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Abstract

RNA polymerase II (RNAPII) is responsible for transcription, that is a central cellular

process. Genome‐wide studies show that transcription by RNAPII is dynamically regulated.
Due to the experimental difficulty in molecular biological approach, the picture of the gene

transcription remains snapshot rather than dynamical views. Therefore, to reveal the principles
of transcription, the mathematical modeling and simulation, by fusing spatial‐temporal deep
analysis of real data, are crucial. From the simulations of low density RNAPII in the SAMD4A
gene, we found that the RNAPII molecules move as a free flow state, though there exist

regions of reduced velocity, as far as the time interval between nearest RNAPII molecules is

larger than the time required for an RNAPII passing the exclusion length in the reduction

region. On the other hand, if the reduction is strong enough to reach a certain threshold, at

the maximally reductive velocity region, a transition occurs from the free flow state to the

states with congested and repetitive flows.

§1. Introduction

§1.1. Transcription dynamics

Transcription by RNA polymerase II (RNAPII)
1 is at the core of gene expression

and hence is the basis of all cellular activities. To generate a mature messenger RNA

(mRNA)
2 RNAPII traverses a transcription cycle; this involves recruitment to an

activated promoter, initiation, escape into the gene, elongation, and termination [1].
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Processing of the nascent transcript ‐ that can include capping, splicing, and poly

(A) addition‐is coupled to polymerization, and the \mathrm{C}‐terminal domain (CTD) of the

polymerase acts as a scaffold for the binding of many of the factors involved [2, 3, 4].
Based on the most recent results on the transcription in the literature and the deep

analysis of real data of our own, we will construct a mathematical modeling and perform
simulations to reveal the principles of gene transcription.

§1.2. Related Research

Since the transcription process is comprised of an ingenious form of cooperativity
of proteins, the dynamical transport of RNAPII is still controversial [5, 6, 7, 8, 9]. Our

previous experiments [5] indicated a fine spatiotemporal structure (10 bp and 7.5 \displaystyle \min )
of gene transcription but finer time resolution experiments are quite difficult to perform
from the point of view of molecular biological methodology. Thus, this paper reports

an application of a cellular automaton model [10] of transcription, in which finer time

resolution is performed so as to take correlation between RNAPIIs into account.

In the previous report, the simulation of transcription dynamics has been done

on bacterial RNAPs [11]. By applying a mathematical method of traffic analysis to

high density RNAPII motion, Tripathi and Chowdhury [12, 13] showed that the closely
associated RNAPII molecules exhibit a local correlation [7, 14], and they studied the

effects of traffic congestion on mRNA synthesis. Their investigation mainly concerns the

congested sites in prokaryotes where RNAPII direct interaction controls the RNAPII

flow without a blockade.

Also, the nucleosome modications, insulator proteins, and blockade sites, as well

as the clearly distinct genomic regions in eukaryotic cells, pose issues that were not

addressed by earlier models of cooperative transcription [12, 13]. For example, what is

the effect of there being two distinct regions in which RNAPII moves at two different

average velocities on the spatial distribution of the RNAPIIs? This inhomogeneity,
that is distinct from the sequence inhomogeneity of the template DNA, occurs on much

longer length scales [5, 15, 16].
In understanding the organization of transcription in higher eukaryotic cell and in

estimating the still unknown interaction between RNAPIIs in the transcription factories,

knowing how often RNAPIIs are injected into the gene in a cell and how the dynamical
character changes are quite important. By applying a cellular‐automaton model [10,
17, 18, 19, 20, 21, 22, 23], we handle this problem.

§1.3. Modeling and Simulation of Transcription

In our previous time‐course experimental studies of RNAPII protein binding to

DNA by \mathrm{C}\mathrm{h}\mathrm{I}\mathrm{P}‐sequencing in cultured human umbilical vein cells [5], we collected the
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gene response data of more than 100 kpb‐long gene after drug stimulation (hereafter,
we use italic form for this word so as not to confuse �simulation�), tumor necrosis factor

 $\alpha$ (TNF), a potent cytokine that causes the inammatory response by sequentially

activating the expression of more than 6,000 genes. At different times after stimulation

with TNF, total nuclear RNA was puried and hybridized to a tiling microarray

bearing oligonucleotides complementary to  SAMD4A ,
a long gene of 221 kbp; signals

were normalized using an algorithm.

SAMD4A (C $\Lambda$ r. 14, length: 225398, strand: \mathrm{f}\mathrm{w}\mathrm{d})

Figure 1. 3\mathrm{D} Co‐transcriptional Splicing of SAMD4A

Transcription waves visualized using microarrays. HUVECs were stimulated with

TNF, samples collected every 7.5 \displaystyle \min for 3 \mathrm{h}
,

and total nuclear RNA puried and

hybridized to a tiling microarray bearing 25‐mers complementary to SAMD4A . The

vertical axis gives intensity of signal detected by intronic and exonic probes. Gene

length and genomic location are shown at the front, probe positions within the gene

from left to right; and time after stimulation from top to bottom. Arrowheads indicate

the �Start� and �End� of the first wave of transcription that sweeps down the gene.

We also showed that in addition to the histone lysine methylation‐enriched sites,
such as the \mathrm{H}3\mathrm{K}36\mathrm{m}\mathrm{e}3 sites, RNAPII molecules stall near the CCCTC‐binding fac‐

tor (CTCF) and cohesin 3
binding sites [5]. Since CTCF and cohesin proteins act as

nucleosome positioning anchors for DNA, they are closely related with DNA loop for‐

mation and are also known as insulators of RNAPII motion [24, 25]. The analysis of

3Transcriptional repressor also known as 11‐zinc finger protein or CCCTC‐binding factor that in

humans is encoded by the CTCF gene.
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pre‐mRNA synthesis in long genes indicates that the velocity of RNAPII in exons is

quite a bit slower than in introns [5]; this conjecture is also supported by other groups

[9, 16].
By using the features obtained above, we propose a model for describing the tran‐

scription dynamics. This model is based on the cellular automaton (CA), in which the

boxes are aligned in one‐dimension spanning the entire gene from the 5� end (left) to

the 3� end (right), and the balls (i.e., the RNAPII molecules) move according to the

rule 184 as proposed by Wolfram [9]. The rule 184 is generally used as a simple model

of traffic flow in a single lane of motion: RNAPII molecules move in a single direction.

An RNAPII molecule moves at a distance of one box when there is no RNAPII in front

of the (right) next box.

§2. Formulation

§2.1. CA Modeling of RNAPII Elongation

We provide a detailed description of the mathematical formulation by using the

features obtained from our experimental analysis [5]. Suppose the system has millions

of cells, and each cell has more than twenty thousands of genes. There are M RNAPII

molecules which are engaged in transcription of a gene. Hereafter, we focus on the

motion of the kth RNAPII (k\in\{1,2, \cdots; M\}) .

We simulate the RNAPII dynamics using a CA model. First, we describe a sim‐

ple cellular automaton model called a box‐ball model, where boxes are aligned in one

dimension spanning over whole gene from 5� end (left) to 3� end (right), and balls (=
RNAPII molecules) move according to the rule 184 proposed by Wolfram. In addition,
we propose a possible mechanism of RNAPII motion by extending the totally asym‐

metric simple exclusion process (TASEP). First, we dene some mathematical symbols,
initial conditions, and boundary conditions etc.

A gene under consideration of length L is split into N discretized boxes, called

cell units, based on a suitable unit of length  $\delta$ L . For example, the size of one RNAPII

molecule  $\eta$ or one nucleosome length is taken as one unit. Then these gene units are

allocated a number such as \{ 1, 2, \cdots

;  N\} from the edge of the gene called the TSS as

follows:

(2.1) \{G_{1}, G_{2}, \cdots, G_{N}\}.

The initial state is dened at t=0 ,
and the motion of the RNAPII molecules is deter‐

mined at t=it (i=0,1,2, \cdots) according to a suitable time evolution unit  $\delta$ t . Here

we take into account the RNAPII effective velocity difference  $\gamma$ as
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(2.2) \displaystyle \frac{ $\delta$ L}{ $\delta$ t}=v_{i}= $\gamma$ v_{e},
where v_{i} is the velocity in the introns, v_{e} is that in the exons, and we set the base

velocity as v_{i} . As explained above,  $\gamma$\geq 1 . If a cell unit in front is vacant, the above

described properties are expressed on the position x_{j}^{t} of G_{j} as

(2.3) x_{j}^{t+(i $\delta$ t)}=\left\{\begin{array}{l}
x_{j}^{t} (0\leq i<$\gamma$_{j}) ,\\
x_{j}^{t}+ $\delta$ L(i=$\gamma$_{j}) ,
\end{array}\right.
which i is a nonnegative integer (0\leq i\leq$\gamma$_{j}) and t is an arrival time at the position x_{j}^{t}.
Specically, we denote by $\gamma$_{j} the  $\gamma$ value of  G_{j}.

The gene is assumed to be constituted by an alternating 1‐dimensional alignment of

s+1 exons and s introns. For cyclic case, s+1 exons should read as s exons. RNAPIIs

are assumed to move in a single direction in the line from the 5� end to the 3� end with

effective forward velocity. The first exon (1st exon) consists of cell units with numbers

\{ 1, 2, \cdots

;  n_{1}\} ,
the first intron (the 1st intron) consists of cell units with numbers

(2.4) \{n_{1}+1, n_{1}+2, \cdots, m_{2}\},

The second exon (2nd exon) consists of cell units with numbers,

(2.5) \{m_{2}+1, m_{2}+2, \cdots, n_{2}\},

and so on. The remaining are similarly dened; the kth intron (k=1,2, \cdots; s) consists

of cell units with numbers

(2.6) \{n_{k}+1, n_{k}+2, \cdots, m_{k+1}\},

and kth exon (k=1,2, \cdots; s+1) consists of cell units with numbers

(2.7) \{m_{k}+1, m_{k}+2, \cdots, n_{k}\},

where m_{1}=0 and n_{s+1}=N.
For example, the total length of the SAMD4A gene is 225398 bp, consisting of 12

exons and 11 introns. The average length of each exon is 183 bp with small deviations,
but the intron length varies substantially.
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§2.2. Global Intensity PrOle of RNAPII

Previous reports adopted a static picture and attributed these fine structures of

the RNAPII density prole to the stalling of RNAPII [8, 9, 15, 16]. To understand

the physical process underlying the observed RNAPII density prole, we performed
a numerical simulation of RNAPII motion with the additional assumptions that the

number of cells in which RNAPII moving molecules has a distribution f_{cell} over time t

from stimulation.

To dene the intensity prole of RNAPII density at G_{j} ,
we introduce the following

time domain variables instead of using the parameters of displacement. T(k) represents

the elapsed time of the kth RNAPII to arrive at the jth cell unit G_{j} from the start cell

unit G_{1} ,
and this can be obtained by CA. By using this parameter, the residence time

of kth RNAPII at G_{j} ,
denoted as  $\delta$ T_{j}(k) ,

is given by

(2.8)  $\delta$ T_{j}(k)=T_{j+1}(k)-T_{j}(k) .

Thus, the number of the kth RNAPII molecules, that reside in the jth cell unit G_{j},
coincides with the ones that start at time T_{(s)} in the following time interval:

(2.9) (t- Tj (k)- $\delta$ T_{j}(k)+ $\epsilon$)\leq T_{(s)}\leq (t — Tj (k)+ $\epsilon$) ,

where  $\epsilon$ is denoted as the sum of the time range that results in the stochastic actions

of RNAPII including occasional stops and backtracks. Here we introduce  f_{cell}^{(k)}(T_{(s)})
as the number of activated cells in which kth RNAPII molecule started at time T_{(s)}.
Consequently, the number of kth RNAPII molecules I_{j}^{t}(k) ,

that reside in the jth cell

unit G_{j} at time t
,

is explicitly given as follows.

(2.10) I_{j}^{t}(k)=\acute{\sum_{i_{t}=- $\delta$ T_{j}(k)+ $\epsilon$}^{ $\epsilon$}},, f_{cell}^{(k)}(t- Tj (k)+i_{t} $\delta$ t) ,

where i_{t} takes integers for integrating residence times, and  $\delta$ T_{j}(k)' and $\epsilon$' are approxi‐
mated integer values that take  $\delta$ T_{j}(k)/ $\delta$ t and  $\epsilon$/ $\delta$ t , respectively.

To evaluate Eq.(2.10) we use time delays of RNAPII molecules. Here we introduce

\triangle T(k) as a time difference of the elapsed time of kth RNAPII from that of the preceding

(k-1)\mathrm{t}\mathrm{h} RNAPII to reach G_{j} ,
which yields

(2.11) \triangle T_{j}(k)=T_{j}(k)-T_{j}(k-1) ,
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where \triangle T_{j}(1)\equiv 0 . Thus, T(k) can take the form by using the integer index l as

(2.12) T_{j}(k)=T_{j}(1)+\displaystyle \sum_{l=2}^{k}\triangle T_{j}(l) .

Specically, we denote by  $\delta$ t_{in}(k) the time difference \triangle T(k) which indicates the in‐

jection time difference for the start cell unit G_{1} ,
since this parameter can be given as

initial conditions. By using this parameter, f_{cel}^{(k}l(T) is written recursively as

(2.13) \left\{\begin{array}{l}
f_{cell}^{(2)}(T_{(s)})=f_{cell}^{(1)}(T_{(s)}- $\delta$ t_{in}(2)) ,\\
f_{cell}^{(k)}(T_{(s)})=f_{cell}^{(1)}(T_{(s)}-\sum_{l=2}^{k} $\delta$ t_{in}(l)) .
\end{array}\right.
From Eqs.(2.10) and (2.13), one can obtain the number of kth RNAPII molecules I_{j}^{t}(k)
as;

I_{j}^{t}(k)=\acute{\sum_{i_{t}=- $\delta$ T_{j}(k)'+$\epsilon$'}^{ $\epsilon$}}
f_{cell}^{(k)}(t-(T_{j}(1)+\displaystyle \sum_{l=2}^{k}\triangle T_{j}(l))+i_{t} $\delta$ t)

=\acute{\sum_{i_{t}=- $\delta$ T_{j}(k)'+$\epsilon$'}^{ $\epsilon$}}
f_{cell}^{(1)}(t-T_{j}(1)-\displaystyle \sum_{l=2}^{k}( $\delta$ t_{in}(l)+\triangle T_{j}(l))+i_{t} $\delta$ t) ,

(2.14)

where f_{cell}^{(1)}(T_{(s)})\equiv f_{cell}(T_{(s)}) .

In the gene, the time interval of the kth and (k-1)\mathrm{t}\mathrm{h} RNAPIIs injected by the

time interval of  $\delta$ t_{in}(k) will be modulated by CA. Thus, we introduce the arrival time

delay from the preceding (k-1)\mathrm{t}\mathrm{h} RNAPII to the kth RNAPII at G_{j} and denote as

\triangle_{j}^{k} ;

(2.15) \triangle_{j}^{k}= $\delta$ t_{in}(k)+\triangle T_{j}(k) .

Consequently, the condition below is always satised for any j and k in the asymmetric

simple exclusion process (ASEP).
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(2.16) \triangle_{j}^{k}>0.

By taking the limit of time unit  $\delta$ t\rightarrow+0, I_{j}^{t}(k) using Eq.(2.15) can be given as follows

(2.17) I_{j}^{t}(k)=\displaystyle \int_{- $\delta$ T_{j}(k)+ $\epsilon$}^{ $\epsilon$}f_{cell}(u+t-T_{j}(1)-\sum_{l=2}^{k}\triangle_{j}^{l})du,
where u is a parameter of time on the function f_{cell} as

(2.18) f_{cell}(u) := $\delta$ t\displaystyle \rightarrow+0\lim_{u=i $\delta$ t}\frac{f_{cell}^{(k)}(i $\delta$ t)}{ $\delta$ t}.
Therefore, it should be noted that I_{j}^{t} ,

the total number of all RNAPII molecules that

reside in the jth cell unit G_{j} at time t
,

can be given as follows,

(2.19) I_{j}^{t}=\displaystyle \sum_{k=1}^{M}I_{j}^{t}(k) .

Here one can introduce the RNAPII stop time  $\theta$\displaystyle \min and the backtrack length  $\kappa$\simeq 10

bp [26, 27]. By using these parameters, the time range  $\epsilon$ of this stochastic action is

expressed as

(2.20)  $\epsilon$= $\alpha \theta$+ $\beta$\displaystyle \frac{ $\kappa$}{v_{i}},
where the constant values  $\alpha$ and  $\beta$ are small integer values to represent the frequencies
of stops and backtracks in the one cell unit, respectively. Therefore, the left‐hand side

can be eliminated by applying the phenomenon to Eq.(2.3). Thus, Eq.(2.20) is reduced

to

(2.21)  $\epsilon$=\displaystyle \frac{ $\beta \kappa$}{ $\delta$ L} $\delta$ t.
From the molecular biology experiments, a relation  $\epsilon$\simeq 10^{-2}\cdot $\delta$ t\ll $\delta$ T(k) should hold.

This condition helps us to evaluate the time range of Eq.(2.17) that is represented for

u\in[- $\delta$ T_{j}(k)+ $\epsilon$,  $\epsilon$] . Namely, in this envelope analysis, we can ignore the time range

 $\epsilon$ for the reduction to  u\in[- $\delta$ T_{j}(k), 0] ,
since  $\epsilon$ is sufficiently small in this approxima‐

tion. Therefore, such stochastic movements of the RNAPII molecule can be ignored in

describing the collective motion of the RNAPIIs in a large number of cells.
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§2.3. Formulation of Flow in the Different  $\gamma$ Units

In order to study the stability of RNAPII flow, we will follow the kth RNAPII

motion in a gene. We assume that the kth RNAPII and preceding (k-1)\mathrm{t}\mathrm{h} RNAPII

molecules reside at G_{j} and G_{j+1} , respectively. Now we inductively dene the subsequent
time delay \triangle_{j+1}^{k} by using the arrival time delay \triangle_{j}^{k} from the preceding (\mathrm{k}\mathrm{l})\mathrm{t}\mathrm{h} RNAPII

to kth RNAPII for reaching G_{j} . First, \emptyset_{j}^{k} is introduced as the time interval that G_{j} is

vacant before the kth RNAPII arrives, that is given by

(2.22) \emptyset_{j}^{k}=\triangle_{j}^{k}- $\delta$ T_{j}(k-1) .

Using this denition, the subsequent time delay \triangle_{j+1}^{k} can be dened as

(2.23) \displaystyle \triangle_{j+1}^{k}=\max(\emptyset_{j}^{k}+$\gamma$_{j} $\delta$ t,  $\delta$ T_{j+1}(k-1))

In this Eq.(2.23), one can see that the arrival time delay \triangle_{j+1}^{k} is obtained by the two

conditions whether the kth RNAPII will proceed smoothly without collision (left hand

side), or will be in the congestion that occurs after collision with the preceding (k-1)\mathrm{t}\mathrm{h}
RNAPII (right hand side) at G_{j} ; in other words, the kth RNAPII at G_{j} must wait for

the (k-1)\mathrm{t}\mathrm{h} RNAPII in the cell unit G_{j+1} in front. From Eq.(2.22), we may rewrite

the above equation as

\displaystyle \triangle_{j+1}^{k}=\max(\triangle_{j}^{k}- $\delta$ T_{j}(k-1)+$\gamma$_{j} $\delta$ t,  $\delta$ T_{j+1}(k-1))
=\displaystyle \max(\triangle_{j}^{k}- $\delta$ T_{j}(k-1)+$\gamma$_{j} $\delta$ t,  $\delta$ T_{j+1}(k-1))

+( $\delta$ T_{j}(k-1)-$\gamma$_{j} $\delta$ t)-( $\delta$ T_{j}(k-1)-$\gamma$_{j} $\delta$ t)

=\displaystyle \max(\triangle_{j}^{k},  $\delta$ T_{j+1}(k-1)+ $\delta$ T_{j}(k-1)-$\gamma$_{j} $\delta$ t)
(2.24) - $\delta$ T_{j}(k-1)+$\gamma$_{j} $\delta$ t,

where we used the identity for arbitrary A, B
,

and X as

(2.25) \displaystyle \max(A, B, \cdots)+X=\max(A+X, B+X, \cdots)_{:}

Eq.(2.24) indicates that the subsequent time delay \triangle_{j+1}^{k} is recursively dependent on the

preceding time delay \triangle_{j}^{k} . For example, let us consider four combinations of two types of

successive cell units \{G_{j-n_{1}+1}, ; G_{j}\} and \{G_{j+1}, \cdots, G_{j+n_{2}}\} with length of n_{1} and

n_{2} , by dividing into four cases as follows.

1) \{G_{j-n_{1}+1}, \cdots, G_{j}\} are introns and \{G_{j+1}, \cdots, G_{j+n_{2}}\} are exons
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2) \{G_{j-n_{1}+1}, \cdots, G_{j}\} are exons and \{G_{j+1}, \cdots ; G_{j+n_{2}}\} are introns

3) \{G_{j-n_{1}+1}, \cdots, G_{j}\} and \{G_{j+1}, \cdots ; G_{j+n_{2}}\} are both introns

4) \{G_{j-n_{1}+1}, \cdots, G_{j}\} and \{G_{j+1}, \cdots ; G_{j+n_{2}}\} are both exons

Here we concentrate on the diversity analysis of the arrival time delay \triangle_{j}^{k} at G_{j}
and the subsequent time delay \triangle_{j+1}^{k} at G_{j+1} in these four cases.

2.3.1. Fast (Intron) to Slow Velocity Region (Exon)
At the intron‐exon boundary, $\gamma$_{j}=1 and $\gamma$_{j+1}=$\gamma$_{e} . Here $\gamma$_{e} especially indicates

the  $\gamma$ value in the exon region. From the denition (2.3), the residence times of the

preceding (k-1)\mathrm{t}\mathrm{h} RNAPII at G_{j} and G_{j+1} become

(2.26) \{
 $\delta$ T_{j}(k-1)=\displaystyle \max($\gamma$_{j} $\delta$ t, $\gamma$_{j+1} $\delta$ t-\emptyset_{j}^{k-1})

=\displaystyle \max( $\delta$ t, $\gamma$_{e} $\delta$ t-\emptyset_{j}^{k-1}) ,

 $\delta$ T_{j+1}(k-1)=$\gamma$_{j+1} $\delta$ t=$\gamma$_{e} $\delta$ t,

where  $\delta$ T_{j}(k-1) ,
which shows the residence time of (k-1)\mathrm{t}\mathrm{h} RNAPII at G_{j} ,

can

be obtained by the two conditions whether the (k-1)\mathrm{t}\mathrm{h} RNAPII proceeds smoothly
without collision (left hand side), or in congestion after collision with the preceding

(k-2)\mathrm{t}\mathrm{h} RNAPII (right hand side) at G_{j} . As for the conditions of Eq.(2.26), the intron

to exon flow will be divided into two more specic cases. In the case of

(2.27)  $\delta$ t\geq$\gamma$_{e} $\delta$ t-\emptyset_{j}^{k-1},
the (k-1)\mathrm{t}\mathrm{h} RNAPII is in the free flow state. On the other hand, if

(2.28)  $\delta$ t<$\gamma$_{e} $\delta$ t-\emptyset_{j}^{k-1},
the (k-1)\mathrm{t}\mathrm{h} RNAPII is in the congested flow.

When the preceding (k-1)\mathrm{t}\mathrm{h} RNAPII is in free flow state as in Eq.(2.27), its

residence time at G_{j} becomes  $\delta$ T_{j}(k-1)= $\delta$ t from the Eq.(2.26). Thus, Eq.(2.24) can

be reduced to

\displaystyle \triangle_{j+1}^{k}=\max(\triangle_{j}^{k}, ($\gamma$_{e}+1-1) $\delta$ t)
-1\cdot $\delta$ t+1\cdot $\delta$ t

(2.29) =\displaystyle \max(\triangle_{j}^{k}, $\gamma$_{e} $\delta$ t)
In analyzing the stability of the flow states, Eq.(2.29) shows that if the arrival time

delay \triangle_{j}^{k} is in the condition of
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(2.30) \triangle_{j}^{k}>$\gamma$_{e} $\delta$ t,

the subsequent time delay remains stable as

(2.31) \triangle_{j+1}^{k}=\triangle_{j}^{k},

which generates the same homogeneous flow as before, even after the kth RNAPII

arriving at the exon region. Otherwise, the arrival time delay satises the condition

(2.32) \triangle_{j}^{k}\leq$\gamma$_{e} $\delta$ t,

and the subsequent time delay \triangle_{j+1}^{k} will always be set at the constant value as

(2.33) \triangle_{j+1}^{k}=$\gamma$_{e} $\delta$ t,

which generates a new repetitive pattern for a certain range after RNAPII reaching the

exon region under the condition that (k-1)\mathrm{t}\mathrm{h} RNAPII is in the free flow state. The

above expressions in the time domain indicate intuitively that the RNAPII flow state

depends on whether the time interval between nearest RNAPII molecules is larger than

the time required for an RNAPII passing the exclusion length between RNAPIIs in the

reduction region, $\gamma$_{e} $\delta$ t , or not.

If the preceding (k-1)\mathrm{t}\mathrm{h} RNAPII is in congested flow state, its residence time

at G_{j} becomes  $\delta$ T_{j}(k-1)=$\gamma$_{e} $\delta$ t-\emptyset_{j}^{k-1} from Eq.(2.26). In this case, it should be

noted that this  $\delta$ T_{j}(k-1) is recursively applied by Eq.(2.22) as long as the several

preceding RNAPII molecules have become congested successively. Consequently, this

can be reduced as follows.

 $\delta$ T_{j}(k-1)=$\gamma$_{e} $\delta$ t-(\triangle_{j}^{k-1}- $\delta$ T_{j}(k-2))
=$\gamma$_{e} $\delta$ t-(\triangle_{j}^{k-1}

-($\gamma$_{e} $\delta$ t-(\triangle_{j}^{k-2}- $\delta$ T_{j}(k-3))))

=(k-1-m)$\gamma$_{e} $\delta$ t-(\displaystyle \sum_{i=m+1}^{k-1}\triangle_{j}^{i}- $\delta$ T_{j}(m))
(2.34) =(k-m-1)$\gamma$_{e} $\delta$ t-\triangle_{j}^{(m+1} � k-1)+ $\delta$ t,
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where m(1\leq m\leq k-2) is introduced as an integer which takes the condition that the

mth RNAPII will proceed smoothly at G_{j} and all of the preceding RNAPII molecules

from the (m+1)\mathrm{t}\mathrm{h} to the (\mathrm{k}2)\mathrm{t}\mathrm{h} RNAPII will become congested after collisions occur.

Namely, the following condition holds for any integer i(m<i\leq k-1) except m as

(2.35)  $\delta$ t<$\gamma$_{e} $\delta$ t-\emptyset_{j}^{i}.
In Eq.(2.34), \displaystyle \sum_{i=m+1}^{k-1}\triangle_{j}^{i} is denoted by \triangle_{j}^{(m+1,k-1)} and  $\delta$ T_{j}(m)= $\delta$ t from the denition

of m . Thus, by using Eq.(2.34), Eq.(2.24) can be reduced to

\displaystyle \triangle_{j+1}^{k}=\max(\triangle_{j}^{k}, $\gamma$_{e} $\delta$ t+((k-1-m)t
-\triangle_{j}^{(m+1,k-1)}+ $\delta$ t)-1\cdot $\delta$ t)
-((k-1-m)$\gamma$_{e} $\delta$ t-\triangle_{j}^{(m+1,k-1)}+ $\delta$ t)+1\cdot $\delta$ t

=\displaystyle \max(\triangle_{j}^{k}, (k-m)$\gamma$_{e} $\delta$ t-\triangle_{j}^{(m+1,k-1)})
(2.36) -((k-1-m)$\gamma$_{e} $\delta$ t-\triangle_{j}^{(m+1,k-1)}) .

Let us analyze the stability of the flow states. Eq.(2.36) indicates that if the arrival

time delay \triangle_{j}^{k} satises the condition

(2.37) \triangle_{j}^{k}\leq(k-m)$\gamma$_{e} $\delta$ t-\triangle_{j}^{(m+1,k-1)},
the subsequent time delay \triangle_{j+1}^{k} in Eq.(2.36) becomes

\triangle_{j+1}^{k}=(k-m)$\gamma$_{e} $\delta$ t-\triangle_{j}^{(m+1,k-1)}
-((k-m-1)$\gamma$_{e} $\delta$ t-\triangle_{j}^{(m+1,k-1)})

(2.38) =$\gamma$_{e} $\delta$ t,

which is always set to the constant value $\gamma$_{e} $\delta$ t after the RNAPII reaching the exon

region, and then generates a new repetitive pattern for a certain range. Otherwise, if

the arrival time delay \triangle_{j}^{k} is in the condition of

(2.39) \triangle_{j}^{k}>(k-m)$\gamma$_{e} $\delta$ t-\triangle_{j}^{(m+1,k-1)},
the subsequent time delay \triangle_{j+1}^{k} in Eq.(2.36) becomes

\triangle_{j+1}^{k}=\triangle_{j}^{k}-((k-m-1)$\gamma$_{e} $\delta$ t-\triangle_{j}^{(m+1,k-1)})
(2.40) =\triangle_{j}^{(m+1} � k)-(k-m-1)$\gamma$_{e} $\delta$ t.
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Consequently, if the (k-1)\mathrm{t}\mathrm{h} RNAPII becomes congested after collision with the pre‐

ceding RNAPII and the kth RNAPII satises the stability condition in Eq.(2.39), the

subsequent time delay \triangle_{j+1}^{k} becomes a constant value dened by Eq.(2.40). This in‐

dicates that the arrival time delay \triangle_{j+1}^{k} of Eq.(2.40) is a specic condition for the

RNAPII being in transition from the congestion state to the free flow state. The sub‐

sequent RNAPII will go back to the condition that the preceding RNAPII is in free

flow state as in Eq.(2.27). Refer to [28] for more information about the other condi‐

tions, �slow (exon) to fast velocity region (intron)�, �fast (intron) to fast velocity region

(intron)�, and �slow (exon) to slow velocity region (exon)�

2.3.2. Critical Density Near the  $\gamma$ Region
In order to find a solution to density conversion near the  $\gamma$ region, we dene the

densities at the (l-1)\mathrm{t}\mathrm{h} intron, lth exon and lth intron regions, as $\rho$_{I}^{(l-1)}, $\rho$_{E}^{(l)} and $\rho$_{I}^{(l)},
respectively. For the sake of simplicity, we suppose a model in which the G_{j}, G_{j+1} and

G_{j+2} cell units are the (l-1)\mathrm{t}\mathrm{h} intron, lth exon and lth intron, respectively. It should

be noted that this simplied model can easily be extended to more common forms of

exons or introns of long length that consist of multiple cell units, by using the results

of the previous subsection. First, the density $\rho$_{I}^{(l-1)} in the (l-1)\mathrm{t}\mathrm{h} intron region can

be dened as

(2.41) $\rho$_{I}^{(l-1)}=\displaystyle \frac{ $\delta$ L}{\triangle_{j}^{k}v_{i}},
where the density $\rho$_{I}^{(l-1)} is dened with \triangle_{j}^{k} ,

since the G_{j} is assumed to be the (l-1)\mathrm{t}\mathrm{h}
intron. Next, the density $\rho$_{E}^{(l)} in the lth exon region similarly takes the form

(2.42) $\rho$_{E}^{(l)}=\displaystyle \frac{ $\delta$ L}{\triangle_{j+1}^{k}v_{e}},
which is subject to the conditions in the case of the intron to exon flow as noted previ‐

ously.

Keeping in mind that the value of density, $\rho$_{I}^{(l-1)}, $\rho$_{E}^{(l)} and $\rho$_{I}^{(l)} changes according
to the arrival time delay \triangle_{j}^{k} and the state of the (k-1)\mathrm{t}\mathrm{h} RNAPII, we evaluate them

as follows. If the (k-1)\mathrm{t}\mathrm{h} RNAPII is in a free flow state as in the following upper

inequation, while an arrival time delay \triangle_{j}^{k} is rather short (bounded by the parameters)
and satises the following lower inequation,

(2.43) \left\{\begin{array}{l}
 $\delta$ t\geq$\gamma$_{e} $\delta$ t-\emptyset_{j}^{k-1},\\
\triangle_{j}^{k}\leq$\gamma$_{e} $\delta$ t,
\end{array}\right.
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or, the (k-1)\mathrm{t}\mathrm{h} RNAPII is in a congested flow state as in the following upper inequa‐

tion, while an arrival time delay \triangle_{j}^{k} is still rather short (but bounded by the different

parameters from inequation \mathrm{E}\mathrm{q}.(2.43) ) and satises the following lower inequation,

(2.44) \left\{\begin{array}{l}
 $\delta$ t<$\gamma$_{e} $\delta$ t-\emptyset_{j}^{k-1},\\
\triangle_{j}^{k}\leq(k-m)$\gamma$_{e} $\delta$ t-\triangle_{j}^{(m+1,k-1)},
\end{array}\right.
then, the arrival time delay holds \triangle_{j+1}^{k}=$\gamma$_{e} $\delta$ t from Eqs.(2.33) and (2.38), since G_{j+1}
is exon. Therefore, the above density $\rho$_{E}^{(l)} is reduced to a constant value as

$\rho$_{E}^{(l)}=\displaystyle \frac{ $\delta$ L}{$\gamma$_{e} $\delta$ t} \frac{$\gamma$_{e}}{v_{i}}
 $\delta$ L 1

=\overline{ $\delta$ t} \overline{v_{i}}
 $\delta$ L  $\delta$ t

=\overline{ $\delta$ t}
.

\overline{ $\delta$ L}
(2.45) =1.

Thus, the highly congested flow without collisions is generated in the lth exon region.
Refer to [28] for more information about the other cases of critical density.

2.3.3. List of Denition of Symbols
We show a list of denition of symbols, T_{j}(k) ,  $\delta$ T_{j}(k) , \triangle T_{j}(k) , \triangle_{j}^{k}, \emptyset_{j}^{k} ,

and

\triangle_{j}^{(m+1,k-1)} , using a symbol t(k) which denotes the arrival time of the kth RNAPII at

the jth cell. Then we have a relation

(2.46) t_{1}(k)=t_{1}(k-1)+ $\delta$ t_{in}(k) ,

and all the other symbols are expressed as follows. The elapsed time of the kth RNAPII,

T_{j}(k) ,
to arrive at the jth cell unit G_{j} from the start cell unit G_{1} is

T_{j}(k)=t_{j}(k)-t_{1}(k)

(2.47) =t_{j}(k)-\displaystyle \sum_{i=1}^{k} $\delta$ t_{in}(i) ,

where i takes integer for integrating the injection time differences for the start cell unit.

(2.48)  $\delta$ T_{j}(k)=t_{j+1}(k)-t_{j}(k) ,
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is the residence time of kth RNAPII at G_{j}. \triangle T(k) is the time difference of the elapsed
time of kth RNAPII from that of the preceding (k-1)\mathrm{t}\mathrm{h} RNAPII to reach G_{j} ,

which

yields

\triangle T_{j}(k)=T_{j}(k)-T_{j}(k-1)

=(t_{j}(k)-\displaystyle \sum_{i=1}^{k} $\delta$ t_{in}(i))-(t_{j}(k-1)-\sum_{i=1}^{k-1} $\delta$ t_{in}(i))
(2.49) =t_{j}(k)-t_{j}(k-1)- $\delta$ t_{in}(k) ,

from Eqs.(2.11) and (2.47). The arrival time delay from the preceding (\mathrm{k}\mathrm{l})\mathrm{t}\mathrm{h} RNAPII

to the kth RNAPII at G_{j} is

(2.50) \triangle_{j}^{k}=t_{j}(k)-t_{j}(k-1) ,

from Eqs.(2.15) and (2.49). \emptyset_{j}^{k} is introduced as the time interval that G_{j} is vacant

before the kth RNAPII arrives;

(2.51) \emptyset_{j}^{k}=t_{j}(k)-t_{j+1}(k-1) ,

from Eqs.(2.22), (2.48) and (2.50). By using Eq.(2.50), \displaystyle \sum_{i=m+1}^{k-1}\triangle_{j}^{i} is denoted by

\triangle_{j}^{(m+1,k-1)} as

\displaystyle \triangle_{j}^{(m+1,k-1)}=\sum_{i=m+1}^{k-1}\triangle_{j}^{i}
=\displaystyle \sum_{i=m+1}^{k-1}(t_{j}(i)-t_{j}(i-1))

(2.52) =t_{j}(k-1)-t_{j}(m) ,

where m(1\leq m\leq k-2) is introduced as an integer which takes the condition that the

mth RNAPII will proceed smoothly at G_{j} and all of the preceding RNAPII molecules

from the (m+1)\mathrm{t}\mathrm{h} to the (\mathrm{k}2)\mathrm{t}\mathrm{h} RNAPII will become congested after collisions occur.

§3. Results and Discussion

§3.1. Application to the SAMD4A Gene

The SAMD4A gene was selected because it is immediately responsive to the stim‐

ulation, as well as being quite long in length. The total length of the SAMD4A gene is
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225398 bp, consisting of 12 exons and 11 introns. The average length of each exon is

183 bp with only small deviations; however, the intron length varies substantially.
Since the length of RNAPII  $\eta$ is about 35 bp, we discretized the  SAMD4A gene into

separate 35 bp box lengths of one RANPII each, and RNAPII moves one box length at

a time. The total number of cell units N becomes 6440 in this application. Here the

effective velocity of RNAPII in intron is 3.5 (kb/min) [5]; therefore, the time interval

 $\delta$ t becomes 0.01 \displaystyle \min . Within this time interval, all the RNAPIIs in the gene move at

once. To represent the reduction in the velocity of RNAPII in the exons, we maintained

the stoppage of RNAPII for $\gamma$_{e} times per time evolution unit. Since it is known that

the 3� end and 5� end in long genes come close together [29, 30], we applied a periodic

boundary condition. As one RNAPII goes out from the 3� end, RNAPII is immediately
re‐introduced from the 5� end of the gene.

As shown in Fig.2, the RNAPII density prole envelope structure [5] arises from

such long‐range RNAPII cooperativity, because the suitable distances maintained by a

suitable number of RNAPIIs, not a single RNAPII, reproduce the experimental RNAPII

density prOle over the entire length of the gene. Therefore, since the envelope prOle
is not sensitive in the correlation of either the stalling prole of the local RNAPII or

the correlation of the RNAPIIs with the nucleosomes [16], the evidence suggests the

existence of long‐range cooperativity between RNAPIIs.

At  t=30\displaystyle \min ,
we compared the results of our simulation to the \mathrm{C}\mathrm{h}\mathrm{I}\mathrm{P} ‐chip results

[5]. The simulation result on the envelop curve (Fig. 2(\mathrm{b}) ) generally provides a good fit

with the experimental one (Fig. 2(\mathrm{a}) ), except at the two points indicated by the arrows,

(ii) and (iii) in Fig.2(a). We observed an increasing enrichment at these positions at

the time of the leading RNAPII arrival at position (i) as shown in Fig.2(a).
At  t=60\displaystyle \min ,

the results are also compared with the same optimized parameters at

 t=30\displaystyle \min . The leading RNAPII moves to position (iv) of Fig.2(a). From the previously

reported experimental data [5], the positions indicted by the arrows were enriched with

both CTCF and RAD21, which substantially peaked at  t=30\displaystyle \min ,
and at even  t=0

minute. Since the CTCF/cohesin (RAD21) complex is tightly related to the looping of

DNA, we conjecture that the points (ii) and (iii) indicated the arrows in Fig.2(a) are

very close to the position (i) in the real space of the real cell. In fact, other RNAPII

experiments show stalling at these sites all the time, starting from  t=0\displaystyle \min . (Refer
to [31] for more information about these points, (ii) and (iii).) From our simulation for

30 \displaystyle \min and 60 \displaystyle \min(\mathrm{F}\mathrm{i}\mathrm{g}.2(\mathrm{b})) ,
the sharp peaks are obtained at the exons and CTCF

binding sites, that is, at the same sites displaying peaks in experimental data Fig.2(a).
Although the existence of blockade by exons and CTCF/cohesin binding in the gene in

the normal cell has been shown, the experimentally fitted parameters provide the free

homogeneous flow as shown in Fig.3, where the density prole in a spatiotemporal view
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Figure 2. Density PrOle of RNAPII and Corresponding CTCF and RAD21 Enrichment

(a) The experimental density prole of RNAPII for genes at t=30 and 60 \displaystyle \min after

the stimulation, as observed in the \mathrm{C}\mathrm{h}\mathrm{I}\mathrm{P} ‐chip experiments, and also CTCF/cohesin
(RAD21) enrichment at t=0\displaystyle \min[5] . (b) The simulation results at t=30 and 60 \displaystyle \min

with the optimized parameters:  $\mu$=7 and  $\gamma$=5 . The number of RNAPII molecules on

the gene body, M=5 ,
and the RNAPII injection timing \{ $\delta$ t_{in}(k)\}= {0,4,4,6,6} in the

gene at  t=30\displaystyle \min will be changed to  M=7 ,
and \{ $\delta$ t_{in}(k)\}= {0,4,4,6,6,12,20} at t=60

\displaystyle \min.

is provided.
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\vee-\wedge\subseteq \mathrm{E}

0 100 200

position from TSS (kbp)

Figure 3. Obtained Time‐evolution Pattern in SAMD4A

Parameters;  $\gamma$=10,  0\displaystyle \leq t\leq 300\min ,
and \{ $\delta$ t_{in}(k)\}= {0,4,4,6,6,12,20,20,20, \cdots } \displaystyle \min.

The intensity of I_{j}^{t} at G_{j} ,
in which an RNAPII molecule exists, is shown in Fig.2. From

this figure, one can see that the RNAPII molecules gradually assemble in exons and

at CTCF/cohesin (RAD21) binding sites. This generates the same homogeneous flow

as before, after passing through the  $\gamma$ region, since \{ $\delta$ t_{in}(k)\} satises the condition in

Eq.(2.30).

§3.2. Knock Down Cells with a Low Blockade

A lower blockade than that found in normal cells results in both freer and more

homogeneous RNAPII motions. Theoretically, knock‐down of RAD21 may lead to a

partial loosening of the looping of DNA and an inability to retain RNAPII at the

cohesin binding positions, and thus the reduction of blockade for RNAPII is achieved.

The \mathrm{C}\mathrm{h}\mathrm{I}\mathrm{P} ‐chip experimental result for RAD21 knock‐down cell at  t=60\displaystyle \min [5] shows

that the RNAPII density prole over the entire gene region becomes uniform and more

highly enriched than in the control cells (Fig.  4(\mathrm{a}) ). At the well‐known hot spots of
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Figure 4. RNAPII Density PrOle in Knock‐down Cells

(a) Experimental results for the density prole in RAD21 knock‐down cells at t=60

\displaystyle \min . (b) Simulation results for the RNAPII density prole at  t=120\displaystyle \min ,
where the

transcription status of the  SAMD4A gene is stable and RNAPII is deliberately re‐

injected, in addition to the transient injections. The parameters are the same as in

Fig.2. The number of RNAPII molecules on the gene body M=10 ,
and the RNAPII

injection timing is \{ $\delta$ t_{in}(k)\}= {0,4,4,6,6,12,20,20,20,20} \displaystyle \min . (c) The simulation re‐

sult of the RNAPII density prole at  t=60\displaystyle \min for the knock down cells. Here the

simulation parameters are  $\mu$=7,  $\gamma$=1, v_{i}=v_{e}=7.0 (kb/min), M=13 ,
and \{ $\delta$ t_{in}(k)\}=

{0,4,4,6,6,12,20,20,20,20,20,20,20} \displaystyle \min.
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protein binding sites in the first intron, the RNAPII in the RAD21 knock‐down cells

is still just as highly enriched as in the normal cells. The experimentally obtained

RNAPII density prole for the RAD21 knock‐down cells at t=60\displaystyle \min(\mathrm{F}\mathrm{i}\mathrm{g}.4(\mathrm{a})) is

similar to the simulation density prole at t=120\displaystyle \min(\mathrm{F}\mathrm{i}\mathrm{g}.4(\mathrm{b})) in normal cells, where

more RNAPIIs are assumed to be additionally introduced into the genes than at t=60

\displaystyle \min(\mathrm{F}\mathrm{i}\mathrm{g}.4(\mathrm{b})) . Figs. 4(\mathrm{a}) and (b) also indicate that the RNAPII moves rapidly (about
two‐times faster than that in introns in normal cells) in the knock‐down cells.

To simulate the accelerated process in knock‐down cells, where a steady state with

more RNAPII molecules is already achieved, even at  t=60\displaystyle \min ,
we (tentatively) used

the following parameters:  $\mu$=7,  $\gamma$=1 ,
and v_{i}=v_{e}=7.0 (kb/min). RNAPIIs with

the optimized injection parameters were imposed by means of a periodic boundary con‐

dition. RNAPII molecules are allowed to move without stall near the cohesin (RAD21)
binding sites, except at hot spot sites where the other protein binding sites are shown

by the green ring. The RNAPII density prole thus obtained by the simulation with

 $\gamma$=1(\mathrm{F}\mathrm{i}\mathrm{g}.4(\mathrm{c})) is in good agreement with the experimental result (Fig. 4(\mathrm{a}) ). This

indicates that RAD21 knock‐down leads to not only a reduction of the RNAPII stall

blockade due to the DNA loop, but also a reduction of the RNAPII stall in exons that

reported to be regulated by \mathrm{H}3\mathrm{K}36\mathrm{m}\mathrm{e}3 enrichment. This suggests that the DNA loop
formation might occur near exons.

§3.3. Global Density PrOle of RNAPII with High Congestion

If each arrival time interval satises \triangle_{j}^{k}>\triangle_{j(f)}^{k} in the free state (or \triangle_{j}^{k}>\triangle_{j(c)}^{k} in

the congested state), the RNAPII flow in the SAMD4A gene is free and is governed by
the \triangle_{j}^{k} ,

even though RNAPII molecules reduce their velocity in the  $\gamma$ regions of exons.

Here we used  $\gamma$=1 for the intron regions,  $\gamma$=5 for the CTCF‐enriched regions and the

exons. On the other hand, if one of the time intervals \triangle_{j}^{k} happens to be satised the

relation \triangle_{j}^{k}\leq\triangle_{j(f)}^{k} in free state (or \triangle_{j}^{k}\leq\triangle_{j(c)}^{k} in the congested state), the RNAPII

flow becomes congested. A spatiotemporal view of the simulation results in this case

is given in Fig.5. We also used SAMD4A gene structure with the following parameters

of the  $\gamma$ regions;  $\gamma$=1 for the intron regions,  $\gamma$=5 for the CTCF‐enriched regions, and

 $\gamma$=100 for all of the exons.

As shown in Fig.5(a), and from (d) to (f), a regulated repetitive wave with the

periodicity $\gamma$_{j+1} $\eta$/v_{i} observed spreading from first encountered exon to the 3� end, and

then the wave re‐enters from the 5� end as the result of the periodic boundary condition

(Fig. 5(\mathrm{g}) ). Interestingly, the maximum  $\gamma$ occurs at the first encountered exon and the

periodicity of the RNAPII density wave passing through the other exons retains the

same periodicity. This repetitive wave moves forward and is due to the exon blockade

effect. Again, it should be noted that the repetitive pattern shown in Fig.5 is not due to

the velocity reduction alone, but also the interaction between the RNAPII molecules, as
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Figure 5. Time‐evolution Pattern of Congestion
The obtained time‐evolution pattern in  SAMD4A for the parameters:  $\gamma$=100,  0\leq

 t\displaystyle \leq 300\min, M=18 ,
and \{ $\delta$ t_{in}(k)\}= {0,1,2,3,4,5,6,7,8,9,8,7,6,5,4,3,2,1} \displaystyle \min . (a) The

intensity of  I_{j}^{t} at G_{j} ,
in which an RNAPII molecule exists, is shown. If the injection

delay  $\delta$ t_{in}(k) is shorter than the critical conversion point in Eq.(2.32), the RNAPII

molecules will be congested around the exon region, and after that, they travel with the

constant delay $\gamma$_{j+1} $\eta$/v_{i} ,
which resulted in a repetitive pattern of flow over a certain

range. (b‐g) The RNAPII density prole at (b) t=30 , (c) t=60 , (d) t=90 , (e) t=120,

(f) t=150 ,
and (g)  t=300\displaystyle \min . In the simulations, a sphere on the gene indicates the

preceding RNAPIIs with a distribution for the cell population.

is observed in the prokaryote or the automobile trafficjams, in which the global pattern

moves backward with some velocity [21, 22, 32, 33]. In our framework, the RNAPII

distribution is mainly due to the change in the difference in the cellular RNAPII density

wave, where many solitary waves become uniform due to the broad distribution. The

cellular distribution also changes the periodicity of the repetitive pattern, as shown in

Fig.5. This clearly indicates that by changing the number of cells, the RNAPII repetitive
wave is made experimentally observable.



122 Ohta and Ihara

§4. Conclusion

In this report, a cellular automaton model has been successfully applied to RNAPII

dynamics in genes. The effect of clearly distinct genomic regions of exons and introns on

RNAPII dynamics was investigated, where the RNAPII moves at two different average

velocities, to determine the RNAPII spatial distribution. We have described RNAPII

dynamics in terms of the properties in time domain such as elapsed time, residence time,
and time intervals, instead of those in the space domain; position, length, and distances.

As the result of comparing the \mathrm{C}\mathrm{h}\mathrm{I}\mathrm{P} ‐chip experimental results for the SAMD4A gene,

we showed that long‐range RNAPII spatiotemporal cooperativity takes place in RNAPII

dynamics. The long‐range correlation between RNAPIIs derived here is different from

the previously reported for short‐range correlations such as local stalling, which are in a

range of less than 1 kbp in length and less than 1 \displaystyle \min in time. Our model also provides

insight into the difference in the RNAPII dynamics of genes in normal cells as well as

in cohesin (RAD21) knock‐down cells. It is suggested that this formulation of RNAPII

dynamics will prove useful in helping to elucidate the RNAPII traffic in other genes.
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