borel transform of \tilde{ $\lambda$}(t,  $\eta$) with respect to  $\eta$ ,

and the path of integration in (1.11)
is the positive real axis as usual.

Our main theorem (Theorem 1.2 below) claims that, under suitable conditions,
the integral in (1.11) is well‐defined, i.e., \tilde{ $\lambda$}(t,  $\eta$) is Borel summable. Therefore our

main concern is to study the analytic properties of \tilde{ $\lambda$}_{B}(t, y) in y‐plane. To see how our

assumptions naturally appear, let us see the outline of our argument before stating our

main theorem.

To study the analytic properties of \tilde{ $\lambda$}_{B}(t, y) we study the Borel transform of (1.2):

(1.13) (Q(t, $\lambda$_{0}(t))\displaystyle \frac{\partial^{2}}{\partial t^{2}}-(\partial_{ $\lambda$}P)(t, $\lambda$_{0}(t))\frac{\partial^{2}}{\partial y^{2}})\tilde{ $\lambda$}_{B}(t, y)
=-\displaystyle \frac{d^{2}$\lambda$_{0}}{dt^{2}}\sum_{k\geq 1}\frac{1}{k!}(\partial_{ $\lambda$}^{k}Q(t, $\lambda$_{0}))\tilde{ $\lambda$}_{B}^{*k}(t, y)

-\displaystyle \sum_{k\geq 1}\frac{1}{k!}(\partial_{ $\lambda$}^{k}Q(t, $\lambda$_{0}))\frac{\partial^{2}\tilde{ $\lambda$}_{B}}{\partial t^{2}}*\tilde{ $\lambda$}_{B}^{*k}(t, y)
+\displaystyle \sum_{k\geq 2}\frac{1}{k!}(\partial_{ $\lambda$}^{k}P(t, $\lambda$_{0}))\frac{\partial^{2}}{\partial y^{2}}\tilde{ $\lambda$}_{B}^{*k}(t, y) ,

where. *\cdot is the convolution operator defined by

(1.14) $\lambda$_{B}*$\lambda$_{B}=\displaystyle \int_{0}^{y}$\lambda$_{B}(t, y-y')$\lambda$_{B}(t, y')dy'
and

(1.15) $\lambda$_{B}^{*n}=$\lambda$_{B}*\cdots*$\lambda$_{B}.

We also impose initial conditions which follows from (1.2):

(1.16) \tilde{ $\lambda$}_{B}(t, 0)=0 and \displaystyle \frac{\partial\tilde{ $\lambda$}_{B}}{\partial y}(t, 0)=$\lambda$_{2}(t) .
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Remark 1.2. We may regard the left‐hand side of (1.13) as the principal part in

the following sense: when we define the weight of @= @t and @= @y by 1 and that of *\cdot

by -1
,

then the left‐hand side of (1.13) has the weight 2 and the right‐hand side has

the weight less than 2.

To simplify left‐hand side of (1.13) we employ the Liouville transformation, i.e., \mathrm{a}

coordinate transformation (t, y)\mapsto(z, y) defined by

(1.17) z(t)=\displaystyle \int_{t_{0}}^{t} $\omega$,
where t_{0}\in \mathbb{C} is a fixed point and

(1.18)  $\omega$=\sqrt{\frac{\partial_{ $\lambda$}P(t,$\lambda$_{0}(t))}{Q(t,$\lambda$_{0}(t))}}dt.
We assume that  $\omega$ is holomorphic and does not vanish in the region where we consider.

Then, in (z, y) ‐variable, the left‐hand side of (1.13) is rewritten as follows:

(1.19) (\displaystyle \partial_{ $\lambda$}P)(t, $\lambda$_{0})(\frac{\partial^{2}}{\partial z^{2}}+(\frac{dz}{dt})^{-2}\frac{d^{2}z}{dt^{2}}\frac{\partial}{\partial z}-\frac{\partial^{2}}{\partial y^{2}})\tilde{ $\lambda$}_{B}(t(z), y) .

Further, applying a gauge transformation

(1.20) ($\lambda$_{2}(t))^{-1}\tilde{ $\lambda$}_{B}(t(z), y)=:\hat{ $\lambda$}_{B}(z, y) ,

we find that \hat{ $\lambda$}_{B}(z, y) satisfies

(1.21) (\displaystyle \frac{\partial^{2}}{\partial z^{2}}-\frac{\partial^{2}}{\partial y^{2}})\hat{ $\lambda$}_{B}(z, y)
=-\mathcal{L}\hat{ $\lambda$}_{B}(z, y)

-\displaystyle \frac{1}{(\partial_{ $\lambda$}P)(t,$\lambda$_{0})}\frac{1}{$\lambda$_{2}}\frac{d^{2}$\lambda$_{0}}{dt^{2}}\sum_{k\geq 1}\frac{$\lambda$_{2}^{k}}{k!}(\partial_{ $\lambda$}^{k}Q(t, $\lambda$_{0}))\hat{ $\lambda$}_{B}^{*k}(z, y)
-\displaystyle \frac{1}{(\partial_{ $\lambda$}P)(t,$\lambda$_{0})}(\frac{dz}{dt})^{2}\sum_{k\geq 1}\frac{$\lambda$_{2}^{k}}{k!}(\partial_{ $\lambda$}^{k}Q(t, $\lambda$_{0}))(\frac{\partial^{2}\hat{ $\lambda$}_{B}}{\partial z^{2}}+\mathcal{L}\hat{ $\lambda$}_{B}(z, y))*\hat{ $\lambda$}_{B}^{*k}(z, y)
+\displaystyle \frac{1}{(\partial_{ $\lambda$}P)(t,$\lambda$_{0})}\frac{1}{$\lambda$_{2}}\sum_{k\geq 2}\frac{$\lambda$_{2}^{k}}{k!}(\partial_{ $\lambda$}^{k}P(t, $\lambda$_{0}))\frac{\partial^{2}}{\partial y^{2}}\hat{ $\lambda$}_{B}^{*k}(z, y) ,

where

(1.22) \displaystyle \mathcal{L}=\{(\frac{dz}{dt})^{-2}\frac{d^{2}z}{dt^{2}}+2$\lambda$_{2}^{-1}\frac{d$\lambda$_{2}}{dz}\}\frac{\partial}{\partial z}+(\frac{dz}{dt})^{-2}\frac{d^{2}z}{dt^{2}}$\lambda$_{2}^{-1}\frac{d$\lambda$_{2}}{dz}+$\lambda$_{2}^{-1}\frac{d^{2}$\lambda$_{2}}{dz^{2}}.
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This \hat{ $\lambda$}_{B}(z, y) also satisfies the initial conditions

(1.23) \hat{ $\lambda$}_{B}(z, 0)=0 and \displaystyle \frac{\partial\hat{ $\lambda$}_{B}}{\partial y}(z, 0)=1.
To study a solution of (1.21), we use

Proposition 1.1. Let \hat{ $\lambda$}_{B}(z, y) satisfy

(1.24) (\displaystyle \frac{\partial^{2}}{\partial z^{2}}-\frac{\partial^{2}}{\partial y^{2}})\hat{ $\lambda$}_{B}(z, y)= $\Phi$(z, y)
and initial conditions

(1.25) \hat{ $\lambda$}_{B}(z, 0)=0 and \displaystyle \frac{\partial\hat{ $\lambda$}_{B}}{\partial y}(z, 0)=g(z) ,

where

(1.26)  $\Phi$(z, y)=\displaystyle \sum f_{k}^{(0)}m(z)\hat{ $\lambda$}_{B}^{*k}(z, y)+\sum f_{k}^{(1)}m(z)\frac{\partial\hat{ $\lambda$}_{B}}{\partial z}*\hat{ $\lambda$}_{B}^{*k}(z, y)
k=1 k=0

+\displaystyle \sum f_{k}^{(2)}m(Z)\frac{\partial^{2}\hat{ $\lambda$}_{B}}{\partial z^{2}}*\hat{ $\lambda$}_{B}^{*k}(z, y)+\sum f_{k}^{(3)}m(z)\frac{\partial^{2}}{\partial y^{2}}\hat{ $\lambda$}_{B}^{*k}(z, y)
k=1 k=2

and m is a positive integer. Assume that

(1.27) all f_{k}^{(j)}(z) and g(z) are holomorphic and bounded on E_{r}^{1}=\{z\in \mathbb{C} :

jm z|\leq r\}

for a positive constant r . Then \hat{ $\lambda$}_{B}(z, y) is holomorphic on

(1.28) E_{r/2}^{2}= { (z, y)\in \mathbb{C}^{2} : jm z|\leq r/2 , jm y|\leq r/2 }

and satises the following estimates foor positive constants C_{1} and C_{2} :

(1.29) |\hat{ $\lambda$}_{B}(z, y)|\leq C_{1}\exp[C_{2}|y|].

Indeed, we can rewrite the differential equation to the following integral equation:

(1.30) \displaystyle \hat{ $\lambda$}_{B}(z, y)=\frac{1}{2}\int_{z-y}^{z+y}g(z')dz'-\frac{1}{2}\int_{0}^{y}\int_{z-y+y}^{z+y-y'} $\Phi$(z', y')dz'dy',
and, employing the iteration method, we can show the above proposition. (See [KKo]
for the details.)
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Now, our task is to examine the conditions for a 0‐parameter solution so that we

can apply Proposition 1.1 to it. Our first assumption is

(1.31) there exists a neighborhood U of t=t_{0} and singular points  t=t\pm \mathrm{o}\mathrm{f} $\omega$ of

order smaller than -1 such that the endpoints of a curve $\Gamma$_{\overline{t}} are t_{+} and t_{-}

for each point \check{t} in U,

where $\Gamma$_{\overline{t}} denotes an integral curve of {\rm Im} $\omega$=0 that passes through a point \check{t} . This con‐

dition guarantees that z(t) extends to \pm\infty along $\Gamma$_{\overline{t}} without encountering any singular

point of it. Let Û denote \displaystyle \bigcup_{\overline{t}\in U}$\Gamma$_{\overline{t}} . Then we can take r>0 so that E_{r}^{1} \subset z(Û) and  z(t)
is locally biholomorphic on Û.

Our second assumption is

(1.32) Û does not contain  t=\infty in its interior.

(Cf. Remark 1.3 and Remark 1.7.)

Remark 1.3. When we take  s=1/t as a coordinate variable, (1.1) is rewritten

as follows:

(1.1 ) \displaystyle \frac{d^{2} $\lambda$}{ds^{2}}=$\eta$^{2}\frac{P(s^{-1}, $\lambda$)}{s^{4}Q(s^{-1}, $\lambda$)}-2\frac{1}{s}\frac{d $\lambda$}{ds}.
It does not have the form of (1.1). Therefore, when we restrict our equation to the form

(1.1 ), we assume that the discussion is made on \mathbb{C} . On the other hand, since P(t,  $\lambda$)
and Q(t,  $\lambda$) are polynomials, we may regard that (1.1 ) has the form of (0.4). Hence, as

we will mention in Remark 1.7, when we extend the following discussion to (0.4), we do

not have to pay special attention to the point \infty\in \mathbb{P}^{1}.

By taking the form (1.8) of $\lambda$_{2} into account, it suffices to confirm the holomorphy
and the boundedness of the following terms on Û:

(1.33) \displaystyle \frac{(\partial_{ $\lambda$}^{k}P)(t,$\lambda$_{0})$\lambda$_{2}^{k-1}}{(\partial_{ $\lambda$}P)(t,$\lambda$_{0})} and \displaystyle \frac{(\partial_{ $\lambda$}^{k}Q)(t,$\lambda$_{0})$\lambda$_{2}^{k}}{Q(t,$\lambda$_{0})} (k\geq 1) .

Indeed, under the assumptions (1.31) and (1.32) (and modifying the gauge transforma‐

tion (1.20) if necessary), we may assume that the coefficients of \mathcal{L} are holomorphic and

bounded on Û.
To guarantee the holomorphy of all terms in (1.33) on Û, we impose the third

assumption:

(1.34) the discriminant Discp(t) of P(t,  $\lambda$) and the resultant {\rm Res}_{(P,Q)}(\mathrm{t}) of P(t,  $\lambda$)
and Q(t,  $\lambda$) do not vanish on Û.
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Note that the condition (1.34) is violated at finitely many points on Û if Discp(t) and

{\rm Res}_{(P,Q)}(\mathrm{t}) are not identically equal to 0 . However, if the terms (1.33) are holomorphic

there, then Theorem 1.2 below holds even though (1.34) is violated.

To give the last assumption to ensure the boundedness of the terms (1.33), we

prepare some notations. Under the assumption (1.34), by shrinking U if necessary, it

suffices to show the boundedness of them at the singular points  t\pm\cdot For simplicity, we

assume that  t_{+}\in \mathbb{C} and $\lambda$_{0}(t) behaves as

(1.35) $\lambda$_{0}(t)=$\beta$_{+}(t-t_{+})^{$\alpha$_{+}}+o((t-t_{+})^{$\alpha$_{+}})

with  $\alpha$+\in \mathbb{Q} and  $\beta$+\neq 0 when t tends to t_{+} . Let F(t,  $\lambda$)=F_{n}(t)$\lambda$^{n}+\cdots+F_{0}(t)\in \mathbb{C}[t,  $\lambda$]
be a polynomial and assume that F_{k}(t)(k=0,1, \cdots; n) behave as

(1.36) F_{k}(t)=F_{k}^{(0)}(t-t_{+})^{$\nu$_{k}}+o((t-t_{+})^{$\nu$_{k}})
with F_{k}^{(0)}\neq 0 and v_{k}\in \mathbb{Z}_{\geq 0}=\{0 , 1, 2, \} . (When F_{k}\equiv 0 ,

we consider that v_{k}=+\infty. )
Then, we define an index \mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{0}}^{t_{+}}(F) (relevant to $\lambda$_{0}(t) ) by

(1.37) \displaystyle \mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{0}}^{t_{+}}(F)=\min_{0\leq k\leq n}\{k$\alpha$_{+}+v_{k}\}
and a polynomial D_{F}^{t_{+}}( $\lambda$) by

(1.38) D_{F}^{t_{+}}( $\lambda$)=\displaystyle \sum_{k}F_{k}^{(0)}$\lambda$^{k},
where the sum is taken over k that give the minimum in (1.37), i.e., k$\alpha$_{+}+v_{k}=\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{0}}^{t_{+}}(F) .

In the same way, we can define an index \mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{0}}^{t-}(F) and a polynomial D_{F}^{t}-( $\lambda$) at t=t_{-}

for

(1.35 ) $\lambda$_{0}(t)=$\beta$_{-}(t-t_{-})^{ $\alpha$-}+o((t-t_{-})^{ $\alpha$-}) .

We note that the constant  $\beta$+\mathrm{i}\mathrm{n}(1.35) (resp., $\beta$_{-} in (1.35') ) is given by one of the roots

of D_{P}^{t_{+}}( $\lambda$)=0 (resp., D_{P}^{t_{-}}( $\lambda$)=0 ).
Our last assumption is

(1.39) D_{\partial_{ $\lambda$}P}^{t\pm}($\beta$_{\pm})\neq 0 and D_{Q}^{t\pm}($\beta$_{\pm})\neq 0 hold.

This condition (1.39) entails that the order of \partial_{ $\lambda$}P(t, $\lambda$_{0}(t)) (resp., Q(t, $\lambda$_{0}(t)) ) at  t=t\pm

coincides with the index \mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{0}}^{t\pm}(\partial_{ $\lambda$}P) (resp., \mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{0}}^{t\pm}(Q) ). We also note that the first

condition D_{\partial_{ $\lambda$}P}^{t\pm}($\beta$_{\pm})\neq 0 is equivalent to that the leading term $\beta$_{\pm}(t-t\pm)^{ $\alpha$\pm} of $\lambda$_{0}(t)
at t=t\pm \mathrm{i}\mathrm{s} different from that of the other roots of P(t,  $\lambda$)=0 . In this sense, if (1.39)
holds at  t=t\pm ,

we call  t=t\pm \mathrm{a} nondegenerate singular point. Further, we can derive

the boundedness of the terms (1.33) at  t=t\pm from (1.31) and (1.39).
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Remark 1.4. When  t_{+}=\infty , by taking  s=t^{-1} as a coordinate variable, we can

define the index \mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{0}}^{t_{+}}(F) and the polynomial D_{F}^{t_{+}}( $\lambda$) in the same manner as above.

Remark 1.5. If the order of the singular points  t=t\pm \mathrm{o}\mathrm{f} $\omega$ is strictly less than

-1
,

we can modify the condition (1.39). See [KKo] for details.

Now we state our main theorem:

Theorem 1.2. Let $\lambda$_{0}(t) be a root of (1.3) and assume that (1.31), (1.32), (1.34)
and (1.39) hold. Then the 0 ‐parameter solution  $\lambda$(t,  $\eta$) of (1.1) that has $\lambda$_{0}(t) as its

initial part is Borel summable on Û. More precisely, the Borel transfO rm \tilde{ $\lambda$}_{B}(t, y) of

 $\lambda$(t,  $\eta$)-$\lambda$_{0}(t) satises the following estimates on Û \times\{y\in \mathbb{C} : |{\rm Im} y|\leq r\} for positive
constants r, C_{1} and C_{2} :

(1.40) |\tilde{ $\lambda$}_{B}(t, y)|\leq C_{1}(|$\lambda$_{2}(t)|+1)\exp[C_{2}|y|].

Remark 1.6. We give a remark here on our results of the Borel summability of

0‐parameter solutions in the case when R_{1}\not\equiv 0 in (0.4). In this case, $\lambda$_{2}(t) is given by

(1.8 ) $\lambda$_{2}(t)=\displaystyle \frac{Q(t,$\lambda$_{0})}{(\partial_{ $\lambda$}P)(t,$\lambda$_{0})}(\frac{d^{2}$\lambda$_{0}}{dt^{2}}-\frac{R_{1}(t,$\lambda$_{0},\dot{ $\lambda$}_{0})}{R_{2}(t,$\lambda$_{0})}) .

In addition to the assumptions of Theorem 1.2, if the following terms (1.41) and (1.42)
are holomorphic and bounded on Û, we obtain the same results as Theorem 1.2:

(1.41) \displaystyle \frac{(\partial_{ $\lambda$}^{k}R_{2})(t,$\lambda$_{0})$\lambda$_{2}^{k}}{R_{2}(t,$\lambda$_{0})} and \displaystyle \frac{Q(t,$\lambda$_{0})}{(\partial_{ $\lambda$}P)(t,$\lambda$_{0})}\frac{d^{2}$\lambda$_{0}}{dt^{2}}\frac{(\partial_{ $\lambda$}^{k}R_{2})(t,$\lambda$_{0})$\lambda$_{2}^{k-1}}{R_{2}(t,$\lambda$_{0})}
for k\geq 0 and

(1.42) \displaystyle \frac{Q(t,$\lambda$_{0})}{(\partial_{ $\lambda$}P)(t,$\lambda$_{0})}\frac{(\partial_{ $\lambda$}^{k_{1}}\partial_{\dot{ $\lambda$}}^{k_{2}}R_{1})(t,$\lambda$_{0},\dot{ $\lambda$}_{0})$\lambda$_{2}^{k_{1}-1}\dot{ $\lambda$}_{2}^{k_{2}}}{R_{2}(t,$\lambda$_{0})}
for \{k_{1}, k_{2}\geq 0\}\backslash \{k_{1}=k_{2}=0\} . (See [KKo] for details.)

Remark 1.7. In parallel with Remark 1.3, when we take s=1/t as a coordinate

variable, (0.4) is rewritten as follows:

(0.4 ) \displaystyle \frac{d^{2} $\lambda$}{ds^{2}}=$\eta$^{2}\frac{P(s^{-1}, $\lambda$)}{s^{4}Q(s^{-1}, $\lambda$)}-2\frac{1}{s}\frac{d $\lambda$}{ds}+\frac{R_{1}(s^{-1}, $\lambda$,-s^{2}d $\lambda$/ds)}{s^{4}R_{2}(s^{-1}, $\lambda$)}.
We may regard that (0.4 ) has the form of (0.4). Therefore, when the terms correspond‐

ing to (1.33), (1.41) and (1.42) for (0.4 ) are holomorphic and bounded at s=0 ,
we can

extend Theorem 1.2 to the case where Û contains  t=\infty in its interior.
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§2. Singularity structure of  $\omega$ for the Painlevé equations

In the previous section, we gave a condition which guarantees the Borel summability
of a  0‐parameter solution of (0.4) (cf. Theorem 1.2 and Remark 1.6). In view of the

assumption (1.31), we lead to the notion of Stokes geometry such as turning points and

Stokes curves.

Denition 2.1. We call t=t_{0} a turning point of a 0‐parameter solution of

(0.4) when the order of a 1‐form  $\omega$ defined by (1.18) at  t=t_{0} is greater than -1
, i.e.,

 $\omega$ behaves as

(2.1)  $\omega$=\left\{\begin{array}{ll}
(C_{0}(t-t_{0})^{ $\gamma$}+o((t-t_{0})^{ $\gamma$}))dt & \mathrm{a}\mathrm{t} t=t_{0}\in \mathbb{C}\\
(C_{0}t^{- $\gamma$-2}+o(t^{- $\gamma$-2}))dt & \mathrm{a}\mathrm{t} t=\infty
\end{array}\right.
with C_{0}\neq 0 and  $\gamma$>-1 . Especially, when

(2.2) \partial_{ $\lambda$}P(t_{0}, $\beta$_{0})=0,

(2.3) \partial_{ $\lambda$}^{2}P(t_{0}, $\beta$_{0})\neq 0,

(2.4) \partial_{t}P(t_{0}, $\beta$_{0})\neq 0,

(2.5) Q(t_{0}, $\beta$_{0})\neq 0

hold for a root $\beta$_{0} of P(t_{0}, $\beta$_{0})=0 ,
we call t=t_{0} a simple turning point of the

corresponding 0‐parameter solution. Further, the integral curves of {\rm Im} $\omega$=0 that

emanate from turning points are called Stokes curves.

Remark 2.1. In s‐variable with s=t^{-1}
,

the behavior (2.1) of  $\omega$ at  t=\infty is

rewritten as follows:

(2.6)  $\omega$=(-C_{0}s^{ $\gamma$}+o(s^{ $\gamma$}))ds at s=0.

Remark 2.2. Our definition of turning points and Stokes curves coincides with

that of [KT] for the Painlevé equations. In general, turning points of the Painlevé

equations except for t=0 of \mathrm{P}_{\mathrm{I}\mathrm{I}\mathrm{I}}, t=0 of \mathrm{P}_{\mathrm{V}} and t=0 , 1, \infty of \mathrm{P}_{\mathrm{V}\mathrm{I}} are simple turning

points. However, when parameters of the Painlevé equations satisfy some relations,
these simple turning points become �double turning points�. See [T2, Proposition 2.4]
for precise conditions.

It is clear from the definition that the assumption (1.31) does not hold at a point on

Stokes curves. Therefore, Stokes curves play such a role that they become boundaries

of the regions in which the assumption (1.31) is expected to hold (these regions are

called Stokes regions). Integral curves of {\rm Im} $\omega$=0 are usually studied by numerical

computation and we do not consider it here further.
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Specifying the location of turning points and verifying the other assumptions of

Theorem 1.2 can be done in an algebraic manner. An important step towards them

is to study the singularity structure of a 1‐form  $\omega$ defined by (0.5). To illustrate the

analysis of the singularity structure of  $\omega$
,

we study the Painlevé equations with a large

parameter introduced by [KT] in the remaining part of this section. As we will see

below, singular points of  $\omega$ for the Painlevé equations of order smaller than -1 satisfy

(1.39) when parameters in the equations are taken generically. Further, we will remark

on the properties of their turning points. (See also [T2].)

Example 2.2 (the first Painlevé equation). We consider the first Painlevé equa‐

tion:

(P) \displaystyle \frac{d^{2} $\lambda$}{dt^{2}}=$\eta$^{2}(6$\lambda$^{2}+t) .

The 1‐form $\omega$_{\mathrm{I}} defined by (1.18) for (P) is given by

(2.7) $\omega$_{\mathrm{I}}=\sqrt{12 $\lambda$(t)}dt,

and the roots of P_{\mathrm{I}}(t,  $\lambda$)=6$\lambda$^{2}+t are $\lambda$^{(l)}(t)=(-1)^{l}\sqrt{-1}/6t^{1/2}(l=1,2) . Since the

discriminant Disc(t) of P_{\mathrm{I}}(t,  $\lambda$) is

(2.8) Disc(t) =144t,

we find that $\omega$_{\mathrm{I}} is holomorphic and does not vanish except for t=0 and \infty.

First, we focus on the behavior of $\omega$_{\mathrm{I}} at t=0 . Obviously, t=0 is a simple turning

point of $\lambda$^{(l)}(t)(l=1,2) . Then, the index (1.37) for \partial_{ $\lambda$}P_{\mathrm{I}} relevant to these $\lambda$^{(l)}(t) at

t=0 and the polynomial (1.38) are respectively given by

(2.9) \displaystyle \mathrm{i}\mathrm{n}\mathrm{d}_{ $\lambda$(l)}^{0}(\partial_{ $\lambda$}P_{\mathrm{I}})=\frac{1}{2}
and

(2.10) D_{P_{\mathrm{I}}}^{0,(l)} () =6$\beta$^{2}+1=0 (l=1,2) .

Since D_{P_{\mathrm{I}}}^{0,(l)} () has no multiple root, D_{\partial_{ $\lambda$}P_{\mathrm{I}}}^{0,(l)}(\pm\sqrt{-1/6})\neq 0 ,
and hence, the order $\gamma$_{0}^{(l)} of

$\omega$_{\mathrm{I}} for $\lambda$^{(l)}(l=1,2) at t=0 is given by

(2.11) $\gamma$_{0}^{(l)}=\displaystyle \frac{1}{2}\mathrm{i}\mathrm{n}\mathrm{d}_{ $\lambda$(l)}^{0} (@p)=\frac{1}{4}.
Second, let us consider the behavior of $\omega$_{\mathrm{I}} at  t=\infty . Since $\lambda$^{(l)}(s)=(-1)^{l}\sqrt{-1}/6s^{-1/2}

with s=t^{-1}
,

the index \mathrm{i}\mathrm{n}\mathrm{d}_{ $\lambda$(l)}^{\infty}(\partial_{ $\lambda$}P_{\mathrm{I}}) at  t=\infty is given by

(2.12) \displaystyle \mathrm{i}\mathrm{n}\mathrm{d}_{ $\lambda$(l)}^{\infty} (@p)=-\frac{1}{2} (l=1,2) .
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Since $\omega$_{\mathrm{I}} is represented as

(2.13) $\omega$_{\mathrm{I}}=-\sqrt{12 $\lambda$(s)}s^{-2}ds

in s‐variable, we find the order $\gamma$_{\infty}^{(l)} of $\omega$_{\mathrm{I}} for $\lambda$^{(l)}(l=1,2) at  t=\infty is given by

(2.14) $\gamma$_{\infty}^{(l)}=\displaystyle \frac{1}{2}\mathrm{i}\mathrm{n}\mathrm{d}_{ $\lambda$(l)}^{\infty} (@p )—2 =-\displaystyle \frac{9}{4} (l=1,2) .

1 = 1

Table 1. The leading term $\beta$^{(l)}t^{-$\alpha$^{(l)}} of $\lambda$^{(l)}(t) and the order $\gamma$_{\infty}^{(l)} of $\omega$_{\mathrm{I}} at t=\infty.

Remark 2.3. We find that the above discussion indicates the Borel summability
of 0‐parameter solutions of (P) except on the Stokes curves emanating from t=0,
and hence, we can take the Borel sum of them. On the other hand, as is discussed

in [T1], t=0 actually behaves as a turning point and 0‐parameter solutions of (P)
are not Borel summable on these Stokes curves. Hence, when we consider the analytic
continuation of the Borel sum of a 0‐parameter solution across a Stokes curve, Stokes

phenomena occur, and a so‐called ( (1‐parameter solution� appears. We can also show

the generalized Borel summability of it. See [K] for the details. Here, we mention that

a similar kind of formal solutions called �transseries solutions� are studied in [C], which

are the formal exponential series solutions at an irregular singular point of nonlinear

ordinary differential equations. Further, the generalized Borel summability of transseries

solutions is discussed there.

Example 2.3 (the second Painlevé equation). Next, we consider the second Painlevé

equation

(P) \displaystyle \frac{d^{2} $\lambda$}{dt^{2}}=$\eta$^{2}(2$\lambda$^{3}+t $\lambda$+c) .

We discuss on the singular points of

(2.15) $\omega$_{\mathrm{I}\mathrm{I}}=\sqrt{6$\lambda$^{2}(t)+t}dt

with a root  $\lambda$(t) of P_{\mathrm{I}\mathrm{I}}(t,  $\lambda$)=2$\lambda$^{3}+t $\lambda$+c . The discriminant Disc(t) of P_{\mathrm{I}\mathrm{I}}(t,  $\lambda$) is

given by

(2.16) Disc(t) =8(2t^{3}+27c^{2}) .
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Therefore, when c\neq 0 , Disc(t) =0 has three distinct roots, i.e., t=t_{j}:=3$\theta$^{j}(c^{2}/2)^{1/3}
(j=0,1,2) with  $\theta$=\exp[2 $\pi$\sqrt{-1}/3] . In what follows, we assume that c\neq 0 . We

examine the behavior of the roots of P_{\mathrm{I}\mathrm{I}}(t,  $\lambda$)=0 and $\omega$_{\mathrm{I}\mathrm{I}} for the roots at t=t_{j} . We

first note that three roots of P_{\mathrm{I}\mathrm{I}}(t,  $\lambda$)=0 behave as $\lambda$_{j}^{(l)}(t)=$\beta$_{j}^{(l)}+o(1)(l=1,2,3) at

t=t_{j} ,
where \{$\beta$_{j}^{(l)}\}_{l=1}^{3} are the roots of

(2.17) D_{P_{\mathrm{I}\mathrm{I}}}^{t_{j},(l)} () =2$\beta$^{3}+t_{j} $\beta$+c (l=1,2,3) .

Since \mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}_{\mathrm{I}\mathrm{I}}(t_{j})=0 ,
two of them coincide. Let $\beta$_{j}^{(1)}=$\beta$_{j}^{(2)} be such roots. Then,

we immediately find that t=t_{j} is a simple turning point of $\lambda$_{j}^{(l)}(t)(l=1,2) . Since

\partial_{ $\beta$}D_{P_{\mathrm{I}\mathrm{I}}}^{t_{j},(1)}($\beta$_{j}^{(1)})=6($\beta$_{j}^{(1)})^{2}+t_{j}=0 ,
the Newton polygon of \tilde{P}_{\mathrm{I}\mathrm{I}}(t,\tilde{ $\lambda$}) :=P_{\mathrm{I}\mathrm{I}}(t, $\beta$_{j}^{(1)}+\tilde{ $\lambda$})=

2\tilde{ $\lambda$}^{3}+6$\beta$_{j}^{(1)}\tilde{ $\lambda$}^{2}+(t-t_{j})\tilde{ $\lambda$}+$\beta$_{j}^{(1)}(t-t_{j}) at t=t_{j} is given by Figure 1.

Figure 1. Newton Polygon of \tilde{P}_{\mathrm{I}\mathrm{I}}(t,\tilde{ $\lambda$}) at t=t_{j}.

Therefore, two of the roots \tilde{ $\lambda$}_{j}^{(1)}(t) and \tilde{ $\lambda$}_{j}^{(2)}(t) of \tilde{P}_{\mathrm{I}\mathrm{I}}(t,\tilde{ $\lambda$}) behave as

(2.18) \tilde{ $\lambda$}_{j}^{(l)}(t)=\tilde{ $\beta$}_{j}^{(l)}(t-t_{j})^{1/2}+o((t-t_{j})^{1/2}) (l=1,2) ,

where \tilde{ $\beta$}_{j}^{(l)} are the two distinct roots of

(2.19) D_{\tilde{P}_{\mathrm{I}\mathrm{I}}}^{t_{j},(l)}(\tilde{ $\beta$})=6\tilde{ $\beta$}^{2}+1=0 (l=1,2) ,

and hence,

(2.20) \displaystyle \mathrm{i}\mathrm{n}\mathrm{d}_{\frac{t}{ $\lambda$}(l)}^{j}j(\partial_{\overline{ $\lambda$}}\tilde{P}_{\mathrm{I}\mathrm{I}})=\min\{1, \frac{1}{2}, 2\cdot \frac{1}{2}\}=\frac{1}{2} (l=1,2) .

Therefore, the order $\gamma$_{j}^{(l)} of $\omega$_{\mathrm{I}\mathrm{I}} for $\lambda$_{j}^{(l)}(t)(l=1,2) at t=t_{j} is given by

(2.21) $\gamma$_{j}^{(l)}=\displaystyle \frac{1}{2}\mathrm{i}\mathrm{n}\mathrm{d}_{\tilde{ $\lambda$}_{j}^{(l)}}^{t_{j}}(\partial_{\overline{ $\lambda$}}\tilde{P}_{\mathrm{I}\mathrm{I}})=\frac{1}{4} (l=1,2) .



204 Shingo Kamimoto and Tatsuya Koike

Remark 2.4. Since D_{\partial_{ $\lambda$}P_{\mathrm{I}\mathrm{I}}}^{t_{j},(1)}($\beta$_{j}^{(1)})=\partial_{ $\beta$}D_{P_{\mathrm{I}\mathrm{I}}}^{t_{j},(1)}($\beta$_{j}^{(1)})=0 ,
we find that t=t_{j}(j=

1
, 2, 3) are degenerate singular points, and hence,

(2.22) $\gamma$_{j}^{(l)}>\displaystyle \frac{1}{2}\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{j}^{(1)}}^{t_{j}}(\partial_{ $\lambda$}P_{\mathrm{I}\mathrm{I}})=0.
However, by considering \tilde{ $\lambda$}_{j}^{(l)}(t)(l=1,2) and \tilde{P}_{\mathrm{I}\mathrm{I}}(t,\tilde{ $\lambda$}) instead of $\lambda$_{j}^{(l)}(t)(l=1,2) and

P_{\mathrm{I}\mathrm{I}}(t,  $\lambda$) ,
we can reduce these singular points to nondegenerate ones as above. Then, we

can measure the order $\gamma$_{j}^{(l)} by the index \mathrm{i}\mathrm{n}\mathrm{d}_{\tilde{ $\lambda$}_{j}^{(l)}}^{t_{j}} (@ $\lambda$-\tilde{P}_{\mathrm{I}\mathrm{I}}) as (2.21).

On the other hand, since \partial_{ $\beta$}D_{P_{\mathrm{I}\mathrm{I}}}^{t_{j},(3)}($\beta$_{j}^{(3)})\neq 0 ,
we find that the other root $\lambda$_{j}^{(3)}(t)

is holomorphic at t=t_{j} ,
and hence, $\omega$_{\mathrm{I}\mathrm{I}} for $\lambda$_{j}^{(3)}(t) is also holomorphic and does not

vanish there.

Now, let us focus on the singular points of $\omega$_{\mathrm{I}\mathrm{I}} at  t=\infty . We find that three roots

of \tilde{P}_{\mathrm{I}\mathrm{I}}(t,\tilde{ $\lambda$}) behave as Table 2 below.

1 = 1

Table 2. The leading term $\beta$_{\infty}^{(l)}t^{-$\alpha$_{\infty}^{(l)}} of $\lambda$_{\infty}^{(l)}(t) and the order $\gamma$_{\infty}^{(l)} of $\omega$_{\mathrm{I}\mathrm{I}} at t=\infty.

Table 2 indicates that D_{P_{\mathrm{I}\mathrm{I}}}^{\infty,(l)} () (l=1,2,3) has no multiple root. Hence, the order

\mathrm{o}\mathrm{r}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(\partial_{ $\lambda$}P_{\mathrm{I}\mathrm{I}}) of \partial_{ $\lambda$}P_{\mathrm{I}\mathrm{I}}(t, $\lambda$_{\infty}^{(l)}(t)) at  t=\infty is given by

(2.23) \displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(@P)=\mathrm{i}\mathrm{n}\mathrm{d}_{\tilde{ $\lambda$}_{\infty}^{(l)}}^{\infty}(@P)=\min\{2$\alpha$_{\infty}^{(l)}, -1\}.
Therefore, we find that the order $\gamma$_{\infty}^{(1)} of $\omega$_{\mathrm{I}\mathrm{I}} for $\lambda$_{\infty}^{(1)}(t) at  t=\infty is given by

(2.24) $\gamma$_{\infty}^{(1)}=\displaystyle \frac{1}{2}\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{\infty}^{(1)}}^{\infty}(\partial_{ $\lambda$}P_{\mathrm{I}\mathrm{I}})-2=-\frac{5}{2}.
On the other hand, the order $\gamma$_{\infty}^{(l)} of $\omega$_{\mathrm{I}\mathrm{I}} for the other roots is given by

(2.25) $\gamma$_{\infty}^{(l)}=\displaystyle \frac{1}{2}\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(\partial_{ $\lambda$}P_{\mathrm{I}\mathrm{I}})-2=-\frac{5}{2} (l=2,3) .

Example 2.4 (the third Painlevé equation). Let us consider the third Painlevé

equation

(\mathrm{P}_{\mathrm{I}\mathrm{I}\mathrm{I}}) \displaystyle \frac{d^{2} $\lambda$}{dt^{2}}=\frac{1}{ $\lambda$}(\frac{d $\lambda$}{dt})^{2}-\frac{1}{t}\frac{d $\lambda$}{dt}+8$\eta$^{2}[2c_{\infty}$\lambda$^{3}+\frac{c_{\infty}'}{t}$\lambda$^{2}-\frac{c_{0}'}{t}-2\frac{c_{0}}{ $\lambda$}].
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In what follows, we assume that c_{\infty}, c_{\infty}' , cÓ and c_{0} are not equal to 0 . Let $\omega$_{\mathrm{I}\mathrm{I}\mathrm{I}} be a

1‐form defined by

(2.26) $\omega$_{\mathrm{I}\mathrm{I}1}=\sqrt{\frac{8(8c_{\infty}t$\lambda$^{3}(t)+3c_{\infty}'$\lambda$^{2}(t)-c_{0}')}{t $\lambda$(t)}}dt
with a root  $\lambda$(t) of P_{\mathrm{I}\mathrm{I}\mathrm{I}}(t,  $\lambda$)=8(2c_{\infty}t$\lambda$^{4}+c_{\infty}'$\lambda$^{3}-c_{0}' $\lambda$-2c_{0}t) . Since the discriminant

\mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}_{\mathrm{I}\mathrm{I}}(\mathrm{t}) of P_{\mathrm{I}\mathrm{I}\mathrm{I}}(t,  $\lambda$) and the resultant \mathrm{R}\mathrm{e}\mathrm{s}_{\mathrm{I}\mathrm{I}}(\mathrm{t}) of P_{\mathrm{I}\mathrm{I}\mathrm{I}}(t,  $\lambda$) and  Q_{\mathrm{I}\mathrm{I}\mathrm{I}}(t,  $\lambda$)=t $\lambda$ are

respectively given by

(2.27)
\mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}_{\mathrm{I}\mathrm{I}\mathrm{I}}(t)=N_{1}c_{\infty}t((c_{\infty}')^{3}(c_{0}')^{3}-(27c_{\infty}^{2}(c_{0}')^{4}+27(c_{\infty}')^{4}c_{0}^{2}-6c_{\infty}(c_{\infty}')^{2}(c_{0}')^{2}c_{0})t^{2}

+768c_{\infty}^{2}c_{\infty}'c_{0}'c_{0}^{2}t^{4}-4096c_{\infty}^{3}c_{0}^{3}t^{6})

and

(2.28) {\rm Res}_{\mathrm{I}\mathrm{I}\mathrm{I}}(t)=N_{2}c_{0}t^{5}

with some integers N_{1} and N_{2}, $\omega$_{\mathrm{I}\mathrm{I}\mathrm{I}} may have six singular points \{t_{j}\}_{j=1}^{6} except for

t=0 and \infty in general. Indeed, the discriminant of \mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}_{\mathrm{I}\mathrm{I}}(\mathrm{t}) is written as

(2.29) Nc_{\infty}^{25}(c_{\infty}')^{9}(c_{0}')^{9}c_{0}^{12}(c_{\infty}(c_{0}')^{2}-(c_{\infty}')^{2}c_{0})^{8}(c_{\infty}(c_{0}')^{2}+(c_{\infty}')^{2}c_{0})^{4}

with some integer N
,
and hence, \mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}_{\mathrm{I}\mathrm{I}}(\mathrm{t}) has seven distinct roots when it does not van‐

ish. Since \mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}_{\mathrm{I}\mathrm{I}\mathrm{I}}(t_{j})=0(j=1,2, \cdots; 6) ,
two of the roots $\beta$_{j}^{(1)} and $\beta$_{j}^{(2)} of P_{\mathrm{I}\mathrm{I}\mathrm{I}}(t_{j},  $\beta$)=0

coincide. Then, we find that t=t_{j} are simple turning points and that two of the roots

\tilde{ $\lambda$}_{j}^{(1)}(t) and \tilde{ $\lambda$}_{j}^{(2)}(t) of \tilde{P}_{\mathrm{I}\mathrm{I}\mathrm{I}}(t,\tilde{ $\lambda$}) :=P_{\mathrm{I}\mathrm{I}\mathrm{I}}(t, $\beta$_{j}^{(1)}+\tilde{ $\lambda$}) behave as

(2.30) \tilde{ $\lambda$}_{j}^{(l)}(t)=\tilde{ $\beta$}_{j}^{(l)}(t-t_{j})^{1/2}+o((t-t_{j})^{1/2}) ,

where \tilde{ $\beta$}_{j}^{(l)} are the two distinct roots of

(2.31) D_{\tilde{P}_{\mathrm{I}\mathrm{I}\mathrm{I}}}^{t_{j},(l)}(\displaystyle \tilde{ $\beta$})=\frac{1}{2}\partial_{ $\lambda$}^{2}P_{\mathrm{I}\mathrm{I}\mathrm{I}}(t_{j}, $\beta$_{j}^{(1)})\tilde{ $\beta$}^{2}+\partial_{t}P_{\mathrm{I}\mathrm{I}\mathrm{I}}(t_{j}, $\beta$_{j}^{(1)})=0 (l=1,2) .

Indeed, \partial_{ $\lambda$}^{2}P_{\mathrm{I}\mathrm{I}\mathrm{I}}(t_{j}, $\beta$_{j}^{(1)}) and \partial_{t}P_{\mathrm{I}\mathrm{I}\mathrm{I}}(t_{j}, $\beta$_{j}^{(1)}) do not vanish when c_{\infty}(c_{0}')^{2}-(c_{\infty}')^{2}c_{0}\neq 0,
and hence, we can read the behavior of \tilde{ $\lambda$}_{j}^{(l)}(t)(l=1,2) at t=t_{j} from Figure 2.
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Figure 2. Newton Polygon of \tilde{P}_{\mathrm{I}\mathrm{I}\mathrm{I}}(t,\tilde{ $\lambda$}) at t=t_{j}.

Since {\rm Res}_{\mathrm{I}\mathrm{I}\mathrm{I}}(t_{j})\neq 0(j=1,2, \cdots; 6) ,
the order of Q_{\mathrm{I}\mathrm{I}\mathrm{I}}(t, $\lambda$_{j}^{(l)}(t))(l=1,2,3,4)

at t=t_{j} coincide with \mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{j}^{(l)}}^{t_{j}}(Q_{\mathrm{I}\mathrm{I}\mathrm{I}})=0 . Therefore, the order $\gamma$_{j}^{(l)} of $\omega$_{\mathrm{I}\mathrm{I}\mathrm{I}} for $\lambda$_{j}^{(l)}(t)
(l=1,2) at t=t_{j} is given by

(2.32) $\gamma$_{j}^{(l)}=\displaystyle \frac{1}{2}(\mathrm{i}\mathrm{n}\mathrm{d}_{\tilde{ $\lambda$}_{j}^{(l)}}^{t_{j}}(\partial_{\overline{ $\lambda$}}\tilde{P}_{\mathrm{I}\mathrm{I}\mathrm{I}})-\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{j}^{(l)}}^{t_{j}}(Q_{\mathrm{I}\mathrm{I}\mathrm{I}}))=\frac{1}{4} (l=1,2) .

On the other hand, we immediately see that the other roots $\lambda$_{j}^{(l)}(t)(l=3,4) are holo‐

morphic at t=t_{j} and $\omega$_{\mathrm{I}\mathrm{I}\mathrm{I}} for these roots is also holomorphic and does not vanish there

when c_{\infty}(c_{0}')^{2}+(c_{\infty}')^{2}c_{0}\neq 0 . Otherwise, one more multiple root $\beta$_{j}^{(3)}(=$\beta$_{j}^{(4)}) appears.

However, applying the same reasoning as above to the pair $\lambda$_{j}^{(3)}(t) and $\lambda$_{j}^{(4)}(t) ,
we find

that \tilde{ $\lambda$}_{j}^{(l)}(t)=$\lambda$_{j}^{(l)}(t)-$\beta$_{j}^{(l)} behave as (2.30) and $\gamma$_{j}^{(l)}=1/4 for l=3 and 4.

Now, we focus on the behavior of $\omega$_{\mathrm{I}\mathrm{I}\mathrm{I}} at t=0 . We find four roots of P_{\mathrm{I}\mathrm{I}\mathrm{I}}(t,  $\lambda$)
behave at t=0 as Table 3 below.

1 = 1

Table 3. The leading term $\beta$_{0}^{(l)}t^{$\alpha$_{0}^{(l)}} of $\lambda$_{0}^{(l)}(t) and the order $\gamma$_{0}^{(l)} of $\omega$_{\mathrm{I}\mathrm{I}\mathrm{I}} at t=0.

Since Table 3 indicates that the leading terms of these four roots are different, we

immediately see that the orders of \partial_{ $\lambda$}P_{\mathrm{I}\mathrm{I}\mathrm{I}}(t, $\lambda$_{0}^{(l)}(t)) and Q_{\mathrm{I}\mathrm{I}\mathrm{I}}(t, $\lambda$_{0}^{(l)}(t)) are simply given
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by

(2.33) \displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{$\lambda$_{0}^{(l)}}^{0}(\partial_{ $\lambda$}P_{\mathrm{I}\mathrm{I}\mathrm{I}})=\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{0}^{(l)}}^{0}(\partial_{ $\lambda$}P_{\mathrm{I}\mathrm{I}\mathrm{I}})=\min\{1+3$\alpha$_{0}^{(l)}, 2$\alpha$_{0}^{(l)}, 0\}
and

(2.34) \mathrm{o}\mathrm{r}\mathrm{d}_{$\lambda$_{0}^{(l)}}^{0}(Q_{\mathrm{I}\mathrm{I}\mathrm{I}})=\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{0}^{(l)}}^{0}(Q_{\mathrm{I}\mathrm{I}\mathrm{I}})=1+$\alpha$_{0}^{(l)}.
Hence, the order $\gamma$_{0}^{(l)} of $\omega$_{\mathrm{I}\mathrm{I}\mathrm{I}} for $\lambda$_{j}^{(l)}(t)(l=1,2,3,4) at t=0 is given by

(l) 1
(2.35) $\gamma$_{0} =2(\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{0}^{(l)}}^{0}(@_{ $\lambda$}P_{\mathrm{I}\mathrm{I}\mathrm{I}})-\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{0}^{(l)}}^{0}(Q_{\mathrm{I}\mathrm{I}\mathrm{I}})) .

Finally, we study the behavior of $\omega$_{\mathrm{I}\mathrm{I}\mathrm{I}} at  t=\infty . The behavior of the roots of

 P_{\mathrm{I}\mathrm{I}\mathrm{I}}(t,  $\lambda$) at  t=\infty is given in Table 4 below.

 1 = 1

Table 4. The leading term $\beta$_{\infty}^{(l)}t^{-$\alpha$_{\infty}^{(l)}} of $\lambda$_{\infty}^{(l)}(t) and the order $\gamma$_{\infty}^{(l)} of $\omega$_{\mathrm{I}\mathrm{I}\mathrm{I}} at t=\infty.

Since the leading terms of these four roots are different, we find

(2.36) \displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(\partial_{ $\lambda$}P_{\mathrm{I}\mathrm{I}\mathrm{I}})=\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(\partial_{ $\lambda$}P_{\mathrm{I}\mathrm{I}\mathrm{I}})=\min\{-1+3$\alpha$_{\infty}^{(l)}, 2$\alpha$_{\infty}^{(l)}, 0\},

(2.37) \mathrm{o}\mathrm{r}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(Q_{\mathrm{I}\mathrm{I}\mathrm{I}})=\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(Q_{\mathrm{I}\mathrm{I}\mathrm{I}})=-1+$\alpha$_{\infty}^{(l)}
and

(2.38) $\gamma$_{\infty}^{(l)}=\displaystyle \frac{1}{2}(\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(\partial_{ $\lambda$}P_{\mathrm{I}\mathrm{I}\mathrm{I}})-\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(Q_{\mathrm{I}\mathrm{I}\mathrm{I}}))-2,
where $\gamma$_{\infty}^{(l)}(l=1,2,3,4) are the order of $\omega$_{\mathrm{I}\mathrm{I}\mathrm{I}} for $\lambda$_{j}^{(l)}(t) at t=\infty.

Example 2.5 (the fourth Painlevé equation). We consider the fourth Painlevé

equation

(P) \displaystyle \frac{d^{2} $\lambda$}{dt^{2}}=\frac{1}{2 $\lambda$}(\frac{d $\lambda$}{dt})^{2}-\frac{2}{ $\lambda$}+2$\eta$^{2}[\frac{3}{4}$\lambda$^{3}+2t$\lambda$^{2}+(t^{2}+4c_{1}) $\lambda$-\frac{4c_{0}}{ $\lambda$}].
In what follows, we assume that c_{0}\neq 0 . Let us study the singularity structure of

(2.39) $\omega$_{\mathrm{I}\mathrm{V}}=\sqrt{\frac{3$\lambda$^{3}(t)+6t$\lambda$^{2}(t)+2(t^{2}+4c_{1}) $\lambda$(t)}{ $\lambda$(t)}}dt
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with a root  $\lambda$(t) of P_{\mathrm{I}\mathrm{V}}(t,  $\lambda$)=(3$\lambda$^{4}+8t$\lambda$^{3}+4(t^{2}+4c_{1})$\lambda$^{2}-16c_{0})/4 . Since the discrim‐

inant Disc(t) of P_{\mathrm{I}\mathrm{V}}(t,  $\lambda$) is a polynomial of degree 8 and the resultant \mathrm{R}\mathrm{e}\mathrm{s}(\mathrm{t}) of

P_{\mathrm{I}\mathrm{V}}(t,  $\lambda$) and  Q_{\mathrm{I}\mathrm{V}}(t,  $\lambda$)= $\lambda$ are given by {\rm Res}_{\mathrm{I}\mathrm{V}}(t)=Nc_{0} with some integers N, $\omega$_{\mathrm{I}\mathrm{V}} may

have eight singular points \{t_{j}\}_{j=1}^{8} except for  t=\infty in general. Indeed, the discriminant

of Disc(t) is written as

(2.40)  Nc_{0}^{19}(-4c_{1}^{2}+c_{0})^{8}(4c_{1}^{2}+3c_{0})^{2}

with some integer N
,

and hence, Disc(t) has eight distinct roots when it does not

vanish. Since \partial_{ $\lambda$}^{2}P_{\mathrm{I}\mathrm{V}}(t_{j}, $\beta$_{j}) and \partial_{t}P_{\mathrm{I}\mathrm{V}}(t_{j}, $\beta$_{j}) do not vanish when -4c_{1}^{2}+c_{0}\neq 0 for a

multiple root $\beta$_{j} of P_{\mathrm{I}\mathrm{V}}(t_{j},  $\beta$)=0 ,
we find that these singular points \{t_{j}\}_{j=1}^{8} are simple

turning points.

Now, we focus on the singular point of $\omega$_{\mathrm{I}\mathrm{V}} at  t=\infty . The leading term of the roots

of  P_{\mathrm{I}\mathrm{V}}(t,  $\lambda$) at  t=\infty is given in Table 5 below.

Table 5. The leading term $\beta$_{\infty}^{(l)}t^{-$\alpha$_{\infty}^{(l)}} of $\lambda$_{\infty}^{(l)}(t) and the order $\gamma$_{\infty}^{(l)} of $\omega$_{\mathrm{I}\mathrm{V}} at t=\infty.

Since the leading terms of these four roots are different, we find

(2.41) \displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty} (@p)=\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty} (@p)=\min\{3$\alpha$_{\infty}^{(l)}, -1+2$\alpha$_{\infty}^{(l)}, -2+$\alpha$_{\infty}^{(l)}\},

(2.42) \mathrm{o}\mathrm{r}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(Q_{\mathrm{I}\mathrm{V}})=\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(Q_{\mathrm{I}\mathrm{V}})=$\alpha$_{\infty}^{(l)},
and hence, we obtain the order $\gamma$_{\infty}^{(l)} of $\omega$_{\mathrm{I}\mathrm{V}} at t=\infty.

Example 2.6 (the fifth Painlevé equation). Let us consider the fifth Painlevé

equation:

(P) \displaystyle \frac{d^{2} $\lambda$}{dt^{2}}=(\frac{1}{2 $\lambda$}+\frac{1}{ $\lambda$-1})(\frac{d $\lambda$}{dt})^{2}-(\frac{1}{t})\frac{d $\lambda$}{dt}+\frac{( $\lambda$-1)^{2}}{t^{2}}(2 $\lambda$-\frac{1}{2 $\lambda$})
+$\eta$^{2}\displaystyle \frac{2 $\lambda$( $\lambda$-1)^{2}}{t^{2}}[(c_{0}+c_{\infty})-c_{0}\frac{1}{$\lambda$^{2}}-c_{2}\frac{t}{( $\lambda$-1)^{2}}-c_{1}t^{2}\frac{ $\lambda$+1}{( $\lambda$-1)^{3}}].

In what follows, we assume that \tilde{c}_{\infty}:=c_{0}+c_{\infty}, c_{0}, c_{1} and c_{2} are not equal to 0 . In

general,

(2.43) $\omega$_{\mathrm{V}}=\sqrt{\frac{\partial_{ $\lambda$}P_{\mathrm{V}}(t, $\lambda$(t))}{Q_{\mathrm{V}}(t, $\lambda$(t))}}dt
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has nine singular points \{t_{j}\}_{j=1}^{9} except for t=0 and \infty
,

where

(2.44)
 P_{\mathrm{V}}(t,  $\lambda$)=2(c_{0}+c_{\infty})$\lambda$^{2}( $\lambda$-1)^{3}-2c_{0}( $\lambda$-1)^{3}-2c_{2}t$\lambda$^{2}( $\lambda$-1)-2c_{1}t^{2}$\lambda$^{2}( $\lambda$+1)

=2\tilde{c}_{\infty}$\lambda$^{5}-6\tilde{c}_{\infty}$\lambda$^{4}+2(2c_{0}+3c_{\infty}-c_{2}t-c_{1}t^{2})$\lambda$^{3}

+2(2c_{0}-c_{\infty}+c_{2}t-c_{1}t^{2})$\lambda$^{2}-6c_{0} $\lambda$+2c_{0},

Q_{\mathrm{V}}(t,  $\lambda$)=t^{2} $\lambda$( $\lambda$-1) and  $\lambda$(t) is a root of P_{\mathrm{V}}(t,  $\lambda$) . Further, we find that \{t_{j}\}_{j=1}^{9} are

simple turning points.

Now, we focus on the singular points at t=0 and \infty . We first note that, at  t=0,

P_{\mathrm{V}}(t,  $\lambda$) is factorized as

(2.45) P_{\mathrm{V}}(0,  $\beta$)=2( $\beta$-1)^{3}((c_{\infty}+c_{0})$\beta$^{2}-c_{0}) .

Since P_{\mathrm{V}}(0,  $\beta$) has a multiple root  $\beta$=1 ,
we consider

(2.46) \tilde{P}_{\mathrm{V}}(t,\tilde{ $\lambda$}) :=P_{\mathrm{V}}(t, 1+\tilde{ $\lambda$})
=2\tilde{c}_{\infty}\tilde{ $\lambda$}^{5}+4\tilde{c}_{\infty}\tilde{ $\lambda$}^{4}+2(c_{\infty}-c_{2}t-c_{1}t^{2})\tilde{ $\lambda$}^{3}

-4(c_{2}t+2c_{1}t^{2})\tilde{ $\lambda$}^{2}-2(c_{2}t+5c_{1}t^{2})\tilde{ $\lambda$}-4c_{1}t^{2}

instead of P_{\mathrm{V}}(t,  $\lambda$) . When c_{\infty}\neq 0 ,
the leading term of the roots of \tilde{P}_{\mathrm{V}}(t,\tilde{ $\lambda$}) at t=0 is

given in Table 6 below.

1 = 1

Table 6. The leading term \tilde{ $\beta$}_{0}^{(l)}t^{8_{0}^{(l)}} of \tilde{ $\lambda$}_{0}^{(l)}(t) and the order $\gamma$_{0}^{(l)} of $\omega$_{\mathrm{V}} at t=0.

Then, the order $\gamma$_{0}^{(l)} of $\omega$_{\mathrm{V}} at t=0 immediately follows from the following relations:

(2.47) \displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{$\lambda$_{0}^{(l)}}^{0}(\partial_{ $\lambda$}P_{\mathrm{V}})=\mathrm{i}\mathrm{n}\mathrm{d}_{\tilde{ $\lambda$}_{0}^{(l)}}^{0}(\partial_{\overline{ $\lambda$}}\tilde{P}_{\mathrm{V}})=\min\{48_{0}^{(l)}, 38_{0}^{(l)}, 28_{0}^{(l)}, 1+8_{0}^{(l)}, 1\},

(2.48) \displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{$\lambda$_{0}^{(l)}}^{0}(Q_{\mathrm{V}})=\mathrm{i}\mathrm{n}\mathrm{d}_{\tilde{ $\lambda$}_{0}^{(l)}}^{0}(\tilde{Q}_{\mathrm{V}})=\min\{28_{0}^{(l)}, 8_{0}^{(l)}\}+2,
where \tilde{Q}_{\mathrm{V}}(t,\tilde{ $\lambda$}) :=Q_{\mathrm{V}}(t, 1+\tilde{ $\lambda$}) .

Finally, we display Table 7 below.
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1 = 1

Table 7. The leading term $\beta$_{\infty}^{(l)}t^{-$\alpha$_{\infty}^{(l)}} of $\lambda$_{\infty}^{(l)}(t) and the order $\gamma$_{\infty}^{(l)} of $\omega$_{\mathrm{V}} at t=\infty.

We can read the order $\gamma$_{\infty}^{(l)} of $\omega$_{\mathrm{V}} at  t=\infty from the Table 7 and the following
relations:

(2.49) \displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(\partial_{ $\lambda$}P_{\mathrm{V}})=\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(\partial_{ $\lambda$}P_{\mathrm{V}})=\min\{4$\alpha$_{\infty}^{(l)}, 3$\alpha$_{\infty}^{(l)}, -2+2$\alpha$_{\infty}^{(l)}, -2+$\alpha$_{\infty}^{(l)}, 0\},

(2.50) \displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(Q_{\mathrm{V}})=\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{\infty}^{(l)}}^{\infty}(Q_{\mathrm{V}})=\min\{2$\alpha$_{\infty}^{(l)}, $\alpha$_{\infty}^{(l)}\}-2.
Example 2.7 (the sixth Painlevé equation). Finally, we consider the sixth Painlevé

equation:

(P) \displaystyle \frac{d^{2} $\lambda$}{dt^{2}}=\frac{1}{2}(\frac{1}{ $\lambda$}+\frac{1}{ $\lambda$-1}+\frac{1}{ $\lambda$-t})(\frac{d $\lambda$}{dt})^{2}-(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{ $\lambda$-t})\frac{d $\lambda$}{dt}
+\displaystyle \frac{2 $\lambda$( $\lambda$-1)( $\lambda$-t)}{t^{2}(t-1)^{2}}[1-\frac{$\lambda$^{2}-2t $\lambda$+t}{4$\lambda$^{2}( $\lambda$-1)^{2}}
+$\eta$^{2}\displaystyle \{(c_{0}+c_{1}+c_{t}+c_{\infty})-c_{0}\frac{t}{$\lambda$^{2}}+c_{1}\frac{t-1}{( $\lambda$-1)^{2}}-c_{t}\frac{t(t-1)}{( $\lambda$-t)^{2}}\}]

In what follows, we assume that \tilde{c}_{\infty}:=c_{0}+c_{1}+c_{t}+c_{\infty}, c_{0}, c_{1} and c_{t} are not equal to

0. In general,

(2.51) $\omega$_{\mathrm{V}}=\sqrt{\frac{\partial_{ $\lambda$}P_{\mathrm{V}}(t, $\lambda$(t))}{Q_{\mathrm{V}}(t, $\lambda$(t))}}dt
has nine singular points \{t_{j}\}_{j=1}^{9} except for t=0 ,

1 and \infty
,

where

(2.52)  P_{\mathrm{V}\mathrm{I}}(t,  $\lambda$)=2(c_{0}+c_{1}+c_{t}+c_{\infty})$\lambda$^{2}( $\lambda$-1)^{2}( $\lambda$-t)^{2}-2c_{0}t( $\lambda$-1)^{2}( $\lambda$-t)^{2}

+2c_{1}(t-1)$\lambda$^{2}( $\lambda$-t)^{2}-2c_{t}t(t-1)$\lambda$^{2}( $\lambda$-1)^{2}

=2\tilde{c}_{\infty}$\lambda$^{6}-4\tilde{c}_{\infty}(1+t)$\lambda$^{5}

+2(-c_{1}+\tilde{c}_{\infty}+(-c_{0}+c_{1}+c_{t}+4\tilde{c}_{\infty})t+(-c_{t}+\tilde{c}_{\infty})t^{2})$\lambda$^{4}
+4((c_{0}-\tilde{c}_{\infty}+c_{1}-c_{t})t+(c_{0}-c_{1}+c_{2}-\tilde{c}_{\infty})t^{2})$\lambda$^{3}

+2((-c_{0}+c_{t})t+(-4c_{0}-c_{1}-c_{t}+\tilde{c}_{\infty})t^{2}+(-c_{0}+c_{1})t^{3})$\lambda$^{2}

+4c_{0}(t^{2}+t^{3}) $\lambda$-2c_{0}t^{3},
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Q_{\mathrm{V}\mathrm{I}}(t,  $\lambda$)=t^{2}(t-1)^{2} $\lambda$( $\lambda$-1)( $\lambda$-t) and  $\lambda$(t) is a root of P_{\mathrm{V}\mathrm{I}}(t,  $\lambda$) . Further, we find that

\{t_{j}\}_{j=1}^{9} are simple turning points. Since we can discuss the singular points t=1 and

\infty in a similar manner to  t=0 (e.g., by considering P(\tilde{t},\tilde{ $\lambda$}) :=P(1+\tilde{t}, 1+\tilde{ $\lambda$}) at t=1 ),
we focus on the singular point at t=0 . Let us see Table 8 below, where \{$\beta$_{0}^{(2l-)}, $\beta$_{0}^{(2l)}\}
(l=1,2,3) respectively are two distinct roots of

(2.53) D_{P_{\mathrm{V}\mathrm{I}}}^{0,(1)}( $\beta$)=2(-c_{0}+c_{t})$\beta$^{2}+4c_{0} $\beta$-2c_{0},

(2.54) D_{P_{\mathrm{V}\mathrm{I}}}^{0,(2)}( $\beta$)=2(-c_{1}+\tilde{c}_{\infty})$\beta$^{2}+2(-c_{0}+c_{t})
and

(2.55) D_{P_{\mathrm{V}\mathrm{I}}}^{0,(3)}( $\beta$)=2\tilde{c}_{\infty}$\beta$^{2}-4\tilde{c}_{\infty} $\beta$+2(-c_{1}+\tilde{c}_{\infty}) .

1 = 1

(1) (3)(2) (5) (6)

Table 8. The leading term $\beta$_{0}^{(l)}t^{$\alpha$_{0}^{(l)}} of $\lambda$_{0}^{(l)}(t) and the order $\gamma$_{0}^{(l)} of $\omega$_{\mathrm{V}\mathrm{I}} at t=0.

Since $\beta$_{0}^{(1)}, $\beta$_{0}^{(2)}, $\beta$_{0}^{(5)} and $\beta$_{0}^{(6)} are not equal to 1, we find that the following relations

hold:

(2.56) \displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{$\lambda$_{0}^{(l)}}^{0}(\partial_{ $\lambda$}P_{\mathrm{V}})=\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{0}^{(l)}}^{0}(\partial_{ $\lambda$}P_{\mathrm{V}\mathrm{I}})=\min\{5$\alpha$_{0}^{(l)}, 4$\alpha$_{0}^{(l)}, 3$\alpha$_{0}^{(l)}, 1+2$\alpha$_{0}^{(l)}, 1+$\alpha$_{0}^{(l)}, 2\},

(2.57) \displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{$\lambda$_{0}^{(l)}}^{0}(Q_{\mathrm{V}\mathrm{I}})=\mathrm{i}\mathrm{n}\mathrm{d}_{$\lambda$_{0}^{(l)}}^{0}(Q_{\mathrm{V}\mathrm{I}})=\min\{3$\alpha$_{0}^{(l)}, 2$\alpha$_{0}^{(l)}, 1+$\alpha$_{0}^{(l)}\}+2.
Then, the order $\gamma$_{0}^{(l)} of $\omega$_{\mathrm{V}\mathrm{I}} at t=0 immediately follows.
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