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Remarks on Strichartz estimates for Schrödinger
equations on manifolds with ends

By

Haruya Mizutani *

Abstract

We give an account of several recent results [24, 25, 26, 27] on Strichartz estimates for the

time‐dependent Schrödinger equation. We consider two models: The first part of the paper is

concerned with Schrödinger operators with variable coefficients and unbounded electromagnetic
potentials on the Euclidean space. In the second part, we consider the Laplace‐Beltrami
operator on a class of non‐compact manifolds with polynomially growing ends. Under several

assumptions on the coefficients and the potentials at spatial infinity, we show local‐in‐time

Strichartz estimates outside a large compact set (without the non‐trapping condition). We also

prove global‐in‐space Strichartz estimates under some geometric conditions on the Hamilton

flow generated by the kinetic energy.

§1. Introduction

In this note we give a review of author�s recent progress [24, 25, 26, 27] concerning
the Strichartz estimates for Schrödinger equations with variable coefficients.

Let us start with the general framework. Consider the Schrödinger equation on a

d‐dimensional complete Riemannian manifold (M, g) :

(1.1) i\partial_{t}u=Hu ; u|_{t=0}=u_{0}\in L^{2}(M) ,

where H=-(1/2)\triangle_{g}+V(x) , \triangle_{g} is the Laplace‐Beltrami operator associated to the

metric g and V is a real‐valued function. For instance, we assume that H is self‐adjoint
on L^{2}(M) . The solution to (1.1) is given by u(t)=e^{-itH}u_{0}\in C(\mathbb{R};L^{2}(M)) ,

where

e^{-itH} is a unique strongly continuous one parameter unitary group generated by H.
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We are interested in so‐called the Strichartz estimates which are of the forms:

(1.2) ||u||_{L_{T}^{p}L^{q}(M)}\leq C_{T}||\langle H\rangle^{ $\gamma$}u_{0}||_{L^{2}(M)},
where ||F||_{L_{T}^{p}L^{q}(M)}:=||||F(t, \cdot)||_{L^{q}(M)}||_{L^{p}([T,-T])} with T>0,  $\gamma$\geq 0 and (p, q) satisfies

the following admissible condition:

(1.3) p, q\geq 2, 2/p=d(1/2-1/q) , (d,p, q)\neq(2,2, \infty) .

It is widely known that Strichartz estimates play an important role in studying nonlinear

Schrödinger equations (see, e.g., [8]). Furthermore, if H has infinitely many positive

eigenvalues  0<E_{0}<E_{1}<\cdots ,
then such estimates can be applied to obtain  L^{p_{-}}

estimates of eigenfunctions:

||$\psi$_{E_{j}}||_{L^{p\sim}}<E_{j}^{ $\delta$(d,p)}, 2\leq p\leq\infty,
where $\psi$_{E_{j}} is the L^{2} ‐normalized eigenfunction with the eigenvalue E_{j} . In particular, for

d\geq 3 ,
the sharp endpoint Strichartz estimate, combined with the Bernstein inequality,

usually implies the sharp L^{\infty} ‐estimate ([20, 21]).
To explain the purpose of the paper more precisely, we recall some known results.

Let us first recall well known properties of the free propagator e^{-itH_{0}} on \mathbb{R}^{d}
,
where H_{0}=

-\triangle/2 . The distribution kernel of e^{-itH_{0}} is given explicitly by (2 $\pi$ it)^{-d/2}e^{i|x-y|^{2}/(2t)} and

the solution u(t)=e^{-itH_{0}}u_{0} thus satisfies so‐called the dispersive estimate:

(1.4) ||u(t)||_{L^{\infty(\mathbb{R}^{d})\sim}}<|t|^{-d/2}||u_{0}||_{L^{1}(\mathbb{R}^{d})}
for any t\neq 0 , which, combined with the unitarity on L^{2}

, implies that u enjoys the

sharp global‐in‐time Strichartz estimates, i.e., (1.2) with  T=+\infty and  $\gamma$=0 ,
for

any admissible pair (p, q) . These estimates immediately imply that, for any u_{0}\in L^{2},

u(t)\displaystyle \in\bigcap_{q\in Q_{d}}L^{q} for a.e. t\in \mathbb{R} ,
where Q_{1}=[2, \infty],  Q_{2}=[2, \infty ) and  Q_{d}=[2, 2d/(d-2)]

for d\geq 3 . Roughly speaking, comparing the Sobolev embedding H^{d(1/2-1/q)}\mapsto L^{q}

one can recover at most one derivative loss by using Strichartz estimates. Strichartz

estimates for e^{-itH_{0}} were first proved by Strichartz [32] for a restricted pair of (p, q)
with p=q=2(d+2)/d ,

and have been generalized for (p, q) satisfying (1.3) by [15, 18].
For Schrödinger operators with electromagnetic potentials

H=\displaystyle \frac{1}{2}(-i\partial_{x}-A(x))^{2}+V(x) on \mathbb{R}^{d},

short‐time dispersive and local‐in‐time Strichartz estimates have been extended with

potentials decaying at infinity [34] or growing at infinity [14, 35]. In particular, it was

shown by [14, 35] that if V is of at most quadratic type, A is of at most linear type and all

derivatives of the magnetic field B=dA are of short‐range type, then e^{-itH}u_{0} satisfies
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(1.4) for small t\neq 0 . Local‐in‐time Strichartz estimates are immediate consequences

of this estimate, the L^{2} ‐boundedness and the TT^{*} ‐argument due to Ginibre‐Velo [15]
(see Keel‐Tao [18] for the endpoint estimate). For the case with singular potentials or

with supercritically growing electromagnetic potentials, we refer to [34, 36, 38, 9] and

reference therein. We mention that global‐in‐time dispersive and Strichartz estimates for

the scattering state P_{ac}(H)u have been also studied under suitable decaying conditions

on potentials and assumptions for the zero energy; see [17, 37, 30, 12, 10] and reference

therein. We also mention that there is no result on sharp global‐in‐time dispersive
estimates for (generic) magnetic Schrödinger operators, though [13] has recently proved

dispersive estimates for the Aharonov‐Bohm effect in \mathbb{R}^{2}.

On the other hand, the influence of the geometry (e.g., the global behavior of the

geodesic flow) on the behavior of solutions to linear and nonlinear partial differential

equations has been extensively studied. From this geometric viewpoint, sharp local‐in‐

time Strichartz estimates for Schrödinger equations with variable coefficients (or, more

generally, on manifolds) have recently been investigated by many authors under several

conditions on the geometry; see, e.g., [31, 6, 28, 16, 4, 3, 7] and reference therein. In

[31], [28], [4], the authors studied the case on the Euclidean space with nontrapping

asymptotically flat metrics. The case on the nontrapping asymptotically conic manifold

was studied by [16]. In [3] the author considered the case of nontrapping asymptotically

hyperbolic manifold. For the trapping case, it was shown in [6] that Strichartz estimates

with a loss of derivative 1/p hold on any compact manifolds without boundaries. They
also proved that the loss 1/p is optimal in the case of M=\mathrm{S}^{d}, d\geq 3 . In [4] and [3],
the authors proved sharp Strichartz estimates, outside a large compact set, without the

nontrapping condition. More recently, it was shown in [7] that sharp Strichartz estimates

still hold for the case with hyperbolic trapped trajectories of sufficiently small fractal

dimension. We mention that there are also several works on global‐in‐time Strichartz

estimates in the case of long‐range perturbations of the flat Laplacian on \mathbb{R}^{d} ([5,33,23
As we have seen, Strichartz estimates are well studied subjects for both of potential

perturbation and variable coefficient cases. We however note that the literature is more

sparse for the mixed case, namely the case with variable coefficients and unbounded

electromagnetic potentials. In Section 2, we give a unified approach to a combination

of these two kinds of results.

In Section 3, we discuss the case on a class of non‐compact manifolds with poly‐

nomially growing ends, which is regarded as a generalization of results by [16, 4]. In

particular, we show that if the volume density grows polynomially at infinity and is

strictly larger than that of the Euclidean space, then local‐in‐time Strichartz estimates,
outside a large compact set, hold without the asymptotic convergence condition on

the angular metric. To the best knowledge of the author, this is a first example of
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sharp Strichartz estimates without asymptotic convergence conditions, except for the

one dimensional case.

§2. Schrödinger equations with variable coefficients and unbounded

potentials

In this section we consider Schrödinger operators with variable coefficients and

electromagnetic potentials on \mathbb{R}^{d}, d\geq 1 :

H=\displaystyle \frac{1}{2}(-i\partial_{j}-A_{j}(x))g^{jk}(x)(-i\partial_{k}-A_{k}(x))+V(x) , x\in \mathbb{R}^{d},
with the Einstein summation convention. We suppose the following:

Assumption 2.1. g^{jk}, A_{j}, V\in C^{\infty}(\mathbb{R}^{d};\mathbb{R}) . (g^{jk})_{j,k} is symmetric and uniformly

elliptic: g^{jk}(x)$\xi$_{j}$\xi$_{k}\geq c_{0}| $\xi$|^{2}, x,  $\xi$\in \mathbb{R}^{d} , with some positive constant c_{0} . Moreover, there

exists  $\mu$\geq 0 such that for any  $\alpha$\in \mathbb{Z}_{+}^{d}:=\mathbb{N}^{d}\cup\{0\},

|\partial_{x}^{ $\alpha$}(g^{jk}(x)-$\delta$_{jk})|\leq C_{ $\alpha$}\langle x\rangle^{- $\mu$-| $\alpha$|},
|\partial_{x}^{ $\alpha$}A_{j}(x)|\leq C_{ $\alpha$}\langle x\rangle^{1- $\mu$-| $\alpha$|},

|\partial_{x}^{ $\alpha$}V(x)|\leq C_{ $\alpha$}\langle x\rangle^{2- $\mu$-| $\alpha$|}, x\in \mathbb{R}^{d},

where \langle x\rangle stands for \sqrt{1+|x|^{2}}.

Under Assumption 2.1, H is essentially self‐adjoint on C_{0}^{\infty}(\mathbb{R}^{d}) (see, e.g., [11]) and

we denote its self‐adjoint extension on L^{2}(\mathbb{R}^{d}) by the same symbol H.

Let k(x,  $\xi$)=\displaystyle \frac{1}{2}g^{jk}(x)$\xi$_{j}$\xi$_{k} be the classical kinetic energy associated to g^{jk} . Consider

the Hamilton flow generated by k
,
that is the solution to the Hamilton system

\displaystyle \dot{x}(t)=\frac{\partial k}{\partial $\xi$}(x(t),  $\xi$(t)) , \displaystyle \dot{ $\xi$}(t)=-\frac{\partial k}{\partial x}(x(t),  $\xi$(t)) ; (x(0),  $\xi$(0))=(x_{0}, $\xi$_{0}) .

We then impose the following geometric conditions:

Assumption 2.2.

\bullet (Nontrapping condition) For any initial data  x_{0}, $\xi$_{0}\in \mathbb{R}^{d} with $\xi$_{0}\neq 0, |x(t)|\rightarrow+\infty
as  t\rightarrow\pm\infty.

\bullet (Convexity near infinity) There exists  f\in C^{\infty}(\mathbb{R}^{d}) satisfy ing f\geq 1 and  f\rightarrow+\infty
as |x|\rightarrow+\infty such that  f\in L^{\infty}(\mathbb{R}^{d}) for any | $\alpha$|\geq 2 and that

H_{k}^{2}f(x,  $\xi$)\geq ck(x,  $\xi$)

on \{(x,  $\xi$)\in \mathbb{R}^{2d};f(x)\geq R\} , for some constants c, R>0.



Strichartz estimates for SchröDINGER equations 37

Note that if \partial_{x}g^{jk}=o(x) as |x|\rightarrow+\infty ,
then the convexity condition holds.

In particular, Assumption 2.1 with  $\mu$>0 implies the convexity near infinity. For more

example satisfying Assumption 2.2, we refer to [11].

§2.1. Main results

We now state main results in this section. In the sequel, 1_{A} denotes the character‐

istic function designated by A.

Theorem 2.3 (Subcritical case [25, 26 (1) Assume that Assumption 2.1 with

 $\mu$>0 . Then, there exists R_{0}>0 such that for any T>0, p\geq 2, q<\infty, 2/p=
d(1/2-1/q) and R\geq R_{0} ,

we have

(2.1) ||1_{\{|x|>R\}}e^{-itH}u_{0}||_{L^{p}([-T,T];L^{q}(\mathbb{R}^{d}))}\leq C_{T}||u_{0}||_{L^{2}(\mathbb{R}^{d})},
where C_{T}>0 may be taken uniformly with respect to R.

(2) Assume that Assumption 2.1 with  $\mu$\geq 0 . Then, for any T>0, p\geq 2, q<\infty,

2/p=d(1/2-1/q) and r>0 ,
we have

(2.2) ||1_{\{|x|<r\}}e^{-itH}u_{0}||_{L^{p}([-T,T];L^{q}(\mathbb{R}^{d}))}\leq C_{T,r}||\langle H\rangle^{\frac{1}{2p}}u_{0}||_{L^{2}(\mathbb{R}^{d})}.
Moreover, if we assume in addition that Assumption 2.2, then

(2.3) ||1_{\{|x|<r\}}e^{-itH}u_{0}||_{L^{p}([-T,T];L^{q}(\mathbb{R}^{d}))}\leq C_{T,r}||u_{0}||_{L^{2}(\mathbb{R}^{d})}.
In particular, combining with (2.1) we obtain global‐in‐space estimates:

||e^{-itH}u_{0}||_{L^{p}([-T,T];L^{q}(\mathbb{R}^{d}))}\leq C_{T,r}||u_{0}||_{L^{2}(\mathbb{R}^{d})},

provided that  $\mu$>0.

For the general case, we obtain an almost optimal result:

Theorem 2.4 (Critical case [26]). Let  $\mu$\geq 0 and assume that Assumptions 2.1

and 2.2. Then, for any  $\epsilon$>0, T>0, p\geq 2,  q<\infty and  2/p=d(1/2-1/q) ,

||e^{-itH}u_{0}||_{L^{p}([-T,T];L^{q}(\mathbb{R}^{d}))}\leq C_{T, $\epsilon$}||\langle H\rangle^{ $\epsilon$}u_{0}||_{L^{2}(\mathbb{R}^{d})}.

Note that if A\equiv 0 and V>\sim\langle x\rangle^{2- $\mu$} ,
then H is uniformly elliptic. Then, using

the parametrix of H
,

we see that ||\langle H\rangle^{ $\gamma$}u_{0}||_{L^{p}}\approx||\langle D\rangle^{2 $\gamma$}u_{0}||_{L^{p}}+||\langle x\rangle^{(2- $\mu$) $\gamma$}u_{0}||_{L^{p}} for

p\in(1, \infty) and  $\gamma$\geq 0.
There are some remarks.
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Remark 2.5. (1) The estimates of forms (2.1), (2.2) and (2.3) have been proved

by [31, 4] when A\equiv 0 and V is of long‐range type. TherefO re, Theorem 2.3 is regarded
as a generalization of their results for the case with unbounded potential perturbations.

(2) The only restriction for admissible pairs, in comparison to the free case, is to exclude

(p, q)=(4, \infty) ford=1 ,
which is due to the use of the Littlewood‐Paley decomposition.

(3) The missing derivative loss \langle H\rangle^{ $\epsilon$} in Theorem 2.4 is due to the use of the following
local smoothing effect (due to Doi [11]):

||\langle x\rangle^{-1/2- $\epsilon$}\langle D\rangle^{1/2}e^{-itH} $\varphi$||_{L^{2}([-T,T];L^{2}(\mathbb{R}^{d}))}\leq C_{T, $\epsilon$}|| $\varphi$||_{L^{2}(\mathbb{R}^{d})}.
It is known that this estimate does not holds when  $\epsilon$=0 even for H=H_{0} . We

would expect that Theorem 2.3 still holds true for the case with critical electromagnetic

potentials in the following sense:

\langle x\rangle^{-1}|\partial_{x}^{ $\alpha$}A_{j}(x)|+\langle x\rangle^{-2}|\partial_{x}^{ $\alpha$}V(x)|\leq C_{ $\alpha \beta$}\langle x\rangle^{-| $\alpha$|},

at least if g^{jk} satisfies the bound in Assumption 2.1 with  $\mu$>0 . However, this is beyond
our techniques.

§2.2. Strategy of the proof

We here explain the idea of the proof and refer to [25, 26] for the details. The general

strategy is based on microlocal techniques and the Littlewood‐Paley theory using the

semiclassical spectral multiplier f(H) . We however note that, since our Hamiltonian H

is not bounded below, the Littlewood‐Paley estimate using H
,

which is of the form

(2.4) ||v||_{L^{q}\sim}<||v||_{L^{2}}+(\displaystyle \sum_{j=0}^{\infty}||f(2^{-2j}H)v||_{L^{q}}^{2})^{1/2}, f\in C_{0}^{\infty}(\mathbb{R}\backslash \{0\}) ,

seems to be false for q\neq 2 in general. To overcome this difficulty, we consider a partition
of unity on the phase space \mathbb{R}^{2d}:$\psi$_{ $\epsilon$}(x,  $\xi$)+$\chi$_{ $\epsilon$}(x,  $\xi$)=1 ,

where $\psi$_{ $\epsilon$} is supported in

\{(x,  $\xi$);\langle x\rangle< $\epsilon$| $\xi$|\} for some  $\epsilon$>0 and satisfies \partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}$\psi$_{ $\epsilon$}=O(\langle x\rangle^{-| $\alpha$|}\langle $\xi$\rangle^{-| $\beta$|}) . Let p(x,  $\xi$)
be the full symbol of H (modulo lower order term):

p(x,  $\xi$)=\displaystyle \frac{1}{2}g^{jk}(x)($\xi$_{j}-A_{j}(x))($\xi$_{k}-A_{k}(x))+V(x) .

It is easy to see that the symbol p(x,  $\xi$) is uniformly elliptic on supp $\psi$_{ $\epsilon$} :

C^{-1}| $\xi$|^{2}\leq p(x,  $\xi$)\leq C| $\xi$|^{2}, (x,  $\xi$)\in supp $\psi$_{ $\epsilon$},

provided that  $\epsilon$>0 is small enough. Therefore, H is essentially elliptic and hence h^{2}H-

z has a semiclassical parametrix on the range of \mathrm{O}\mathrm{p}($\psi$_{ $\epsilon$}) ,
where \mathrm{O}\mathrm{p}($\psi$_{ $\epsilon$}) :=$\psi$_{ $\epsilon$}(x, D) is the
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standard pseudodifferential operator (PDO for short) with the symbol $\psi$_{ $\epsilon$} and h\in(0,1 ]
is the semiclassical parameter. Combining with the Helffer‐Sjöstrand formula, namely

f(h^{2}H)=-\displaystyle \frac{1}{2 $\pi$ i}\int_{\mathbb{C}}\partial_{\overline{z}}\overline{f}(z)(h^{2}H-z)^{-1}dzd\overline{z} ,
where \overline{f}\mathrm{i}\mathrm{s} an almost analytic extension of f

(see, e.g., [22]), we can see that if f\in C_{0}^{\infty}(\mathbb{R}) and supp f \Subset(0, \infty) ,
then \mathrm{O}\mathrm{p}($\psi$_{ $\epsilon$})f(h^{2}H)

is a semiclassical pseudodifferential operator ( h‐PDO) with a symbol supported in

supp $\psi$_{ $\epsilon$/h}\cap supp f \circ p_{h}\subset\{|x|<1/h, | $\xi$|\in I\},

with some I\subset(0, \infty) modulo some error term whose kernel is rapidly decaying with

respect to h
,

where p_{h}(x,  $\xi$) :=h^{2}p(x,  $\xi$/h) . Using the same argument as that in [6], we

then obtain the Littlewood‐Paley estimates on a range of \mathrm{O}\mathrm{p}($\psi$_{ $\epsilon$}) :

||\displaystyle \mathrm{O}\mathrm{p}($\psi$_{ $\epsilon$})v||_{L^{q}}\leq C_{q}||v||_{L^{2}}+C_{q}(\sum_{h=2^{-j},j\geq 0}||\mathrm{O}\mathrm{p}_{h}(a_{h})f(h^{2}H)v||_{L^{q}}^{2})^{1/2},
where 2\leq q<\infty, \{f(h^{2}\cdot);h=2^{-j}, j\geq 0\} is a 4‐adic partition of unity on [1, \infty ),  a_{h}

is a h‐dependent symbol, supported in \{|x|<1/h, | $\xi$|\in I\} , satisfying \partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}a_{h}(x,  $\xi$)=
O(\langle x\rangle^{-| $\alpha$|}\langle $\xi$\rangle^{-| $\beta$|}) and Op(a) :=a_{h}(x, hD) denotes the corresponding h‐PDO.

The idea of the proof of Theorem 2.3 (1) then is as follows. In view of the above

Littlewood‐Paley type estimates, the proof is reduced to that of Strichartz estimates

for 1_{\{|x|>R\}}\mathrm{O}\mathrm{p}_{h}(a_{h})e^{-itH} and \mathrm{O}\mathrm{p}($\chi$_{ $\epsilon$})e^{-itH} . For 1_{\{|x|>R\}}\mathrm{O}\mathrm{p}_{h}(a_{h})e^{-itH} ,
we use the

semiclassical Isozaki‐Kitada (IK for short) parametrix, which originally comes from

long‐range scattering theory with time‐independent modifiers. We however note that

because of the unboundedness of potentials with respect to x
,
it is difficult to construct

directly such approximations. To overcome this difficulty, we introduce a modified

Hamiltonian \overline{H} due to [38] so that \overline{H}=H for |x|\leq L/h and \overline{H}=K for |x|\geq 2L/h
for some constant L\geq 1 ,

where K=-\displaystyle \sum_{j,k}\partial_{j}g^{jk}\partial_{k}/2 is the kinetic energy part of H.

Then, \overline{H}^{h}=h^{2}\overline{H} can be regarded as a �long‐range perturbation� of the semiclassical

free Schrödinger operator H_{0}^{h}=h^{2}H_{0} . Indeed, if we denote the corresponding classical

symbol by \overline{p}_{h}(x,  $\xi$) i.e., \overline{p}_{h}(x,  $\xi$)=p_{h}(x,  $\xi$) for |x|\leq L/h and \overline{p}_{h}(x,  $\xi$)=k(x,  $\xi$) for

|x|\geq 2L/h ,
then

|\partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}(p_{h}(x,  $\xi$)-| $\xi$|^{2}/2)|\leq C_{L $\alpha \beta$}\langle x\rangle^{- $\mu$-| $\alpha$|}\langle $\xi$\rangle^{2-| $\beta$|}, h\in(0,1].
Let a_{h}^{\pm} be symbols supported in \{R/2<|x|<1/h, | $\xi$|\in I, \pm\hat{x}\cdot\hat{ $\xi$}>1/2\} , respectively,
so that 1_{\{|x|>R\}}a_{h}=a_{h}^{+}+a_{h}^{-} ,

where \hat{x}=x/|x| . Rescaling t\mapsto th
,

we first construct

the semiclassical IK parametrices for e^{-it\overline{H}^{h}/h}\mathrm{O}\mathrm{p}_{h}(a_{h}^{\pm})^{*} of the forms

e^{-it\overline{H}^{h}/h}\mathrm{O}\mathrm{p}_{h}(a_{h}^{\pm})^{*}=J_{h}(S_{h}^{\pm}, b_{h}^{\pm})e^{-itH_{0}^{h}/h}J_{h}(S_{h}^{\pm}, c_{h}^{\pm})^{*}+O(h^{N}) , 0\leq\pm t\leq 1/h,

respectively, where S_{h}^{\pm} solve the Eikonal equation associated to \overline{p}_{h} :

\overline{p}_{h}(x, \partial_{x}S_{h}^{\pm})=| $\xi$|^{2}/2 on a neighborhood of supp a
,
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b_{h}^{\pm} and c_{h}^{\pm} are supported in a neighborhood of supp a, respectively, and J_{h}(S_{h}^{\pm}, b_{h}^{\pm})
and J_{h}(S_{h}^{\pm}, c_{h}^{\pm}) are associated semiclassical Fourier integral operators ( h‐FIOs):

J_{h}(S_{h}^{\pm}, w)u(x)=(2 $\pi$ h)^{-d}\displaystyle \int e^{i(S_{h}^{\pm}(x, $\xi$)-y\cdot $\xi$)/h}w(x,  $\xi$)u(y)dyd $\xi$.
The method of the construction is similar to as that of Robert [29]. On the other hand,
we can see that if L\geq 1 is large enough, then the Hamilton flow generated by \overline{p}_{h} with

initial conditions in supp a cannot escape from \{|x|\leq L/h\} for 0<\pm t\leq 1/h , i.e.,

$\pi$_{x}(\exp tH_{\overline{p}_{h}}( supp a ))\subset\{|x|\leq L/h\}, 0<\pm t\leq 1/h.

Since \overline{p}_{h}=p_{h} for |x|\leq L/h ,
we have \exp tH_{\overline{p}_{h}}( supp a )=\exp tH_{p_{h}}(supp a ) for

any 0<\pm t\leq 1/h , respectively. We thus can expect (at least formally) that the corre‐

sponding two quantum evolutions are approximately equivalent modulo some smoothing

operator. By using the Duhamel formula and the semiclassical IK parametrix, we can

prove the following rigorous justification of this formal consideration:

||(e^{-itH^{h}/h}-e^{-it\overline{H}^{h}/h})\mathrm{O}\mathrm{p}_{h}(a_{h}^{\pm})^{*}||_{L^{2}\rightarrow L^{2}}\leq C_{M}h^{M}, 0\leq\pm t\leq 1/h, M\geq 0,

where H^{h}=h^{2}H . By using such approximations for e^{-itH^{h}/h}\mathrm{O}\mathrm{p}_{h}(a_{h}^{\pm})^{*} ,
we prove

local‐in‐time dispersive estimates for \mathrm{O}\mathrm{p}_{h}(a_{h}^{\pm})e^{-itH}\mathrm{O}\mathrm{p}_{h}(a_{h}^{\pm})^{*} :

||\mathrm{O}\mathrm{p}_{h}(a_{h}^{\pm})e^{-itH}\mathrm{O}\mathrm{p}_{h}(a_{h}^{\pm})^{*}||_{L^{1}\rightarrow L^{\infty}}\leq C|t|^{-d/2}, 0<h\ll 1, 0<|t|<1.

Strichartz estimates then follow from these estimates and the TT^{*} ‐argument.
The estimates for \mathrm{O}\mathrm{p}($\chi$_{ $\epsilon$})e^{-itH} follow from the short‐time dispersive estimate:

||\mathrm{O}\mathrm{p}($\chi$_{ $\epsilon$})e^{-itH}\mathrm{O}\mathrm{p}($\chi$_{ $\epsilon$})^{*}||_{L^{1}\rightarrow L^{\infty}}\leq C_{ $\epsilon$}|t|^{-d/2}, 0<|t|<t_{ $\epsilon$}\ll 1.

To prove this, we first construct the WKB parametrix for e^{-itH}\mathrm{O}\mathrm{p}($\chi$_{ $\epsilon$})^{*} of the form:

e^{-itH}\mathrm{O}\mathrm{p}($\chi$_{ $\epsilon$})^{*}=J( $\Psi$, a)+O_{H-$\gamma$_{\rightarrow H $\gamma$}}(1) , |t|<t_{ $\epsilon$},  $\gamma$>d/2,

where the phase function  $\Psi$= $\Psi$(t, x,  $\xi$) is a solution to a time‐dependent Hamilton‐

Jacobi equation associated to p(x,  $\xi$) and J( $\Psi$, a) is the corresponding Fourier integral

operator. In the construction, the following fact plays an important rule:

|\partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}p(x,  $\xi$)|\leq C_{ $\alpha \beta$}, (x,  $\xi$)\in supp $\chi$_{ $\epsilon$}, | $\alpha$+ $\beta$|\geq 2.

(Note that if (g^{jk})_{j,k} depends on x then these bounds do not hold without such a

restriction of the phase space.) Using these bounds, we construct the phase function

 $\Psi$(t, x,  $\xi$) such that

|\partial_{x}^{ $\alpha$}\partial_{ $\xi$}^{ $\beta$}( $\Psi$(t, x,  $\xi$)-x\cdot $\xi$+p(x,  $\xi$))|\leq C_{ $\alpha \beta$}|t|^{2}\langle x\rangle^{2-| $\alpha$+ $\beta$|}.
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We then can follow a classical argument (due to, e.g. , [19]) and construct the FIO

J( $\Psi$, a) . By the composition formula, \mathrm{O}\mathrm{p}($\chi$_{ $\epsilon$})J( $\Psi$, a) is also a FIO and dispersive esti‐

mates for this operator follow from the standard stationary phase method. Finally, using
an Egorov type lemma, we prove that the remainder, \mathrm{O}\mathrm{p}($\chi$_{ $\epsilon$})(e^{-itH}\mathrm{O}\mathrm{p}($\chi$_{ $\epsilon$})^{*}-J( $\Psi$, a

has a smooth, uniformly bounded kernel for sufficiently small t.

The proof of Theorem 2.3 (2) is based on a standard idea by [31], see also [6, 4].
Strichartz estimates with loss of derivatives \langle H\rangle^{1/(2p)} follow from semiclassical Strichartz

estimates up to time scales of order h
,

which can be verified by the standard WKB

method. Moreover, under the nontrapping condition, we will prove that the missing

1/p derivative loss can be recovered by using the local smoothing effect due to Doi [11].
The proof of Theorem 2.4 is based on a slight modification of that of Theorem 2.3

(2). By virtue of the Strichartz estimates for \mathrm{O}\mathrm{p}($\chi$_{ $\epsilon$})e^{-itH} and the above Littlewood‐

Paley estimates, it suffices to show

||\mathrm{O}\mathrm{p}_{h}(a_{h})e^{-itH} $\varphi$||_{L^{p}([-T,T];L^{q})}\leq C_{T}h^{- $\epsilon$}|| $\varphi$||_{L^{2}}, 0<h\ll 1.
To prove this, we first prove semiclassical Strichartz estimates for e^{-itH} Op(a)

*

up

to time scales of order hR ,
where  R=$\pi$_{x}(\displaystyle \inf supp a ) . The proof is based on a refine‐

ment of the standard WKB method for the semiclassical propagator e^{-itH^{h}/h} Op(a)
*

Combining semiclassical Strichartz estimates with a partition of unity argument with

respect to x
,

we will obtain the following Strichartz estimate with an inhomogeneous
error term:

||\mathrm{O}\mathrm{p}_{h}(a_{h})e^{-itH} $\varphi$||_{L^{p}([-T,T];L^{q})}
\leq C_{T}|| $\varphi$||_{L^{2}}+C||\langle x\rangle^{-1/2- $\epsilon$}h^{-1/2- $\epsilon$}\mathrm{O}\mathrm{p}_{h}(a_{h})e^{-itH} $\varphi$||_{L^{2}([-T,T];L^{2})},

for any  $\epsilon$>0 , which, combined with the local smoothing effect, implies the assertion. \square 

§3. Schrödinger equations on manifolds with ends

In this section we consider the following model. Let (M, g) be a smooth, connected

complete Riemannian manifold of dimension d\geq 2 such that M is decomposed into

two parts M=M_{c}\cup M_{\infty} ,
where M_{c}\subset M is a d‐dimensional relatively compact open

submanifold and M_{\infty} is diffeomorphic to (0, \infty)\times S with \mathrm{a}(d-1) ‐dimensional smooth

closed manifold S . We suppose that there exists R_{M}\geq 1 such that g takes the form

g=dr^{2}+r^{2 $\sigma$}g(r) on [R_{M}, \infty)\times S,

where  $\sigma$\geq 1 and g(r) is a family of smooth Riemannian metrics on S smoothly

depending on r . In local coordinates, g(r) is of the form g_{S}(r)=g_{S,jk}(r,  $\theta$)d$\theta$^{j}d$\theta$^{k}
using Einstein�s summation convention.
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Let k_{S}\in C^{\infty}([R_{M}, \infty)\times T^{*}S;\mathbb{R}) be the classical kinetic energy associated to g_{S}(r) ,

that is the principal symbol of the free Schrödinger operator − \displaystyle \frac{1}{2}\triangle_{gs(r)} on S associated

to g_{S}(r) , which, in local coordinates, is of the form

k_{S}(r,  $\theta$,  $\omega$) :=\displaystyle \frac{1}{2}g_{S}^{jk}(r,  $\theta$)$\omega$_{j}$\omega$_{k}, r\in[R_{M}, \infty) , ( $\theta$,  $\omega$)\in T^{*}S,
where (g_{S}^{jk})=(g_{S,jk})^{-1} . For sufficiently large R\geq R_{M} ,

we then impose that

\bullet (Uniform ellipticity) There exists a constant  c_{0}>0 such that

(3.1) (g^{jk}(r,  $\theta$))_{j,k}\geq c_{0} Id, (r,  $\theta$)\in[R, +\infty)\times S.

\bullet (Symbol‐type estimates of order zero) For any (l,  $\alpha$)\in \mathbb{Z}_{+}^{d}:=\mathbb{N}^{d}\cup\{0\}, g_{S}^{jk} obeys

(3.2) |\partial_{r}^{l}\partial_{ $\theta$}^{ $\alpha$}g_{S}^{jk}(r,  $\theta$)|\leq C_{l $\alpha$}r^{-l}, (r,  $\theta$)\in[R, +\infty)\times S.

We also consider the following two conditions:

\bullet (Convex near infinity) There exists  $\epsilon$>0 such that

(3.3) (2 $\sigma$- $\epsilon$)g_{S}^{jk}(r,  $\theta$)\displaystyle \geq r\frac{\partial g_{S}^{jk}}{\partial r}(r,  $\theta$) , (r,  $\theta$)\in[R, \infty)\times S.
\bullet (Long‐range type condition) There exist a smooth positive (2, 0) ‐tensor (h_{S}^{jk})_{j,k} on

S , independent of r
,

and a constant  $\mu$>0 such that

(3.4) |\partial_{r}^{l}\partial_{ $\theta$}^{ $\alpha$}(g_{S}^{jk}(r,  $\theta$)-h_{S}^{jk}( $\theta$))|\leq C_{l $\alpha$}r^{- $\mu$-l}, (r,  $\theta$)\in[R, +\infty)\times S.

Remark 3.1. Let us fix R\geq R_{M} and set $\tau$_{0}=\displaystyle \sup_{l=1}||r\partial_{r}^{l}g^{jk}||_{L^{\infty}((R,\infty)\times S)}.
Since k_{S}\geq c_{0}| $\omega$|^{2} by (3.1), if $\tau$_{0}<2 $\sigma$ c_{0} then (3.3) holds with  $\epsilon$=2 $\sigma-\tau$_{0}/c_{0} . In

particular, if \partial_{r}g^{jk}=o(r^{-1}) ,  r\rightarrow+\infty ,
then (3.3) is satisfied. (3.3) hence is strictly

weaker than the long‐range type condition (3.4).

Setting  L^{p}(M)=L^{p}(M, G(x)dx) with G(x)=\sqrt{\det g(x)} ,
we consider the time‐

dependent Schrödinger equation:

(3.5) i\displaystyle \partial_{t}u=-\frac{1}{2}\triangle_{g}u+V(x)u ; u|_{t=0}=u_{0}\in L^{2}(M) ,

where \triangle_{g} is the Laplace‐Beltrami operator associated to g which, in any local coordi‐

nates x= (x^{1}, x^{d})\in M ,
has the form

\displaystyle \triangle_{g}=\frac{1}{G(x)}\partial_{x^{l}}g^{lm}(x)G(x)\partial_{x^{m}}, (g^{lm}(x))=(g_{lm}(x))^{-1}
For the potential V we impose the long‐range type condition:
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Assumption 3.2. V\in C^{\infty}(M;\mathbb{R}) and there exists v>0 such that

(3.6) |\partial_{r}^{l}\partial_{ $\theta$}^{ $\alpha$}V(r,  $\theta$)|\leq C_{l $\alpha$}r^{- $\nu$-l}, (r,  $\theta$)\in[R_{M}, +\infty)\times S.

By the completeness of M and Assumption 3.2, it is well‐known that − \displaystyle \frac{1}{2}\triangle_{g}+V
is essentially self‐adjoint on C_{0}^{\infty}(M) and we denote its self‐adjoint extension on L^{2}(M)
by H . By the Stone theorem, we have a unique unitary propagator e^{-itH} on L^{2}(M)
generated by H such that the solution to (3.5) is given by u(t)=e^{-itH}u_{0}.

To state the main result, we recall the non‐trapping condition. Let

k(x,  $\xi$)=\displaystyle \frac{1}{2}g^{lm}(x)$\xi$_{l}$\xi$_{m}, (x,  $\xi$)\in T^{*}M,
be the classical kinetic energy associated to g and let H_{k}=\partial_{ $\xi$}k \partial_{x}-\partial_{x}k \partial_{ $\xi$} the

corresponding Hamilton vector field. By the completeness of M
,

for any (x,  $\xi$)\in T^{*}M,
the Hamilton flow \exp tH_{k}(x,  $\xi$) , generated by H_{k} ,

exists for all t\in \mathbb{R} . We say that M

is non‐trapping if for any (x,  $\xi$)\in T^{*}M\backslash 0,  $\pi$(\exp tH_{k}(x,  $\xi$)) escapes from any compact

set in M as  t\rightarrow\pm\infty
,

where  $\pi$ :  T^{*}M\rightarrow M is the projection onto the base space.

§3.1. Main results

We now state main results in this section. For the conic case, we obtain Strichartz

estimates under the long‐range type condition on the angular kinetic energy:

Theorem 3.3 ([24]). Let  $\sigma$=1 . Assume that (3.1), (3.2) and (3.4) and that

Assumption 3.2. Then, there exist a compact set K\subset M and $\chi$_{K}\in C_{0}^{\infty}(M) satisfy ing

$\chi$_{K}\equiv 1 on K such that for any T>0 and any admissible pair (p, q) ,

(3.7) ||(1-$\chi$_{K})e^{-itH}u_{0}||_{L^{p}([-T,T];L^{q}(M))}\leq C_{T}||u_{0}||_{L^{2}(M)}.

Moreover, if we assume in addition that M is non‐trapping then

(3.8) ||e^{-itH}u_{0}||_{L^{p}([-T,T];L^{q}(M))}\leq C_{T}||u_{0}||_{L^{2}(M)}

for any admissible pair (p, q) .

When  $\sigma$>1 ,
the same result holds under the convexity condition which is weaker

than the long‐range condition.

Theorem 3.4 ([27]). Let  $\sigma$>1 . Assume that (3.1), (3.2) and (3.3) and that As‐

sumption 3.2. Let $\chi$_{K} be as above. Then, (1-$\chi$_{K})e^{-itH} satisfies local‐in‐time Strichartz

estimates (3.7) for any admissible pair (p, q) . Under the non‐trapping condition, global‐

in‐space estimates (3.8) also hold.



44 Haruya Mizutani

Remark 3.5. For the asymptotically conic case, (3.7) and (3.8) have been proved

by Hassel‐Wunsch‐Tao [16] forp>2 ,
however the method of the proof is considerably

different. In [3], Bouclet proved (3.7) and (3.8) for the case on the asymptotically

hyperbolic manifold, which is a non‐compact manifold M as above equipped with the

metric g having the fr om g=dr^{2}+e^{2r}g_{S}(r) , r\geq R_{M} ,
where g(r) satisfies (3.4). The

present article is motivated by his work and our proof is based on his idea. Theorem 3.4

may be regarded as an interpolation between [16] and [3].

§3.2. Strategy of the proof

We here give the idea of the proof only and refer to [24, 25] for the details. We

only consider the estimate (3.7) for the case when  $\sigma$>1 (The estimates on compact

sets are verified by a standard argument due to Staffilani‐Tataru [31], see also Bouclet‐

Tzvetkov [4]). The general strategy is similar to that in the previous section, though
the construction of parametrices is slightly different.

First of all, under conditions (3.1) and (3.2), it has been showed by [1] that the

Littlewood‐Paley estimates of forms (2.4) hold for any  q\in[2, \infty ). Hence, it suffices

to show (3.7) that (1-$\chi$_{K})f(h^{2}H)e^{-itH} satisfies Strichartz estimates uniformly in

h\in(0,1] . We next embed the solution into the conic manifold as follows. Let v(t)=
\langle r\rangle^{ $\sigma$(d-1)/2}e^{-itH}u_{0} . It is easy to see that v(t) solves i\partial_{t}v(t)=\hat{H}v(t) with the initial

state v(0)=\langle r\rangle^{ $\sigma$(d-1)/2}u_{0}\in\hat{L}^{2}(M) ,
where \hat{L}^{p}(M) :=L^{p}(M, \langle r\rangle^{- $\sigma$(d-1)}G(x)dx) and

\hat{H}:=\langle r\rangle^{ $\sigma$(d-1)/2}H\langle r\rangle^{- $\sigma$(d-1)/2},
which is self‐adjoint on \hat{L}^{2}(M) . Then, it is sufficient to prove (3.7) that

(3.9) ||\langle r\rangle^{ $\sigma$(d-1)/2}(1-$\chi$_{K})f(h^{2}\hat{H})e^{-it\hat{H}}v_{0}||_{L^{p}([-T,T];L^{q}(M))}\leq C_{T}||v_{0}||_{\hat{L}^{2}(M)}.
Assuming for simplicity that S=\mathrm{S}^{d-1} and V\equiv 0 ,

we set H=-\triangle_{g}/2 . The

corresponding kinetic energy is written in the form

k(r,  $\rho$,  $\omega$)=\displaystyle \frac{1}{2}$\rho$^{2}+\frac{1}{2}r^{-2 $\sigma$}k_{S}(r,  $\theta$,  $\omega$) on T^{*}M_{\infty}\cong T^{*}\mathbb{R}\times T^{*}S,

where  $\rho$ (reap.  $\omega$ ) is the dual variable of  r (reap.  $\theta$ ). Since \langle r\rangle^{- $\sigma$(d-1)}G(r,  $\theta$)\approx 1 in M_{\infty},
we can use the standard h‐PDO calculus and obtain that the spectral multiplier (near
infinity) (1-$\chi$_{K})f(h^{2}\hat{H}) can be approximated by a h‐PDO, Op(a) :=a(r,  $\theta$, hD_{r}, hD_{ $\theta$}) ,

modulo some smoothing term, where a\in C^{\infty}(T^{*}M_{\infty}) satisfies

|\partial_{r}^{j}\partial_{ $\theta$}^{ $\alpha$}\partial_{ $\rho$}^{l}\partial_{ $\omega$}^{ $\beta$}a(r,  $\theta$,  $\rho$,  $\omega$)|\leq C_{j $\alpha$ l $\beta$}\langle r\rangle^{-j- $\sigma$| $\beta$|} in M_{\infty},

and is supported in  $\Gamma$(R)=\{(r,  $\theta$,  $\rho$,  $\omega$);r>R,  $\theta$\in S, k(r,  $\rho$,  $\omega$)\in I\} with some R\gg 1

and I\subset(0, \infty) . We then split  $\Gamma$ into outgoing (+'') and incoming () regions

$\Gamma$^{\pm}(R)=\{r>R,  $\theta$\in S, k\in I,  $\rho$>\pm(1/2)\sqrt{2k}\}.
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In what follows, we consider the outgoing case only since the proof for the incoming
case is analogous. In the asymptotically Euclidean case, one can construct a long‐
time parametrix of the propagator e^{-it\hat{H}^{h}/h} Op(a)

*
as in the previous section, where

\hat{H}^{h}=h^{2}\hat{H}, 0\leq t\leq h^{-1} and a^{+} is supported in $\Gamma$^{+} . However, this is not the present

case since \partial_{ $\theta$}k_{s} does not decay at spatial infinity. To overcome this difficulty, following
the idea by Bouclet [3] we decompose a^{+}=a_{s}^{+}+a_{i}^{+} ,

where a_{s}^{+} and a_{i}^{+} are supported
in the strongly outgoing and intermediate regions:

$\Gamma$_{\mathrm{s}\mathrm{t}\mathrm{g}}^{+}(R)=$\Gamma$^{+}(R)\cap\{r^{-2 $\sigma$}k_{S}\leq $\epsilon$\}, $\Gamma$_{\mathrm{i}\mathrm{n}\mathrm{t}}^{+}(R)=$\Gamma$^{+}(R)\backslash $\Gamma$_{\mathrm{s}\mathrm{t}\mathrm{g}}^{+}(R) , 0< $\epsilon$\ll 1,

respectively. In $\Gamma$_{\mathrm{s}\mathrm{t}\mathrm{g}}^{+}(R) ,
we obtain a long‐time behavior of the classical system:

|\partial_{r}^{j_{00$\rho$^{0}\sim}}\partial_{ $\theta$}^{ $\alpha$}\partial^{k}\partial_{$\omega$^{0}}^{ $\beta$}(r^{t}(X_{0})-r_{0}-t$\rho$^{0})|<$\epsilon$^{2}|t|, |\partial_{r}^{j_{00$\rho$^{0}\sim}}\partial_{ $\theta$}^{ $\alpha$}\partial^{k}\partial_{$\omega$^{0}}^{ $\beta$}($\theta$^{t}(X_{0})-$\theta$_{0})|< $\epsilon$,
|\partial_{r}^{j_{00$\rho$^{0}0$\rho$^{0}\sim}}\partial_{ $\theta$}^{ $\alpha$}\partial^{k}\partial_{$\omega$^{0}}^{ $\beta$}($\rho$^{t}(X_{0})-$\rho$^{0})|+\langle r_{0}\rangle^{-1}|\partial_{r_{0}}^{j}\partial_{ $\theta$}^{ $\alpha$}\partial^{k}\partial_{$\omega$^{0}}^{ $\beta$}($\omega$^{t}(X_{0})-$\omega$^{0})|<$\epsilon$^{2},

for t\geq 0 and X_{0}=(r_{0}, $\theta$_{0}, $\rho$^{0}, $\omega$^{0})\in$\Gamma$_{\mathrm{s}\mathrm{t}\mathrm{g}}^{+}(R) ,
where (r^{t}, $\theta$^{t}, $\rho$^{t}, $\omega$^{t})=\exp tH_{k} is the

Hamilton flow in T^{*}M_{\infty} . We here have used the assumption (3.3) and the fact that

 $\sigma$>1 . When  $\sigma$=1
, (3.3) is not sufficient to obtain these estimates and we need to

assume (3.4). These estimates tell us that the strong outgoing region is invariant under

the Hamilton flow for any t\geq 0 if  $\epsilon$>0 is sufficiently small. Taking  $\epsilon$>0 small enough
and using a same argument as that in [3], we then can construct the semiclassical IK

parametrix of the form

e^{-it\hat{H}^{h}/h}\mathrm{O}\mathrm{p}_{h}(a_{s}^{+})^{*}=J_{h}(S^{+}, b_{h}^{+})e^{ith\partial_{r}^{2}/2}J_{h}(S^{+}, c_{h}^{+})^{*}+O_{\hat{L}^{2}\rightarrow\hat{L}^{2}}(h^{N}) , 0\leq t\leq h^{-1}

Here J_{h}(S^{+}, b_{h}^{+}) and J_{h}(S^{+}, c_{h}^{+}) are h‐FIOs with symbols b_{h}^{+}, c_{h}^{+}\in C_{b}^{\infty}(T^{*}M_{\infty}) sup‐

ported in a strongly outgoing region and the phase S^{+} solves the Eikonal equation:

k(r,  $\theta$, \partial_{r}S^{+}, \partial_{ $\theta$}S^{+})=$\rho$^{2}/2 on a neighborhood of supp a .

Moreover, S^{+} is essentially of the form

(3.10) S^{+}(r,  $\theta$,  $\rho$,  $\omega$)=r $\rho$+ $\theta$\displaystyle \cdot $\omega$+\frac{1}{ $\rho$}\int_{0}^{\infty}\frac{k_{S}(r+ $\lambda,\ \theta,\ \omega$)}{(r+ $\lambda$)^{2 $\sigma$}}d $\lambda$.
and satisfies \partial_{r}^{j}\partial_{ $\theta$}^{ $\alpha$}\partial_{ $\rho$}^{l}\partial_{ $\omega$}^{ $\beta$}(S^{+}-r $\rho$- $\theta$\cdot $\omega$)=O(r^{1-j- $\sigma$| $\beta$|}(r^{-2 $\sigma$}k_{S})^{1-| $\beta$|/2}) . We here note

that these estimates are even worse than that of the both of asymptotically Euclidean

and asymptotically hyperbolic cases. Indeed, \partial_{ $\rho,\ \omega$}\otimes\partial_{r},{}_{ $\theta$}S^{+} is not bounded in general
since \partial_{ $\theta$}^{ $\alpha$}\partial_{ $\rho$}^{m}S^{+} can be grow linearly as  r\rightarrow+\infty , while, in the above two cases, we

see that \partial_{ $\rho,\ \omega$}\otimes\partial_{r},{}_{ $\theta$}S^{+}\approx Id. We, however, see that \det\partial_{ $\rho,\ \omega$}\otimes\partial_{r},{}_{ $\theta$}S^{+}\approx 1 if \langle r\rangle^{-2 $\sigma$}k_{S}
is small enough and  $\sigma$\geq 1 . Using this non‐degeneracy, we can make a change of

variables ( $\rho$,  $\omega$)\mapsto( $\rho$+, $\omega$_{+}) ,
where ( $\rho$+, $\omega$_{+})=( $\rho$+, $\omega$_{+})(r,  $\theta$, r_{0}, $\theta$_{0},  $\rho$,  $\omega$) is the inverse of
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( $\rho$,  $\omega$)\displaystyle \rightarrow\int_{0}^{1}(\partial_{r},{}_{ $\theta$}S^{+})( $\lambda$ r+(1- $\lambda$)r_{0},  $\lambda \theta$+(1- $\lambda$)$\theta$_{0},  $\rho$,  $\omega$)d $\lambda$ . The distribution kernel of

the IK parametrix  J_{h}(S^{+}, b_{h}^{+})e^{ith\partial_{r}^{2}/2}J_{h}(S^{+}, c_{h}^{+})^{*} then reads

\displaystyle \frac{1}{(2 $\pi$ h)^{d}}\int e^{ith^{-1}$\Phi$^{+}(t,r, $\theta$,r_{0},$\theta$_{0}, $\rho,\ \omega$)}A^{+}(r,  $\theta$, r_{0}, $\theta$_{0},  $\rho$,  $\omega$)d $\rho$ d $\omega$,
where A^{+} and all of its derivatives are uniformly bounded and

$\Phi$^{+}(t, r,  $\theta$, r_{0}, $\theta$_{0},  $\rho$,  $\omega$)=\displaystyle \frac{r-r_{0}}{t} $\rho$+\frac{ $\theta-\theta$_{0}}{t} .  $\omega$-\displaystyle \frac{1}{2} $\rho$+(r,  $\theta$, r_{0}, $\theta$_{0},  $\rho$,  $\omega$)^{2}
Using the expression (3.10) and estimates (3.1), (3.2) and (3.3), we learn that $\rho$_{+}^{2} is

essentially of the form $\rho$_{+}^{2}=$\rho$^{2}+q_{+}(r,  $\theta$, r_{0}, $\theta$_{0},  $\omega$) ,
where

q_{+}(r,  $\theta$, r_{0}, $\theta$_{0},  $\omega$)=q_{+}^{jk}(r,  $\theta$, r_{0}, $\theta$_{0})$\omega$_{j}$\omega$_{k}, q_{+}^{jk}(r,  $\theta$, r_{0}, $\theta$_{0})>\sim\left\{\begin{array}{l}
r^{-2 $\sigma$+1}r_{0}^{-1}\mathrm{I}\mathrm{d}_{\mathbb{R}^{d-1}} \mathrm{i}\mathrm{f} t\leq 0,\\
r^{-1}r_{0}^{-2 $\sigma$+1}\mathrm{I}\mathrm{d}_{\mathbb{R}^{d-1}} \mathrm{i}\mathrm{f} t\geq 0.
\end{array}\right.
Then, the stationary phase method shows that J_{h}(S^{+}, b^{+})e^{ith\partial_{r}^{2}/2}J_{h}(S^{+}, c^{+})^{*} satisfies

a weighted L^{1}\rightarrow L^{\infty} estimate

||\displaystyle \langle r\rangle^{- $\sigma$(d-1)/2}J_{h}(S^{+}, b^{+})e^{ith\partial_{r}^{2}/2}J_{h}(S^{+}, c^{+})^{*}\langle r\rangle^{ $\sigma$(d-1)/2}||_{L^{1}\rightarrow L^{\infty\sim}}<\min(|th|^{-d/2}, h^{-d}) ,

from which, combining with the \hat{L}^{2}\rightarrow L^{2} boundedness of \langle r\rangle^{- $\sigma$(d-1)/2}e^{-it\hat{H}} ,
we obtain

(3.11) ||\langle r\rangle^{- $\sigma$(d-1)/2}\mathrm{O}\mathrm{p}_{h}(a_{s}^{+})e^{-it\hat{H}}v_{0}||_{L^{p}([-T,T];L^{q}(M)}\leq C_{T}||v_{0}||_{\hat{L}^{2}(M)}.
For the intermediate case, choosing  $\delta$>0 small enough and splitting the interval

( $\epsilon$/2,1] into small intervals I_{ $\delta$,l} of size  $\delta$,  l<\sim 1/ $\delta$ ,
we decompose  $\Gamma$_{\mathrm{i}\mathrm{n}\mathrm{t}}^{+}(\mathrm{R}) as follows:

$\Gamma$_{\mathrm{i}\mathrm{n}\mathrm{t}}^{+}(R)\displaystyle \subset\bigcup_{l\sim<1/ $\delta$}$\Gamma$_{\mathrm{i}\mathrm{n}\mathrm{t}}^{+}(R)\cap\{(2k)^{-1}r^{-2 $\sigma$}k_{S}\in I_{ $\delta$,l}\}=\bigcup_{l\sim<1/ $\delta$}$\Gamma$_{\mathrm{i}\mathrm{n}\mathrm{t}, $\delta$,l}^{+}(R)
.

We also set $\Omega$_{\mathrm{i}\mathrm{n}\mathrm{t}, $\delta$,l}^{+}(R)=$\Gamma$_{\mathrm{i}\mathrm{n}\mathrm{t}, $\delta$,l}^{+}(R)\cap\{R<r<4R\} . Then, we obtain a behavior of the

corresponding classical system:

(3.12) |\partial^{ $\alpha$}(\exp tH_{k}(X_{0})-X_{0})|<\sim\langle r_{0}\rangle^{-1}|t|

if X_{0}=(r_{0}, $\theta$_{0}, $\rho$^{0}, $\omega$^{0})\in$\Gamma$^{+}(R) and  0\leq t<\sim\langle r_{0}\rangle . Although we cannot obtain the precise

long‐time behavior as in the strongly outgoing case, the following support property
holds: for all  0< $\epsilon$\ll 1 and $\epsilon$_{1}>0 ,

we can find  $\delta$= $\delta$( $\epsilon,\ \epsilon$_{1})>0 such that, for

sufficiently large R_{1}\geq R>0,

(3.13) $\Gamma$_{\mathrm{i}\mathrm{n}\mathrm{t}, $\delta$,l}^{+}(R)\cap\exp tH_{k}($\Omega$_{\mathrm{i}\mathrm{n}\mathrm{t}, $\delta$,l}^{+}(R_{1}))=\emptyset if  t\geq R_{1}$\epsilon$_{1}.

Let us fix  $\epsilon$>0 such that (3.11) holds. Using the dyadic partition of unity \{$\chi$_{j}\} with

respect to r‐variable, we split  a_{i}^{+}=a_{i,1}^{+}+a_{i,2}^{+}+a_{i,3}^{+}+\cdots ,
where  a_{i,j}^{+}=$\chi$_{j}a_{i}^{+} . Then, we



Strichartz estimates for SchröDINGER equations 47

learn by (3.12) that there exists $\epsilon$_{1}>0 such that we can construct the standard WKB

type parametrix of e^{-it\hat{H}^{h}/h}\mathrm{O}\mathrm{p}_{h}(a_{i,j}^{+})^{*} for |t|\leq$\epsilon$_{1}2^{j} (see [24]) and hence obtain

(3.14) ||\langle r\rangle^{- $\sigma$(d-1)/2}\mathrm{O}\mathrm{p}_{h}(a_{i}^{+})e^{it\hat{H}^{h}/h}\mathrm{O}\mathrm{p}_{h}(a_{i,j}^{+})^{*}\langle r\rangle^{ $\sigma$(d-1)/2}||_{L^{1}\rightarrow L^{\infty\sim}}<|th|^{-d/2},
for 0<|t|\leq$\epsilon$_{1}2^{j} , uniformly with respect to h and j . On the other hand, splitting

a_{i}^{+}=\displaystyle \sum_{l}a_{i}^{+,l}, a_{i,j}^{+}=\sum_{l}a_{i,j}^{+,l}
with supp a \subset$\Gamma$_{\mathrm{i}\mathrm{n}\mathrm{t}, $\delta$,l}^{+}(R) , supp a \subset$\Omega$_{\mathrm{i}\mathrm{n}\mathrm{t}, $\delta$,l}^{+}(2) and  $\delta$>0 depending on  $\epsilon$, $\epsilon$_{1} , using
the support property (3.13) and the Egorov type lemma, we see that

(3.15) ||\mathrm{O}\mathrm{p}_{h}(a_{i}^{+,l})e^{it\hat{H}^{h}/h}\mathrm{O}\mathrm{p}_{h}(a_{i,j}^{+,l})^{*}||_{\hat{L}^{2}\rightarrow\hat{L}^{2}}=O(h^{\infty}) , $\epsilon$_{1}2^{j}\leq t\leq h^{-1}, l<$\delta$^{-1}\sim,
uniformly in h and j . The estimates (3.14), (3.15), the Sobolev embedding imply

(3.16) ||\langle r\rangle^{- $\sigma$(d-1)/2}\mathrm{O}\mathrm{p}_{h}(a_{i}^{+,l})e^{it\hat{H}^{h}/h}\mathrm{O}\mathrm{p}_{h}(a_{i}^{+,l})^{*}\langle r\rangle^{ $\sigma$(d-1)/2}||_{L^{1}\rightarrow L^{\infty\sim}}<|th|^{-d/2},
for 0<t\leq h^{-1} , uniformly in h . We here have used the fact that

\mathrm{O}\mathrm{p}_{h}(a_{i,j}^{+,l})=\mathrm{O}\mathrm{p}_{h}(a_{i,j}^{+,l})\overline{ $\chi$}_{j}+O((2^{-j}h)^{\infty})
and that \displaystyle \sum_{j}||\overline{ $\chi$}_{j}f||_{L^{1}\sim}<||f||_{L^{1}} ,

where \overline{ $\chi$}_{j}$\chi$_{j}\equiv$\chi$_{j} and supp \overline{ $\chi$}_{j}\subset\{r\approx 2^{j}\} . The former

follows from the standard off‐diagonal decay of h‐PDOs. By the TT^{*} ‐argument, we

then conclude

||\langle r\rangle^{- $\sigma$(d-1)/2}\mathrm{O}\mathrm{p}_{h}(a_{i}^{+})e^{-it\hat{H}}v_{0}||_{L^{p}([-T,T];L^{q}(M)}\leq C_{T}||v_{0}||_{\hat{L}^{2}(M)},
which, combined with (3.11), implies (3.9). \square 
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