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Exact WKB analysis of second‐order

non‐homogeneous linear ordinary differential

equations
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Tatsuya Koike * and Yoshitsugu Takei **

Abstract

In this paper we consider the exact WKB analysis of a second‐order non‐homogeneous
linear ordinary differential equation with a large parameter. We give a geometric criterion

which guarantees the Borel summability of formal solutions of a non‐homogeneous equation;
this criterion is described in terms of exact steepest descent paths introduced in [AKT2]. An

example related to the BNR equation ([BNR]) is also discussed from this viewpoint.

§1. Introduction and main result

In this paper we consider a second‐order non‐homogeneous linear ordinary differ‐

ential equation with a large parameter  $\eta$(>0) of the following form:

(1.1) (\displaystyle \frac{d^{2}}{dx^{2}}+ $\eta$ p(x)\frac{d}{dx}+$\eta$^{2}q(x)) $\psi$=F(x) .

Here, for the sake of simplicity, we assume the coefficients p(x) , q(x) and the non‐

homogeneous term F(x) are all polynomials of x . As (1.1) contains a large parameter

 $\eta$ ,
we readily find that (1.1) has the following formal power series solution in  $\eta$^{-1} :

(1.2)  $\psi$\displaystyle \wedge(x,  $\eta$)=\sum_{n=2}^{\infty}$\psi$_{n}(x)$\eta$^{-n},
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where the coefficients $\psi$_{n}(x)(n=2,3, \ldots) are determined by the recursion formula

q(x)$\psi$_{2}=F(x) , q(x)$\psi$_{3}+p(x)\displaystyle \frac{d$\psi$_{2}}{dx}=0,
(1.3)

q(x)$\psi$_{n+2}+p(x)\displaystyle \frac{d$\psi$_{n+1}}{dx}+\frac{d^{2}$\psi$_{n}}{dx^{2}}=0 (n\geq 2) .

In general, the formal solution (1.2) does not converge. The purpose of this paper is to

give a criterion that guarantees the Borel summability of the formal solution (1.2), that

is
,

to discuss when the Borel sum

(1.4) \displaystyle \int_{0}^{\infty}e^{-y $\eta$}\hat{ $\psi$}_{B}(x, y)dy
of \hat{ $\psi$}(x,  $\eta$) is well‐defined, where \hat{ $\psi$}_{B}(x, y) denotes the Borel transform of \hat{ $\psi$}(x,  $\eta$) , i.e.,

(1.5) \displaystyle \hat{ $\psi$}_{B}(x, y):=\sum_{n=2}^{\infty}\frac{$\psi$_{n}(x)}{(n-1)!}y^{n-1}
Let us first explain the motivations of our research. In the case of a homogeneous

equation

(1.6) (\displaystyle \frac{d^{2}}{dx^{2}}+ $\eta$ p(x)\frac{d}{dx}+$\eta$^{2}q(x)) $\psi$=0,
there exist the following formal solutions with an exponential term called WKB solu‐

tions:

(1.7) $\psi$_{\pm}(x,  $\eta$)=\displaystyle \exp( $\eta$\int^{x}$\zeta$_{\pm}(x)dx)\sum_{n=0}^{\infty}$\psi$_{\pm,n}(x)$\eta$^{-(n+1/2)},
where $\zeta$_{\pm}(x) are roots of the characteristic equation

(1.8) $\zeta$^{2}+p(x) $\zeta$+q(x)=0.

A criterion for the Borel summability of WKB solutions (1.7) is now well‐known (cf.
[DLS], [CDK], [KS], etc as described in the following

Theorem 1.1. The WKB solutions $\psi$_{\pm}(x,  $\eta$) of the homogeneous equation (1.6)
are Borel summable except on Stokes curves of (1.6). Here a Stokes curve of (1.6) is,

by definition, an integral curve of the direction field

(1.9) {\rm Im}($\zeta$_{+}(x)-$\zeta$_{-}(x))dx=0

emanating from a turning point of (1.6), i.e., a zero of the discriminant of (1.8). To be

more precise, if the steepest descent paths of

(1.10) {\rm Re}(\displaystyle \pm\int^{x}($\zeta$_{+}(x)-$\zeta$_{-}(x))dx)
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passing through x_{0} can be prolonged to  x=\infty without flowing into any turning point,
then the WKB solutions $\psi$_{\pm}(x,  $\eta$) normalized at x_{0} are Borel summable in a neighborhood

of x_{0}.

One of our motivations is to generalize Theorem 1.1 to non‐homogeneous equations.
As a matter of fact, since a general solution of (1.1) is given by a linear combination of

the formal solution (1.2) and WKB solutions of (1.6), it suffices to consider only (1.2)
to discuss the Borel summability of a general solution of (1.1) in view of Theorem 1.1.

Another motivation is concerned with generalization of Theorem 1.1 to third‐order

(or, more generally, higher‐order) homogeneous equations. As is rigorously discussed in

[KS], Theorem 1.1 can be proved by considering the Riccati equation (i.e., a first‐order

nonlinear ordinary differential equation) associated with (1.6) instead of dealing directly
with (1.6). A crucial step in the proof is to apply the iteration method (or, equivalently,
the fixed point theorem for a contraction mapping) after recursively solving first‐order

non‐homogeneous linear ordinary differential equations which are, roughly speaking,
obtained as linearized equation of the Riccati equation. Thus, in order to generalize
this scheme to third‐order homogeneous equations, we are compelled to solve a second‐

order non‐homogeneous linear differential equation. As the first step toward the proof
of the Borel summability of WKB solutions of higher‐order equations, we investigate
second‐order non‐homogeneous linear differential equations in this paper.

We now state our main result. Let x_{0} be a point that is not located on any Stokes

curve of (1.6). Defining f_{\pm}(x) by

(1.11) f_{\pm}(x)=-\displaystyle \int_{x_{0}}^{x}$\zeta$_{\mp}dx=\frac{1}{2}\int_{x_{0}}^{x}\{-( $\zeta$++$\zeta$_{-})\pm( $\zeta$+-$\zeta$_{-})\}dx
=\displaystyle \frac{1}{2}\int_{x_{0}}^{x}\{p(x)\pm($\zeta$_{+}-$\zeta$_{-})\}dx,

we let $\Gamma$_{\pm}^{(0)} denote a steepest descent path of {\rm Re} f\pm passing through  x_{0} . If $\Gamma$_{+}^{(0)} (resp.,
$\Gamma$_{-}^{(0)}) crosses a Stokes curve of (1.6) of type +> (resp., of type -->+ ,

where a

Stokes curve of (1.6) is said to be of type +> —if {\rm Re}\displaystyle \int^{x}($\zeta$_{+}(x)-$\zeta$_{-}(x))dx>0 holds

on the curve in question) at some point x=x_{1} ,
then we also consider a steepest descent

path (�bifurcated steepest descent path�) $\Gamma$_{-}^{(1)} of {\rm Re} f_{-} (resp., $\Gamma$_{+}^{(1)} of {\rm Re} f_{+} ) passing

through x_{1} . In case these steepest descent paths $\Gamma$_{\pm}^{(0)} and $\Gamma$_{\pm}^{(1)} further cross a Stokes

curve of (1.6), we similarly define $\Gamma$_{\pm}^{(2)}, $\Gamma$_{\pm}^{(3)} ,
. . . by repeating the same process. We

now assume that these processes terminate in finite steps, that is, there exists a finite

number of steepest descent paths \{$\Gamma$_{\pm}^{(l)}\}_{0\leq l<L} so that every bifurcated steepest descent

path passing through a crossing point of $\Gamma$_{\pm}^{(\overline{l)}} and a Stokes curve of (1.6) is contained in

\{$\Gamma$_{\pm}^{(l)}\}_{0\leq l\leq L} . The totality of the steepest descent paths \{$\Gamma$_{\pm}^{(l)}\}_{0\leq l\leq L} is called an �exact

steepest descent path� of (1.1) passing through x_{0} . Under these situations we can prove
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Theorem 1.2. The formal solution \hat{ $\psi$}(x,  $\eta$) of (1.1) of the form (1.2) is Borel

summable at x=x_{0} if all the steepest descent paths belonging to an exact steepest
descent path passing through x_{0} can be prolonged to  x=\infty without flowing into any

turning point.

Note that exact steepest descent paths were first introduced in [AKT2] in the

study of WKB solutions of homogeneous equations through the Laplace transformation

method with respect to an independent variable of the differential equation (^{((}exact
steepest descent method� ).

The paper is organized as follows: Making use of WKB solutions of the correspond‐

ing homogeneous equation (1.6) together with the method of variation of constants, we

obtain an integral representation for the Borel transform of the formal solution \hat{ $\psi$}(x,  $\eta$)
of (1.1) in Section 2. Then in Section 3 we study the analytic continuation of the

Borel transform of \hat{ $\psi$}(x,  $\eta$) by using this integral representation to prove Theorem 1.2.

In [AKT2] an exact steepest descent path was introduced to investigate the (inverse)
Laplace integral for the Laplace transformed (with respect to an independent variable of

the differential equation) WKB solutions. Here the integral representation obtained in

Section 2 plays the same role as the (inverse) Laplace integral in [AKT2]; this explains

why an exact steepest descent path appears in describing the condition for the Borel

summability of \hat{ $\psi$}(x,  $\eta$) . Finally in Section 4 we discuss an example related to the BNR

equation, a third‐order homogeneous equation for which a new Stokes curve appears,

as was first observed by Berk et al ([BNR]).

§2. Explicit formula for the Borel transform of \hat{ $\psi$}(x,  $\eta$)

In this section, applying the method of variation of constants, we obtain an integral

representation for the Borel transform of \hat{ $\psi$}(x,  $\eta$) in terms of the Borel transform of WKB

solutions of the corresponding homogeneous equation (1.6).
Let

(2.1) $\psi$_{\pm}(x,  $\eta$)=\displaystyle \exp( $\eta$\int_{x_{0}}^{x} $\zeta$\pm(x)dx)$\varphi$_{\pm}(x,  $\eta$) , $\varphi$_{\pm}(x,  $\eta$)=\displaystyle \sum_{n=0}^{\infty}$\psi$_{\pm,n}(x)$\eta$^{-(n+1/2)}
be WKB solutions of the homogeneous equation (1.6) normalized at x_{0} ,

where  $\zeta$\pm(x)
are roots of (1.8). Note that $\psi$_{\pm}(x,  $\eta$) can be constructed by using formal power series

solutions

(2.2)  S_{\pm}(x,  $\eta$)= $\eta \zeta$_{\pm}(x)+S_{\pm,0}(x)+$\eta$^{-1}S_{\pm,1}(x)+\cdots

of the Riccati equation

(2.3)  S^{2}+\displaystyle \frac{dS}{dx}+ $\eta$ p(x)S+$\eta$^{2}q(x)=0
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associated with (1.6) in such a way that

(2.4) $\psi$_{\pm}(x,  $\eta$)=\displaystyle \frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(-\frac{1}{2} $\eta$\int_{x_{0}}^{x}p(x)dx\pm\int_{x_{0}}^{x}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx) ,

where S_{\mathrm{o}\mathrm{d}\mathrm{d}} denotes the odd part of S_{\pm}(x,  $\eta$) , i.e.,

(2.5) s_{\pm}(x,  $\eta$)=\pm S_{\mathrm{o}\mathrm{d}\mathrm{d}}(x,  $\eta$)+S_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}(x,  $\eta$) .

For WKB solutions $\psi$_{\pm}(x,  $\eta$) we have

Lemma 2.1. Let W=W( $\psi$+, $\psi$_{-})=$\psi$_{+}(d$\psi$_{-}/dx)-(d $\psi$+/dx)$\psi$_{-} denote the

Wronskian of $\psi$_{+} and $\psi$_{-} . Then the following holds:

(2.6) W( $\psi$+, $\psi$_{-})=-2\displaystyle \exp(- $\eta$\int_{x_{0}}^{x}p(x)dx)
Proof. Substituting (2.5) into the Riccati equation (2.3) and taking its odd part,

we find

(2.7) 2S_{\mathrm{o}\mathrm{d}\mathrm{d}}S_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}+\displaystyle \frac{dS_{\mathrm{o}\mathrm{d}\mathrm{d}}}{dx}+ $\eta$ p(x)S_{\mathrm{o}\mathrm{d}\mathrm{d}}=0,
that is,

(2.8) S_{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}=-\displaystyle \frac{1}{2}\frac{d}{dx}\log S_{\mathrm{o}\mathrm{d}\mathrm{d}}-\frac{1}{2} $\eta$ p(x) .

Note that (2.8) and a well known relation $\psi$_{\pm}=\displaystyle \exp\int^{x}S_{\pm}dx justify the expression

(2.4). Then, using the relation

(2.9) W( $\psi$+, $\psi$_{-})=\displaystyle \frac{d}{dx}(\frac{$\psi$_{-}}{$\psi$_{+}})\cdot$\psi$_{+}^{2}=-2S_{\mathrm{o}\mathrm{d}\mathrm{d}}\exp(-2\int_{x_{0}}^{x}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx)$\psi$_{+}^{2}
and (2.4), we immediately obtain

(2.10) W( $\psi$+, $\psi$_{-})=-2\displaystyle \exp(- $\eta$\int_{x_{0}}^{x}p(x)dx)
This completes the proof of Lemma 2.1. \square 

Using $\psi$_{\pm} as a fundamental system of solutions of the corresponding homogeneous

equation (1.6), we now apply the method of variation of constants to obtain a solution

of the non‐homogeneous equation (1.1). In view of Lemma 2.1, it is explicitly given by
the following

(2.11) \displaystyle \frac{1}{2} $\psi$+(x,  $\eta$)\int^{x}F(x')\exp( $\eta$\int_{x_{0}}^{x'}p(z)dz)$\psi$_{-}(x',  $\eta$)dx'
‐ \displaystyle \frac{1}{2}$\psi$_{-}(x,  $\eta$)\int^{x}F(x')\exp( $\eta$\int_{x_{0}}^{x'}p(z)dz)$\psi$_{+}(x',  $\eta$)dx'
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As the behavior of the first term is similar to that of the second term, we mainly
consider only the second term of (2.11) in what follows. Furthermore, since the Borel

summability of $\psi$_{\pm} (or, more precisely, of  $\varphi$\pm ) is now known thanks to Theorem 1.1,
we are going to discuss only the core part of the second term defined by the following,
which will be denoted by  $\Phi$(x,  $\eta$) :

(2.12)

 $\Phi$(x,  $\eta$)=\displaystyle \exp( $\eta$\int_{x_{0}}^{x}$\zeta$_{-}(z)dz)\int^{x}\exp( $\eta$\int_{x_{0}}^{x'}(p(z)+$\zeta$_{+}(z))dz)F(x') $\varphi$+(x',  $\eta$)dx'
=\displaystyle \int^{x}\exp(- $\eta$\int_{x}^{x'}$\zeta$_{-}(z)dz)$\phi$_{+}(x',  $\eta$)dx',

where $\phi$_{+}(x',  $\eta$)=F(x') $\varphi$+(x',  $\eta$) .

We thus obtain a solution of the non‐homogeneous equation (1.1) provided by

(2.11). It can be expanded into the formal power series of $\eta$^{-1} as follows:

Proposition 2.2. The integral (2.12) is expanded as

(2.13)  $\Phi$(x,  $\eta$)=\displaystyle \sum_{n=0}^{\infty}$\Phi$_{n}(x)$\eta$^{-(n+3/2)},
the right‐hand side of which is explicitly given by the following:

(2.14) -\displaystyle \sum_{n=0}^{\infty}$\eta$^{-(n+1)}(\frac{1}{$\zeta$_{-}(x)}\frac{d}{dx})^{n}(\frac{1}{$\zeta$_{-}(x)}$\phi$_{+}(x',  $\eta$))|_{x=x}
Consequently (2.11) provides the formal power series solution (1.2) of (1.1) under con‐

sideration.

Proof. By a change of integration variable X'=-\displaystyle \int_{x}^{x'}$\zeta$_{-}(z)dz ,
we have

(2.15)  $\Phi$(x,  $\eta$)=\displaystyle \int^{0}e^{ $\eta$ X'}\overline{ $\phi$}_{+}(X',  $\eta$)dX' with \displaystyle \overline{ $\phi$}_{+}(X',  $\eta$)=$\phi$_{+}(x'(X'),  $\eta$)(\frac{dX'}{dx})^{-1}
Then integration by parts tells us that

(2.16)  $\Phi$(x,  $\eta$)=$\eta$^{-1}e^{ $\eta$ X'}\overline{ $\phi$}_{+}(X',  $\eta$) X'=0^{-}\displaystyle \int^{0}$\eta$^{-1}e^{ $\eta$ X'}\frac{d\overline{ $\phi$}+}{dX}dX'
Using integration by parts repeatedly, we thus obtain

(2.17)  $\Phi$(x,  $\eta$)=\displaystyle \sum_{n=0}^{\infty}(-1)^{n}$\eta$^{-(n+1)}(\frac{d}{dX})^{n}\overline{ $\phi$}+|_{X=0},
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which verifies (2. 14). \square 

Thanks to Proposition 2.2 the formal power series solution (1.2) in question has

an integral representation (2.11). In what follows we discuss the Borel summability of

(2.11), mainly that of  $\Phi$(x,  $\eta$) given by (2.12). To this end we first seek for an integral

representation of the Borel transform of  $\Phi$(x,  $\eta$) ,
which is given by the following:

Proposition 2.3. The Borel transfO rm of  $\Phi$(x,  $\eta$) ,
that is, the formal inverse

Laplace transfO rm of  $\Phi$(x,  $\eta$) defined by

(2.18) $\Phi$_{B}(x, y)=\displaystyle \mathcal{L}_{ $\eta$\rightarrow y}^{-1} $\Phi$=\sum_{n=0}^{\infty}\frac{$\Phi$_{n}(x)}{ $\Gamma$(n+3/2)}y^{n+1/2},
has the following integral representation

(2.19) $\Phi$_{B}(x, y)=-\displaystyle \int_{x}^{x_{*}}$\phi$_{+,B}(x', y'(x'))dx'
Here $\phi$_{+,B}(x, y) denotes the Borel transfO rm of $\phi$_{+}(x,  $\eta$) , y'(x') is a function defined by

(2.20) y'(x')=y+f_{+}(x') with f_{+}(x')=-\displaystyle \int_{x}^{x'}$\zeta$_{-}(z)dz,
x_{*} is a point determined by f_{+}(x_{*})=-y (i.e., y'(x_{*})=0) ,

and the integral is performed

along a path f_{+}(x')=-u(0\leq u\leq y) , i.e., along the steepest descent path of {\rm Re} f+
passing through x.

Proof. It follows from (2.14) or, more conveniently, the equivalent expression

(2.17) of  $\Phi$(x,  $\eta$) that

(2.21) $\Phi$_{B}(x, y)=\displaystyle \sum_{n=0}^{\infty}(-1)^{n}\frac{y^{n}}{ $\Gamma$(n+1)}*(\frac{d}{dX})^{n}\overline{ $\phi$}+,B|_{X=0},
where * stands for the convolution product with respect to the variable y . Hence we

have

(2.22) $\Phi$_{B}(x, y)=\displaystyle \sum_{n=0}^{\infty}\frac{(-1)^{n}}{n!}\int_{0}^{y}(y-t)^{n}(\frac{d}{dX})^{n}\overline{ $\phi$}+,B|_{X=0}dt
=\displaystyle \int_{0}^{y}\overline{ $\phi$}_{+,B}(t-y, t)dt
=\displaystyle \int_{-y}^{0}\overline{ $\phi$}_{+,B}(X', y+X')dX'
=\displaystyle \int_{x_{*}}^{x} $\phi$+,B(x', y-\int_{x}^{x'}$\zeta$_{-}(z)dz)dx'
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This implies (2.19), completing the proof of Proposition 2.3. \square 

Using Proposition 2.3, we investigate the analytic continuation of $\Phi$_{B}(x, y) to obtain

the Borel summability of  $\Phi$(x,  $\eta$) in the subsequent section.

§3. Proof of the main result (Theorem 1.2)

Assume that the point x_{0} in question is not located on any Stokes curve of the

corresponding homogeneous equation (1.6). In what follows we show that the Borel

transform $\Phi$_{B}(x_{0}, y) of  $\Phi$(x_{0},  $\eta$) given by the integral (2.19) can be analytically continued

along the positive real axis \{y\in \mathbb{C}|y\geq 0\} under the condition of Theorem 1.2.

First of all, in view of the expression (2.19) and the analytic structure of $\phi$_{+,B}(x',
y'(x')) near (x', y')=(x_{0}, 0) ,

we can readily confirm that $\Phi$_{B}(x_{0}, y) defines an ana‐

lytic function of y when |y| is small. (Cf. Figure 1. Note that, replacing the integral

steepest descent path

\lrcorner x' $\Gamma$_{+}^{(0)} of {\rm Re} f+ \lrcorner y'

Figure 1. Integration path for $\Phi$_{B}(x_{0}, y) when |y| is small.

(2.19) by a contour integral around x_{*} ,
we find that the square‐root type singularity of

$\phi$_{+,B}(x', y'(x')) at (x', y')=(x_{0},0) is irrelevant to the analyticity of $\Phi$_{B}(x_{0}, y). ) Thus

our task is to verify the analytic continuability of $\Phi$_{B}(x_{0}, y) when y\geq 0 is large. A key
lemma is the following Lemma 3.1, which explicitly describes the singularity structure

of the integrand  $\phi$+,B of (2.19).

Lemma 3.1. (i) The Borel transfO rm $\phi$_{+,B}(x', y')=F(x') $\varphi$+,B(x', y') of

$\phi$_{+}(x',  $\eta$)=F(x') $\varphi$+(x',  $\eta$) has a singular point at

(3.1) y'= $\omega$(x') :=\displaystyle \int_{a}^{x'}($\zeta$_{+}(z)-$\zeta$_{-}(z))dz,
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where a is a turning point of (1.6).
(ii) At y'= $\omega$(x') , $\phi$_{+,B}(x', y') satisfies the following relation:

(3.2) \triangle_{y'= $\omega$(x')}$\phi$_{+,B}(x', y')=i$\phi$_{-,B}(x', y'- $\omega$(x')) ,

where \triangle_{y'= $\omega$(x')}$\phi$_{+,B}(x', y') denotes the discontinuity of $\phi$_{+,B}(x', y') at y'= $\omega$(x') ,
that

is, the difference of the boundary value of $\phi$_{+,B}(x', y') from the upper side of the cut

\{y'\in \mathbb{C}|{\rm Re}(y'- $\omega$(x'))\geq 0, {\rm Im}(y'- $\omega$(x'))=0\} and the boundary value from its lower

side.

It is a well known fact in the exact WKB analysis of second‐order homogeneous

ordinary differential equations that $\varphi$_{+,B}(x', y') has the same singularity structure as

described in Lemma 3.1 (see, e.g., [DP], [KT]). Since F(x) is a polynomial, Lemma 3.1

immediately follows from this fact.

It follows from Lemma 3.1 that the integrand of (2.19) is singular at a point where

(3.3) y'(x')=y-\displaystyle \int_{x_{0}}^{x'}$\zeta$_{-}(z)dz and y'(x')=\displaystyle \int_{a}^{x'}($\zeta$_{+}(z)-$\zeta$_{-}(z))dz
are satisfied. Eliminating y'(x') in (3.3), we readily find that at a singular point of the

integrand of (2. 19) we have

(3.4) y-\displaystyle \int_{x_{0}}^{x'}$\zeta$_{-}(z)dz=\int_{a}^{x'}($\zeta$_{+}(z)-$\zeta$_{-}(z))dz.
Since the left‐hand side of (3.4) is real and positive for positive y ,

the integrand of (2.19)
cannot have a singularity for positive y as far as the steepest descent path $\Gamma$_{+}^{(0)} of {\rm Re} f+
passing through x_{0} is prolonged without flowing into any turning point or crossing any

Stokes curve of (1.6). Hence $\Phi$_{B}(x_{0}, y) is analytic along \mathbb{R}_{y}^{+}=\{y\in \mathbb{C}|y\geq 0\} under

such a situation. On the contrary, if $\Gamma$_{+}^{(0)} flows into a turning point, then $\Phi$_{B}(x_{0}, y) has

a singularity on \mathbb{R}_{y}^{+} in general as a singular point (3.1) hits the endpoint of the integral

(2.19) at a turning point.
Now let us consider a more intriguing situation, that is, the situation where $\Gamma$_{+}^{(0)}

crosses a Stokes curve of (1.6) of type +>- . In this situation a singular point of

the integrand  $\phi$+,B(x', y'(x')) hits a path of integration of (2.19) and consequently it

becomes necessary to take the effect of such a singular point into acccount for sufficiently

large y\geq 0 . For the sake of simplicity we suppose that the steepest descent path $\Gamma$_{+}^{(0)} of

{\rm Re} f+ passing through x_{0} crosses just one Stokes curve of type +>- emanating from

a turning point a of (1.6) in what follows. We denote the crossing point of $\Gamma$_{+}^{(0)} and

the Stokes curve by x=x_{1} . Then (3.4) implies that a singular point of the integrand

$\phi$_{+,B}(x', y'(x')) hits a path of integration of (2.19) at

(3.5) y=\displaystyle \hat{y}:=\int_{a}^{x_{1}}($\zeta$_{+}(z)-$\zeta$_{-}(z))dz+\int_{x_{0}}^{x_{1}}$\zeta$_{-}(z)dz>0.
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To analyze explicitly the effect of the singular point of $\phi$_{+,B}(x', y'(x')) to the analytic
continuation of $\Phi$_{B}(x_{0}, y) when y\geq\hat{y} ,

we first make a change of integration variable

from x' to y'=y+f_{+}(x') in (2.19) as follows:

(3.6) $\Phi$_{B}(x_{0}, y)=\displaystyle \int_{y}^{0}$\phi$_{+,B}(g+(y'-y), y')\frac{dy'}{$\zeta$_{-}(g+(y-y))},
where g+(y') denotes an inverse function of f_{+}(x') , i.e., y'=y+f_{+}(x') can be expressed
also as x'=g+(y'-y) . Rewriting (3.4) as

(3.7) \displaystyle \int_{x_{1}}^{x'}$\zeta$_{+}(z)dz=y-\int_{a}^{x_{1}}($\zeta$_{+}(z)-$\zeta$_{-}(z))dz-\int_{x_{0}}^{x_{1}}$\zeta$_{-}(z)dz=y-\hat{y}
and denoting x' that satisfies (3.7) by x_{**} ,

we find that the integrand of (3.6) has a

singularity at

(3.8) y_{**}:=\displaystyle \int_{a}^{x_{1}}($\zeta$_{+}(z)-$\zeta$_{-}(z))dz+\int_{x_{1}}^{x_{**}}($\zeta$_{+}(z)-$\zeta$_{-}(z))dz
and the analytic continuation of $\Phi$_{B}(x_{0}, y) to y\geq\hat{y} is given by an integral of (3.6)
along a path C indicated as in Figure 2. (Here we assume that {\rm Im} y_{**}>0 for the

steepest descent path
(0) of {\rm Re} \mathrm{f}\lrcorner x'

Stokes curve of

type + > \lrcorner y'
C

singular point
of  $\phi$+,B

Figure 2. Integration path of (3.6) when y\geq\hat{y}.

sake of definiteness.) Then we deform the path C to a new integration path \overline{C} which is

homotopically equivalent to C and consists of the following three portions:

(3.9) C\simeq\overline{C}=C_{1}\cup C_{2}\cup C_{3},

where

C_{1} : a path from y to y_{1}:=y'(x_{1})=y-\displaystyle \int_{x_{0}}^{x_{1}}$\zeta$_{-}dz on the real axis;

C_{2} : a path starting from y_{1} , encircling y_{**} anticlockwise and returning to y_{1},

C_{3} : a path from y_{1} to 0 on the real axis:
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(Cf. Figure 3.) Corresponding to this decomposition of \overline{C}\simeq C ,
we also decompose

\lrcorner y'

Figure 3. Integration path \overline{C}=C_{1}\cup C_{2}\cup C_{3}.

$\Phi$_{B}(x_{0}, y) as follows:

(3.10) $\Phi$_{B}(x_{0}, y)=\displaystyle \sum_{j=1}^{3}$\Phi$_{B}^{(j)}(x_{0}, y)
with

(3.11) $\Phi$_{B}^{(j)}(x_{0}, y)=\displaystyle \int_{C_{j}} $\phi$+,B(g+(y'-y), y')\frac{dy'}{$\zeta$_{-}(g+(y-y))}.
Among the three, $\Phi$_{B}^{(1)}(x_{0}, y) and $\Phi$_{B}^{(3)}(x_{0}, y) can be easily rewritten in terms of the

steepest descent path $\Gamma$_{+}^{(0)} as

(3.12) $\Phi$_{B}^{(1)}(x_{0}, y)=-\displaystyle \int_{x_{0},\mathrm{a}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}$\Gamma$_{+}^{(0)}}^{x_{1}}$\phi$_{+,B}(x', y'(x'))dx',
(3.13) $\Phi$_{B}^{(3)}(x_{0}, y)=-\displaystyle \int_{x_{1},\mathrm{a}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}}^{x_{*}}$\Gamma$_{+}^{(0)}$\phi$_{+,B}(x', y'(x'))dx',
while $\Phi$_{B}^{(2)}(x_{0}, y) is not directly related to $\Gamma$_{+}^{(0)} . However, using Lemma 3.1, we can

express $\Phi$_{B}^{(2)}(x_{0}, y) in terms of the bifurcated steepest descent path $\Gamma$_{-}^{(1)} of {\rm Re} f_{-} passing

through x_{1} in the following manner:

Proposition 3.2. The integral $\Phi$_{B}^{(2)}(x_{0}, y) has the following expression:

(3.14) $\Phi$_{B}^{(2)}(x_{0}, y)=-i\displaystyle \int_{x_{1}}^{x_{**}}$\phi$_{-,B}(x'', y''(x''))dx'',
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00
where y''(x'') is defined by

(3.15) y''(x'')=(y-\displaystyle \hat{y})+f_{-}(x'')=(y-\int_{a}^{x_{1}}( $\zeta$+-$\zeta$_{-})dz-\int_{x_{0}}^{x_{1}}$\zeta$_{-}dz)+f_{-}(x'')
with

(3.16) f_{-}(x'')=-\displaystyle \int_{x_{1}}^{x''}$\zeta$_{+}(z)dz,
x_{**} is a point determined by f_{-}(x_{**})=-(y-\hat{y}) (i.e., y''(x_{**})=0 , cf. (3.7)), and the

integral is performed along a path f_{-}(x'')=-v(0\leq v\leq y-y i.e., along the steepest
descent path of {\rm Re} f_{-} passing through x_{1} (cf. Figure 4).

00

steepest descent path
$\Gamma$^{(1)} of {\rm Re} \mathrm{f}

Figure 4. Integration path of (3.14).

Proof. It follows from Lemma 3.1, (ii) that

(3.17) $\Phi$_{B}^{(2)}(x_{0}, y)=\displaystyle \int_{C_{2}}$\phi$_{+,B}(g+(y'-y), y')\frac{dy'}{$\zeta$_{-}(g+(y-y))}
=-\displaystyle \int_{y_{**}}^{y_{1}}\triangle_{y'=y_{**}}$\phi$_{+,B}(g+(y'-y), y')\frac{dy'}{$\zeta$_{-}(g+(y-y))}
=-i\displaystyle \int_{y_{**}}^{y_{1}}$\phi$_{-,B}(g+(y'-y), y'- $\omega$(g+(y'-y \frac{dy'}{$\zeta$_{-}(g+(y-y))}.

Here, letting x'' denote g+(y'-y) ,
we employ a change of integration variable from y'

to y''=y'- $\omega$(g+(y'-y Firstly, we note that x''=g+(y'-y) means

(3.18) y'-y=f_{+}(x'')=-\displaystyle \int_{x_{0}}^{x''}$\zeta$_{-}dz
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and that

(3.19) y''-y'=-\displaystyle \int_{a}^{g+(y'-y)}( $\zeta$+-$\zeta$_{-})dz=-\int_{a}^{x''}( $\zeta$+-$\zeta$_{-})dz
holds. Hence

(3.20) y''=y-\displaystyle \int_{x_{0}}^{x''}$\zeta$_{-}dz-\int_{a}^{x''}( $\zeta$+-$\zeta$_{-})dz
=y-(\displaystyle \int_{x_{0}}^{x_{1}}$\zeta$_{-}dz+\int_{a}^{x_{1}}($\zeta$_{+}-$\zeta$_{-})dz+\int_{x_{1}}^{x''} $\zeta$+dz)
=(y-\hat{y})+f_{-}(x'') .

Secondly, we have

(3.21) dy''=dy'-( $\zeta$+-$\zeta$_{-})(x'')\displaystyle \frac{dg+}{dy}(y'-y)dy'
=dy'-($\zeta$_{+}-$\zeta$_{-})(x'')\displaystyle \frac{1}{(df+/dx)(x'')}dy'
=dy'+\displaystyle \frac{($\zeta$_{+}-$\zeta$_{-})(x'')}{$\zeta$_{-}(x')}dy'
=\displaystyle \frac{$\zeta$_{+}(x'')}{$\zeta$_{-}(x'')}dy',

that is,

(3.22) \displaystyle \frac{dy''}{$\zeta$_{+}(x)}=\frac{dy'}{$\zeta$_{-}(x)}.
Thirdly, it follows from the definition of x_{**} and y_{**} that x''=g+(y'-y)=x_{**} holds

when y'=y_{**} (cf. (3.4), (3.7) and (3.8)). Hence, by (3.8), we find that the point y'=y_{**}
corresponds in the new variable y'' to the point

(3.23) y'-\displaystyle \int_{a}^{x''}( $\zeta$+-$\zeta$_{-})dz =0,
y'=y_{**},x''=x_{**}

that is, y''=0 . On the other hand, since the definition of y_{1} , i.e., y_{1}=y'(x_{1})=
y+f(X) implies that g+(y_{1}-y)=x_{1} ,

the point y'=y_{1} corresponds in the new

variable y'' to the point

00

(3.24) y'-\displaystyle \int_{a}^{x''}( $\zeta$+-$\zeta$_{-})dz y'=y_{1},x''=x_{1}=y-\displaystyle \int_{x_{0}}^{x_{1}}$\zeta$_{-}dz-\int_{a}^{x_{1}}($\zeta$_{+}-$\zeta$_{-})dz=y-\hat{y}.
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We thus conclude

(3.25) $\Phi$_{B}^{(2)}(x_{0}, y)=-i\displaystyle \int_{0}^{y-y}$\phi$_{-,B}(x'', y \displaystyle \frac{dy''}{$\zeta$_{+}(x)} with y''=(y-\hat{y})+f_{-}(x'') .

Finally, if we make a change of integration variable from y'' to x'' in (3.25), we obtain

the expression (3.14) for $\Phi$_{B}^{(2)}(x_{0}, y) . \square 

Thanks to Proposition 3.2, each $\Phi$_{B}^{(j)}(x_{0}, y)(j=1,2,3) has the same form as the

original integral (2.19). Hence, if both the steepest descent paths $\Gamma$_{+}^{(0)} and $\Gamma$_{-}^{(1)} are

prolonged to  x=\infty without crossing any further Stokes curves of (1.6), the above

reasoning verifies that each $\Phi$_{B}^{(j)}(x_{0}, y) (and hence $\Phi$_{B}(x_{0}, y) as well) is analytically
continued along the whole positive real axis. In case $\Gamma$_{+}^{(0)} and/or $\Gamma$_{-}^{(1)} may cross any

other Stokes curve of (1.6), we can apply the discussion in this section again to $\Phi$_{B}^{(j)}(x_{0}, y)
as it has the same form as (2.19). Thus we obtain the analyticity of $\Phi$_{B}(x_{0}, y) on the

positive real axis \{y\in \mathbb{C}|y\geq 0\} under the condition of Theorem 1.2.

Finally, the exponential growth of $\Phi$_{B}(x, y) with respect to the y‐variable easily
follows from that of  $\phi$+,B(x, y) (cf. [KS]). The proof of Theorem 1.2 is now completed.

Remark. In case $\Gamma$_{+}^{(0)} and $\Gamma$_{-}^{(1)} are prolonged to  x=\infty without crossing any

further Stokes curves of (1.6), corresponding to the decomposition (3.10) of the Borel

transform $\Phi$_{B}(x_{0}, y) ,
we can obtain the following expression of the Borel sum of  $\Phi$(x_{0},  $\eta$)

in view of Proposition 3.2:

(3.26) (S $\Phi$)(x_{0},  $\eta$)=\displaystyle \int_{x_{1},\mathrm{a}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}$\Gamma$_{+}^{(0)}}^{x_{0}}\exp(- $\eta$\int_{x_{0}}^{x'}$\zeta$_{-}dz)(S$\phi$_{+})(x',  $\eta$)dx'
+\displaystyle \int_{\infty,\mathrm{a}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}}^{x_{1}}$\Gamma$_{+}^{(0)}\exp(- $\eta$\int_{x_{0}}^{X'}$\zeta$_{-}dz)(S $\phi$+)(x_{;}' $\eta$)dx'
+i\displaystyle \int_{\infty,\mathrm{a}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}}^{x_{1}}$\Gamma$_{-}^{(1)}\exp(- $\eta$\hat{y}- $\eta$\int_{x_{1}}^{X''} $\zeta$+dz)(S$\phi$_{-})(x'',  $\eta$)dx

00

where  S $\Phi$ denotes the Borel sum of  $\Phi$.

§4. An example related to the BNR equation

In [BNR] Berk et al considered the following third‐order linear differential equation

(4.1) (\displaystyle \frac{d^{3}}{dx^{3}}+3$\eta$^{2}\frac{d}{dx}+2ix$\eta$^{3}) $\psi$=0
and showed that some Stokes phenomena for Borel resummed WKB solutions of (4.1)
occur not only on ordinary Stokes curves but also on the so‐called �new Stokes curves�
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Here an ordinary Stokes curve means a Stokes curve emanating from a turning point,
while a new Stokes curve is a Stokes curve passing through no turning points. (See
[AKT1] for more precise definitions of new Stokes curves.)

To be more concrete, as the characteristic equation of (4.1) is given by

(4.2) $\zeta$^{3}+3 $\zeta$+2ix=0

and a turning point is a zero of the discriminant of (4.2), i.e., a point where two char‐

acteristic roots merge, the BNR equation (4.1) has two turning points at x=\pm 1
,

from

each of which three Stokes curves emanate. See Figure 5 for the figure of Stokes curves

of (4.1). In Figure 5 �a turning point of type (j, k means a turning point where two

characteristic roots labeled by $\zeta$_{j} and $\zeta$_{k} merge. Similarly, �a Stokes curve of type j>k
�

is a Stokes curve on which {\rm Im}\displaystyle \int^{x}($\zeta$_{j}(x)-$\zeta$_{k}(x))dx=0 and {\rm Re}\displaystyle \int^{x}($\zeta$_{j}(x)-$\zeta$_{k}(x))dx>0
hold. (To number the characteristic roots, in Figure 5 we have placed two cuts, desig‐
nated by wiggly lines, which enable us to define a characteristic root as a single‐valued

analytic function.) In addition to ordinary Stokes curves emanating from turning points
new Stokes curves are also included in Figure 5: In the case of (4.1) the imaginary axis

is a new Stokes curve. Note that, as is shown in [BNR] and [AKT1], Stokes phenomena
for Borel resummed WKB solutions do really occur on the solid portion of the new

Stokes curve, but not on its dashed portion.

Figure 5. Stokes curves of the BNR equation (4.1).

Here let us recall the construction of WKB solutions of (4.1). We first assume that
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an unknown function  $\psi$ of (4.1) has the form

(4.3)  $\psi$=\displaystyle \exp\int^{x}S(x,  $\eta$)dx.
Then, substituting (4.3) into (4.1), we find that S(x,  $\eta$) should satisfy

(4.4) S^{3}+3S\displaystyle \frac{dS}{dx}+\frac{d^{2}S}{dx^{2}}+3$\eta$^{2}S+2ix$\eta$^{3}=0,
a higher‐order analogue of the Riccati equation (2.3). Equation (4.4) has the following
formal power series solution with the characteristic root $\zeta$_{j}(j=0,1,2) of (4.2) as its

top order term:

(4.5)  S^{(j)}(x,  $\eta$)= $\eta \zeta$_{j}(x)+S_{0}^{(j)}(x)+$\eta$^{-1}S_{1}^{(j)}(x)+\cdots
A WKB solution $\psi$_{j}(x,  $\eta$) of (4.1) is a formal solution obtained by substituting (4.5)
into (4.3).

We now set S= $\eta \zeta$_{0}(x)+T in (4.4). Then T should satisfy

(4.6) \displaystyle \frac{d^{2}T}{dx^{2}}+3 $\eta \zeta$_{0}(x)\frac{dT}{dx}+3$\eta$^{2}(($\zeta$_{0}(x))^{2}+1)T+R=0
with

(4.7) R=3$\eta$^{2}$\zeta$_{0}\displaystyle \frac{d$\zeta$_{0}}{dx}+ $\eta$\frac{d^{2}$\zeta$_{0}}{dx^{2}}+3 $\eta$\frac{d$\zeta$_{0}}{dx}T+3 $\eta \zeta$_{0}T^{2}+T^{3}+3T\frac{dT}{dx}.
The remainder term R consists of terms containing only $\zeta$_{0} ,

lower order terms with

respect to  $\eta$ ,
and higher order (i.e., nonlinear) terms with respect to  T . In what follows,

neglecting the remainder term R and regarding it as a given non‐homogeneous term,

we consider

(4.8) (\displaystyle \frac{d^{2}}{dx^{2}}+3 $\eta \zeta$_{0}(x)\frac{d}{dx}+3$\eta$^{2}(($\zeta$_{0}(x))^{2}+1))T=F(x)
as an example of application of our main theorem (Theorem 1.2). Note that the ho‐

mogeneous equation corresponding to (4.8) is nothing but (the principal part of) the

linearlized equation or the Fréchet derivative of (4.4) at its formal solution S^{(0)}(x,  $\eta$) .

Our main interest lies in the Borel summability of the formal solution (1.2) of (4.8) and

its comparison with that of WKB solutions of the BNR equation (4.1).
Equation (4.8) can be written also in terms of $\zeta$_{j} as

(4.9) (\displaystyle \frac{d^{2}}{dx^{2}}- $\eta$(($\zeta$_{1}-$\zeta$_{0})+($\zeta$_{2}-$\zeta$_{0}))\frac{d}{dx}+$\eta$^{2}($\zeta$_{1}-$\zeta$_{0})($\zeta$_{2}-$\zeta$_{0}))T=F(x) .

Hence the characteristic roots of (4.9) are given by

(4.10) $\zeta$_{1-0}:=$\zeta$_{1}-$\zeta$_{0} and $\zeta$_{2-0}:=$\zeta$_{2}-$\zeta$_{0}
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and (4.9) has only one turning point at x=-1 . (The other turning point x=1 is a

kind of singular points in discussing (4.9).) We also set

(4.11) f_{1-0}(x)=-\displaystyle \int_{x_{0}}^{x}$\zeta$_{2-0}dx and f_{2-0}(x)=-\displaystyle \int_{x_{0}}^{x}$\zeta$_{1-0}dx.
From now on, applying Theorem 1.2, we investigate the Borel summability of the formal

solution (1.2) of (4.8) (or equivalently (4.9)) when x_{0} lies in the region  $\Omega$ specified in

Figure 5 or its boundary.

Case (I) (when  x_{0} lies in the interior of  $\Omega$. )

When x_{0} lies in the interior of  $\Omega$
,

the configuration of the steepest descent paths

 $\Gamma$_{1-0}^{(0)} of {\rm Re} f_{1-0} and $\Gamma$_{2-0}^{(0)} of {\rm Re} f_{2-0} passing through x_{0} become as is indicated in

Figure 6. While $\Gamma$_{2-0}^{(0)} is prolonged to  x=\infty without crossing a Stokes curve of (4.9) of

 1-0>2-0

Figure 6. Exact steepest descent path passing through x_{0} in Case (I).

type 2-0>1-0, $\Gamma$_{1-0}^{(0)} crosses a Stokes curve of type 1-0>2-0 at x_{1} . Thus we need

to take into account also a bifurcated steepest descent path $\Gamma$_{2-0}^{(1)} passing through x_{1}.

Since $\Gamma$_{2-0}^{(1)} again crosses a Stokes curve of type 2-0>1-0 at x_{2} ,
we should consider

another bifurcated steepest descent path $\Gamma$_{1-0}^{(2)} ,
which coincides with the original $\Gamma$_{1-0}^{(0)}

(thanks to the symmetry of the equation with respect to the real axis) in this case.
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As is clearly visualized in Figure 6, all the steepest descent paths $\Gamma$_{1-0}^{(0)}, $\Gamma$_{2-0}^{(0)}, $\Gamma$_{2-0}^{(1)}
and $\Gamma$_{1-0}^{(2)} are prolonged to  x=\infty . Thus Theorem 1.2 guarantees the Borel summability
of the formal solution (1.2) in this case.

Case (II) (when  x_{0} lies on the left boundary of  $\Omega$
, i.e., on a Stokes curve of (4.1).)

If we pick up a point  x_{0} from the left boundary of  $\Omega$
,
that is, from a Stokes curve of

(4.1), then one of the steepest descent paths  $\Gamma$_{2-0}^{(0)} passing through x_{0} flows into x=1

and cannot be prolonged to  x=\infty (cf. Figure 7). Thus the Borel summability of the

Figure 7. Exact steepest descent path passing through  x_{0} in Case (II).

formal solution (1.2) is not expected to hold in this case.

\displaystyle \frac{\mathrm{C}\mathrm{a}\mathrm{s}\mathrm{e}(\mathrm{I}\mathrm{I}\mathrm{I})}{(4.1).)} (when x_{0} lies on the right boundary of  $\Omega$
, i.e., on a new Stokes curve of

Finally we consider the case where  x_{0} lies on the right boundary of  $\Omega$
,
that is, on a

new Stokes curve of the BNR equation. In this case there is no problem with  $\Gamma$_{2-0}^{(0)} ,
but

the steepest descent path $\Gamma$_{2-0}^{(1)} bifurcated from $\Gamma$_{1-0}^{(0)} at x_{1} flows into x=1 and cannot

be prolonged to  x=\infty
,

as is shown in Figure 8. Hence, similarly to Case (II) (but
due to different geometric obstruction), the Borel summability of the formal solution

(1.2) is not expected to hold in Case (III) as well. In this way the new Stokes curve of

the BNR equation (4.1) is also captured through the analysis of the non‐homogeneous
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Figure 8. Exact steepest descent path passing through x_{0} in Case (III).

second‐order equation (4.9).
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