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On control of Sobolev norms for some semilinear

wave equations with localized data

By

Tristan Roy
*

Abstract

The purpose of this paper is to give an overview of the proof of the result obtained in [15].
Consider the semilinear wave equations

(0.1) \left\{\begin{array}{l}
@u--\triangle u =-|u|^{p-1}u\\
u(t=0) =u_{0}\\
@u(t=0) =u_{1}
\end{array}\right.
on \mathbb{R}^{3} with 3\leq p<5 ,

data (u_{0}, u_{1}) lying in the H^{s}\times H^{s-1}(s<1) closure of smooth functions

that are compactly supported inside a ball B(O, R) . We establish new bounds of the H^{s} norms

of the solution. In order to do that, we perform an analysis in a neighborhood of the cone,

using the finite speed of propagation, an almost conservation law, an almost Shatah‐Struwe

estimate [16], and a low‐high frequency decomposition [3, 4]. This allows to establish a decay
estimate pointwise‐in‐time and to estimate the low frequency component of the H^{s} norm of

the solution. Then, in order to estimate the H^{s} norm of the high frequency component of

the position and the H^{s-1} norm of the velocity, we estimate the variation of another almost

conservation law.

§1. Introduction

The global existence of smooth solutions of (0.1) was solved in [7] for the range

3\leq p<5 . The critical power (i.ep =5 ) was solved in [12] for small data, in [17] for

large and radial data and in [6] for large and general data.

The construction of local solutions with rougher data was studied by many authors.

It is known (see for example [10]) that (0.1) is locally well‐posed in H^{s}\times H^{s-1} for

s\displaystyle \geq s_{c}:=\frac{3}{2}-\frac{2}{p-1} . By that we mean that
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\bullet given (u_{0}, u_{1})\in H^{s}\times H^{s-1} there exist a time of local existence T_{l}>0 and a unique

(u, \partial_{t}u) lying in a subspace of C([0, T_{l}], H^{s})\times C([0, T_{l}], H^{s-1}) such that u satisfies

the Duhamel formula for all t\in[0, T_{l}] ,
i.e

(1.1) u(t)=\displaystyle \cos(tD)u_{0}+\frac{\sin(tD)}{D}u_{1}-\int_{0}^{t}\frac{\sin((t-t')D)}{D}[|u|^{p-1}(t')u(t')]dt'
=:$\Psi$_{t}(u_{0}, u_{1})

\bullet (u_{0}, u_{1})\rightarrow$\Psi$_{t}(u_{0}, u_{1}) is uniformly continuous in the H^{s}\times H^{s-1} topology

Moreover, if s>s_{c} ,
then the time of local existence depends on the size of the initial

data, i.e T_{l}:=T_{l}(\Vert(u_{0}, u_{1})\Vert_{H^{\mathrm{S}}\times H^{\mathrm{s}-1}})1 . The next stage is to extend the construction

of these solutions for larger times. By iterating the local well‐posedness theory, one

can define the maximal interval of existence I_{\max}:=(-T_{\max}, T_{\max}) . If T_{\max}=\infty,
then we say that the solution exists globally‐in‐time. By the local well‐posedness the‐

ory, the global behavior of H^{s} solutions of (0.1) is closely related the growth of the

Sobolev norms \Vert(u(T), \partial_{t}u(T))\Vert_{H^{\mathrm{s}}\times H^{\mathrm{s}-1}} . In particular, if one can find a finite bound

of \Vert(u(T), \partial_{t}u(T))\Vert_{H^{\mathrm{s}}\times H^{\mathrm{s}-1}} for all time T
,

then one can prove that the H^{s} solutions of

(0.1) exist for all time T . The equation (0.1) satisfies the following energy conservation

law

E(u(t)) :=\displaystyle \frac{1}{2}\int_{\mathbb{R}^{3}}|\partial_{t}u(t, x)|^{2}dx+\frac{1}{2}\int_{\mathbb{R}^{3}}|\nabla u(t, x)|^{2}dx+\frac{1}{p+1}\int_{\mathbb{R}^{3}}|u(t, x)|^{p+1}dx(1.2)
=E(u(0)) .

It is straightforward to see from the conservation of (1.2) that H^{1} solutions of (0.1) exist

for all time. It remains to better understand the global behavior of H^{s} solutions of (0.1)
if s<1 . This question is delicate since there is no known conservation law at these levels

of regularity. It has been studied in [1, 9, 5, 14, 13] (see [11] for higher dimensions). To

our knowledge the best results regarding the optimal index of regularity for which the

solution exists globally in time are the following ones:

\bullet  p=3:s>\displaystyle \frac{13}{18} for general data ([14]) and s>\displaystyle \frac{7}{10} for radial data ([13])

\bullet  5>p>3:s>s_{p}.=\displaystyle \frac{26p-3p^{2}-39}{2(p-1)(7-p)} for general data lying in slightly different spaces,

i.e (u_{0}, u_{1})\in\dot{H}^{s}\cap L^{p+1}\times H^{s-1} ([9]).

Moreover the H^{s} norm of the high frequency component of the position u and the H^{s-1}

norm of the velocity \partial_{t}u grow like  $\tau$\sim(1-s) in a neighborhood of s=1 . The main

theorem of [15] is the following:
lwe shall not discuss the case s=s_{c}
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Theorem 1.1. [15] Let R>0 and B(O, R) :=\{x\in \mathbb{R}^{3}, |x|<R\} . Let u be

a solution of (0.1) with data (u_{0}, u_{1}) in the closure of C_{c}^{\infty}(B(O, R))\times C_{c}^{\infty}(B(O, R))
with respect to the H^{s}\times H^{s-1} topology, s<1 . If 1>s>\displaystyle \frac{26p-3p^{2}-39}{2(p-1)(7-p)} ,

there exist

$\alpha$_{1}:=$\alpha$_{1}(s,p)>0 and $\alpha$_{2}:=$\alpha$_{2}(s,p)>0 such that \displaystyle \lim_{s\rightarrow 1}$\alpha$_{1}<\infty, \displaystyle \lim_{s\rightarrow 1}$\alpha$_{2}=0,

(1.3) \Vert(P_{>1}u(T), \partial_{t}u(T))\Vert^{2}H^{\mathrm{s}}\times H^{\mathrm{s}-1}\sim<T^{$\alpha$_{1}(s,p)(1-s)^{2}}
and

(1.4) \Vert P_{<1}u(T)\Vert_{H^{\mathrm{s}}\sim}^{2}<T^{\frac{3p-5}{p+1}(1+$\alpha$_{2}(s,p))}.

In particular the H^{s} norm of the high frequency component of the solution and

the H^{s-1} norm of the velocity grow like  $\tau$\sim(1-s)^{2}
,

i.e at a slower rate than  $\tau$\sim(1-s) .

If we compare our results with [14, 13] regarding the H^{s} norm of the low frequency

component of the solution, it grows more slowly by a factor T^{- $\gamma$} for some  $\gamma$:= $\gamma$(p)>0
in a neighborhood of s=1.

§2. Ideas of Theorem 1.1

First we recall the general framework in which we estimate these Sobolev norms

on an interval [0, T] : the I method. The I method was designed in [4] and is inspired
from the Fourier truncation method, designed in [3]. The steps are the following:

\bullet First Step: we introduce a multiplier  I_{N} defined in the Fourier domain by \overline{I_{N}f}( $\xi$) :=

m(\displaystyle \frac{ $\xi$}{N})\hat{f}( $\xi$) with

(2.1) m( $\xi$) :=\left\{\begin{array}{l}
1, | $\xi$|\leq 1\\
\frac{1}{| $\xi$|^{1-\mathrm{s}}}, | $\xi$|\geq 2'
\end{array}\right.
and N\gg 1 a parameter to be chosen.

\bullet Second Step: we insert this multiplier into (1.2): this defines a new functional

(2.2)

 E(I_{N}u(t)) :=\displaystyle \frac{1}{2}\int_{\mathbb{R}^{3}}|\partial_{t}I_{N}u(t)|^{2}dx+\frac{1}{2}\int_{\mathbb{R}^{3}}|\nabla I_{N}u(t)|+\frac{1}{p+1}\int_{\mathbb{R}^{3}}|I_{N}u(t)|^{p+1}dx.
The main interest of introducing this functional is that, unlike the energy conser‐

vation law, it is finite in H^{s} . Moreover, as N goes to infinity, the symbol of this

multiplier approaches one so we expect the variation of this functional to be slow

for N\gg 1.
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\bullet Third Step: we estimate the variation of  E(I_{N}u) on an interval J\subset[0, T] small in

some sense by using local estimates such as the Strichartz estimates and an a priori
bound of E(I_{N}u) on [0, T] . In order to do that, we must first find out how this a

priori bound looks like. It can be proved (see [13] for example) that

(2.3)  E(I_{N}u(0))<N^{2(1-s)}\sim

Since we aim at proving that  E(I_{N}u) does not vary much, a good candidate for an

a priori bound of E(I_{N}u) is the following 2_{:}

(2.4) \displaystyle \sup E(I_{N}u(t))<N^{2(1-s)}.

Then we introduce on J the following number Z(J, u)

(2.5) Z(J, u) :=\displaystyle \sup_{m\in[0,1]}Z_{m,s}(J, u)
with

Z_{m,s}(J, u):=\displaystyle \sup(q,r)-m ‐wave adm \Vert\partial_{t}D^{-m}I_{N}u\Vert_{L_{t}^{q}L_{x}^{r}}(J)+\Vert D^{1-m}I_{N}u\Vert_{L_{t}^{q}L_{x}^{r}}(J)

By using the Strichartz estimates and (2.4) one can show that

Z(J, u)_{\sim}<\displaystyle \sup_{t\in J}E^{\frac{1}{2}}(I_{N}u(t))
(2.6)

\sim<N^{1-s}.

We can now estimate the variation of E(Iu) on J through the relation

(2.7)
Variation (E(I_{N}u), J)<\displaystyle \sim<\frac{Z^{p+1}(J,u)}{N\mathrm{N}_{p(1-}^{\frac{5-p}{+^{2}1)}-}}\mathrm{s} )

\sim\overline{N\frac{5-p}{2}-}
.

We refer to [13, 14, 15] for more details with regard to the definition of m- wave

admissibility pairs and the procedure to estimate the variation of E(I_{N}u) on J.

\bullet Fourth Step: we iterate the procedure described in the last step over subintervals

 J that make a partition of an arbitrarily long‐time interval [0, T] . This allows to

prove that (2.4) holds a posteriori on [0, T].
2We shall prove that this bound holds a posteriori
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\bullet Fiftth Step: we estimate the  H^{s} norm of the high frequency component of the

position and the H^{s-1} norm of the velocity through the following relation (see for

example [13])

(2.8) \displaystyle \Vert(P_{>1}u(T), \partial_{t}u(T))\Vert_{H^{\mathrm{s}}\times H^{\mathrm{s}-1}\sim}^{2}<\sup_{t\in[0,T]}E(I_{N}u(t)) .

We estimate the H^{s} norm of the low frequency component of the position through
the following relation (see for example [13])

\displaystyle \Vert P_{<1}u(T)\Vert_{H^{\mathrm{s}}\sim}^{2}<T^{2}\sup_{t\in[0,T]}\Vert\partial_{t}I_{N}u(t)\Vert_{L^{2}}^{2}(2.9)
\displaystyle \sim<T^{2}\sup_{t\in[0,T]}E(I_{N}u(t)) .

Next we sketch the ideas of the proof of Theorem 1.1.

It is well‐known that the long‐time behavior of solutions of semilinear wave equations
with a defocusing power‐type nonlinearity is closely related to the Morawetz‐type decay
estimate. In the study of the energy‐critical wave equation (i.e p=5 ) a Morawetz‐type
estimate using the scaling multiplier inside the cone K_{R}([0, T]) defined by

(2.10) K_{R}([0, T]):=\{(t, x):t\in[0, T], t>|x|-R\}

was used. This estimate is of the form (see [2])

\displaystyle \int_{|x|\leq T+R}|u|^{6}(T, x)dx<\sim\frac{R}{T+R}E(u)+X
with X a boundary term depending on the flux Flux (u, \partial K_{R}([0, T defined by

Flux (u, \partial K_{R}([0, T])) :=\displaystyle \frac{1}{\sqrt{2}}\int_{\partial K_{R}([0,T])}\frac{1}{2}|\frac{\nabla u\cdot x}{|x|}+\partial_{t}u|^{2}+\frac{|u|^{6}}{6}d $\sigma$.
This estimate with general data is a weak decay since it only holds inside the cone and

it depends on boundary terms. But, if we work with compactly supported data inside

the ball B(O, R) ,
then it is much stronger since, by finite speed of propagation, the flux

vanishes. Getting back to (0.1), it is worth trying to establish a decay estimate by using
the same multiplier for these data. One finds that for the range of p that we consider

(i.e 3\leq p<5 ), one has

(2.11) \displaystyle \int_{|x|\leq T+R}|u|^{p+1}(T, x)dx<\sim\frac{R}{R+T}E.
The next step is to find the right framework in which we can use this estimate in

rougher spaces, i.e H^{s}\times H^{s-1}, s<1 . It seems natural to choose data (u_{0}, u_{1})\in
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\overline{C_{c}^{\infty}}(B(0, R))\times\overline{C_{c}^{\infty}}(B(0, R)) ,
where the closure is taken with respect to the H^{s}\times H^{s-1}

topology. Then one would like to use this estimate and the I‐method in order to estimate

the H^{s} norms of the solution. By introducing the multiplier I_{N} ,
one aims at proving

an estimate of the form

(2.12) \displaystyle \int_{|x|\leq R+T}|I_{N}u(T, x)|^{p+1}dx<\sim\frac{R}{R+T}E(I_{N}u(0))+ Error terms,

the error terms coming from the fact that the multiplier I_{N} does not commute with the

nonlinearity. On then aims at estimating E(I_{N}u) by using this decay estimate. More

precisely, one would like to prove on larger subintervals J that (2.7) holds, which would

reduce the number of the Js making a partition of [0, T] and eventually yield a better

estimate of E(I_{N}u) on [0, T].
But before starting the procedure, one must be careful. Indeed, recall that the decay
estimate (2.11) is useful if we work with data supported in B(O, R) . The introduction

of the multiplier I_{N} kills the localization of the data and consequently the localization

of the solution inside the cone. But, although we cannot perform an analysis inside the

cone, we manage to perform an analysis in a neighborhood of it 3 and outside it by

using finite speed of propagation and a more or less localization of smoothness result:

see Proposition 3.2.

§3. Overview of the proof of Theorem 1.1

For convenience, we shall only discuss the case p=3 . The other cases (i.e 3<

p<5) can be treated in a similar fashion. The proof of Theorem 1.1 relies upon some

propositions that we state now.

§3.1. Propositions

The first proposition shows that if u is a solution of (0.1), then we have a partial

decay of the potential term of the mollified energy inside the cone. This decay is partial
since only the first term of the right‐hand side of (3.1) shows that there is decay

Proposition 3.1. Let (a, b)\in \mathbb{R}^{+}\times \mathbb{R}^{+} . Let u be a solution of (0.1) on [a, b].
Then

(3.1)

\displaystyle \int_{|x|\leq b+R'}|I_{N}u(b, x)|^{4}dx<\sim\frac{a+R'}{b+R}E(I_{N}u(a))+\frac{1}{\sqrt{2}(b+R')}\int_{\partial K_{R'}([a,b])}\frac{|\nabla I_{N}u\cdot x+(t+R')\partial_{t}I_{N}u+I_{N}u|^{2}}{t+R}d $\sigma$

+\displaystyle \frac{1}{b+R'}\int_{K_{R'}([a,b])^{\Re}}[_{(|I_{N}u|^{2}I_{N}u-I_{N}(|u|^{2}u))}(\overline{(t+R')\partial_{t}I_{N}u+x\cdot\nabla I_{N}u+I_{N}u})]dz.
\overline{3\mathrm{M}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{l}\mathrm{y}}the neighborhood of the cone we consider is K_{R'}([0, T]) with R':=R+1



On control 0F Sobolev norms for some semilinear wave equations with localized data 101

Proof. (Sketch)
By defining ũ in the following fashion

ũ(t + R�, x) :=u(t, x) ,

and by finite speed of propagation, we may assume, without loss of generality, that

R'=0 in (3.1). Next

\bullet we introduce the scaling multiplier  S(f) :=t\partial_{t}f+x\cdot\nabla f+f introduced by Struwe

[17].

\bullet we apply this scaling multiplier to  I_{N}u ; we integrate

\Re(\overline{S(I_{N}u)}(\partial_{tt}I_{N}u-\triangle I_{N}u+I_{N}(|u|^{p-1}u)))=0 inside the cone K_{R'=0}([a, b]) . Two

terms appear: X_{1} and X_{2} defined by

X_{1} :=\displaystyle \int_{K_{R=0}([a,b])^{\Re}}(\overline{S}(INu) (\partial_{tt}I_{N}u-\triangle I_{N}u+|I_{N}u|^{2}I_{N}u))
and

X_{2} :=\displaystyle \int_{K_{R=0}([a,b])}\Re(\overline{S(I_{N}u)}(I_{N}(|u|^{2}u)-|I_{N}u|^{2}I_{N}u))
Notice that − \displaystyle \frac{X_{2}}{b} is the second term on the right hand side of (3.1). So we just
need to modify the form of X_{1} . We use an argument of Shatah‐Struwe [16]. More

precisely we integrate by part X_{1} to get

(3.2)  H(b)=H(a)+\displaystyle \frac{1}{\sqrt{2}}\int_{\partial K_{R=0}([a,b])}(P+Q\cdot\frac{x}{|x|})d $\sigma$
with  H(t) :=\displaystyle \int_{|x|\leq t}P(u(t, x))dx, P:=P(u) and Q:=Q(u) two functions of u : we

refer to [15] for more details. It can be proved that for t\in[a, b],

(3.3) H(t)+\displaystyle \int_{|x|=t}\frac{|I_{N}u|^{2}(t,x)}{2}d $\sigma$\sim<tE(I_{N}u(t)) ,

(3.4) t\displaystyle \int_{|x|\leq t}\frac{|I_{N}u|^{4}}{4}dx-\int_{|x|=t}\frac{|I_{N}u|^{2}}{2}d $\sigma$\leq H(t) ,

and
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(3.5)

\displaystyle \frac{1}{\sqrt{2}}\int_{\partial K_{R'=0}([a,b])}P+Q\cdot\frac{x}{|x|}d $\sigma$
=\displaystyle \frac{1}{\sqrt{2}}\int_{\partial K_{R'=0}([a,b])}\frac{|\nabla I_{N}u\cdot x+t\partial_{t}I_{N}u+I_{N}u|^{2}}{t}d $\sigma$-(\int_{|y|=b}\frac{|I_{N}u|^{2}(b,y)}{2}d $\sigma$-\int_{|y|=a}\frac{|I_{N}u|^{2}(a,y)}{2}d $\sigma$)

By (3.2), (3.3), (3.4) and (3.5), we see that (3.1) holds.

\square 

The next proposition shows that if the support of function is localized inside a ball

B(0, R_{0}) ,
then its smoothness (measured by the multiplier I_{N} ) is more or less localized:

Proposition 3.2. Let (R_{0}, L, R\'{O})\in \mathbb{R}^{3} such that R_{0}>\displaystyle \frac{1}{N^{1}-}, 0<L<\sim N and

R_{0}'-R_{0}\displaystyle \geq\frac{L}{N} . Let q\geq 1 . Let f be a smooth function supported on the ball B(O, R_{0}) .

Then 4

(3.6) \displaystyle \Vert I_{N}f\Vert_{Lq}<\frac{1}{L^{\infty-}}\Vert I_{N}f\Vert_{L^{q}}

and

(3.7) \displaystyle \Vert\nabla I_{N}f\Vert_{L^{2}}<\frac{1}{L^{\infty-}}(\Vert I_{N}f\Vert_{L^{2}(|x|\leq R_{0})}+\Vert\nabla I_{N}f\Vert_{L^{2}})

In particular, if RÓ :=R_{0}+1 ,
then

(3.8) \Vert I_{N}f\Vert_{L^{q}}\sim\Vert I_{N}f\Vert_{L^{q}(|x|\leq R_{0}')}.

Proof. (Sketch)
First we decompose f into its low frequency part and its high frequency part, i.e

(3.9) f_{\sim^{N}}=P<f+P_{\gg N}f.

This seems natural to proceed like this, since

\bullet the left hand side of the estimates (3.6), (3.7) and (3.8) involves the multiplier  I_{N}

\bullet the symbol of the multiplier  I_{N} behaves differently for amplitudes | $\xi$|<<N and

amplitudes | $\xi$|>N\sim
 4\mathrm{t}\mathrm{h}\mathrm{e} notation x \sim<_{\infty-} \displaystyle \frac{1}{L^{\infty-}}y means that for all m \geq  0 there exists C :=

C(m, \Vert(uu)\Vert_{H^{\mathrm{S}}\times H^{\mathrm{s}-1}}, R)>0 such that x\leq Cy^{m}
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Let us say a few words about the proof of (3.6). The proof of (3.7) and (3.8) is an

easy modification of that of (3.6). Plugging (3.9), one has to deal with two terms.

The first involves the low frequency component, i.e X_{1}:=\Vert P<\sim^{N}f ||\geq RÓ) and the

second involves the high frequency component, i.e  X_{2}:=\Vert P_{\gg N}f ||\geq RÓ). We shall

only discuss how we deal with  X_{1} . In order to take into account the fact that f is

localized, we write f=$\chi$_{R_{0}}f . Moreover, since the right‐hand side of (3.6) also involve

the multiplier I_{N} we use again the decomposition (3.9). So we have to estimate X_{1,1}:=

\Vert P_{<}($\chi$_{R_{0}}P<\sim^{N}\sim^{N} f) I |\geq RÓ ) and X_{1,2}:=\Vert_{\sim^{N}}P<($\chi$_{R_{0}}P_{\gg N} f) I |\leq RÓ). Since  P_{<<N} is

a an average operator at scale \displaystyle \frac{1}{N} we expect X_{1} to be small: this can be rigorously

proved by writing P<\sim^{N} as a convolution. In order to deal with X_{2} ,
we perform a Paley‐

Littlewood decomposition P_{\gg N}=\displaystyle \sum_{M\gg N}P_{M} ,
in order to use to its full extent the

quantitative value of the symbol m(\displaystyle \frac{ $\xi$}{N}) at frequency | $\xi$|\sim M . We also use the fact

that the terms that we get after this decomposition are mostly supported in the Fourier

domain on | $\xi$|\sim M (since M\gg N), which yields very good decays.
\square 

The second proposition shows that if we have an a priori bound of the mollified

energy E(I_{N}u) on an interval J(\mathrm{s}\mathrm{e}\mathrm{e}(3.10)) ,
then we can control Z(J, u) assuming that

J is small in some sense (see (3.11) and (3.12)):

Proposition 3.3. Let u be a solution of (0.1) on [0, T] . Let J:=[a, b]\subset[0, T].
Let R':=R+1 . Assume that

(3.10) \displaystyle \sup_{t\in J}E(I_{N}u(t))<N^{2(1-s)}\sim.

There exists  $\epsilon$>0 small enough such that if

(3.11) \Vert I_{N}u\Vert_{L_{t}^{\infty}L_{x}^{4}(K_{R},(J))}^{2}|J|^{\frac{1}{2}+}\leq $\epsilon$
and

(3.12) |J|^{+}\leq $\epsilon$ N^{(2s-1)+},

then (2. 6) holds.

Proof. (Sketch)
In order to prove that (2.6) holds, we use

\bullet local estimates or, more precisely, the Strichartz estimates: see for example [8] for

the statement of these estimates and their proof
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\bullet the a priori estimate (3.10).

\bullet the estimate (3.8)

The kind of estimates we get is roughly speaking

(3.13)

 Z_{\frac{1}{2},s}(J, u)<\sim\Vert(\partial_{t}I_{N}u(a), DI_{N}u(a))\Vert_{L^{2}}+\Vert D^{1-\frac{1}{2}}I_{N}(|u|^{2}u)\Vert_{L^{\frac{4}{t^{3}}}L^{\frac{4}{x^{3}}}(J)}
\sim<E^{\frac{1}{2}}(I_{N}u(a))+\Vert D^{1-\frac{1}{2}}I_{N}u\Vert_{L_{t}^{4}L_{x}^{4}(J)}\Vert u\Vert_{L_{t}^{4}L_{x}^{4}(J)}
\sim<E^{\frac{1}{2}}(I_{N}u(a))+\Vert D^{1-\frac{1}{2}}I_{N}u\Vert_{L_{t}^{4}L_{x}^{4}(J)} \Vert P_{<<N}u\Vert_{L_{t}^{4}L_{x}^{4}(J)}^{2}+\Vert P\sim^{N}>u\Vert_{L_{t}^{4}L_{x}^{4}(J)}^{2})
\sim<E^{\frac{1}{2}}(I_{N}u(a))+\Vert D^{1-\frac{1}{2}}I_{N}u\Vert_{L_{t}^{4}L_{x}^{4}(J)} \Vert I_{N}u\Vert_{L_{t}^{4}L_{x}^{4}(J)}^{2}+\Vert P\sim^{N}>u\Vert_{L_{t}^{4}L_{x}^{4}(J)}^{2})
\sim<E^{\frac{1}{2}}(I_{N}u(a))+\Vert D^{1-\frac{1}{2}}I_{N}u\Vert_{L_{t}^{4}L_{x}^{4}(J)}(|J|^{\frac{1}{2}}\Vert I_{N}u\Vert_{L_{t}^{\infty}L_{x}^{4}(K_{R},(J))}^{2}+\Vert P\sim^{N}>u\Vert_{L_{t}^{4}L_{x}^{4}(J)}^{2})
\displaystyle \sim<N^{1-s}+o(Z_{\frac{1}{2},s}(J, u))+\frac{Z_{\frac{31}{2},\mathrm{s}}(J,u)}{N^{1}-},

where we used (3.10) and (3.11) in the last line 5. Therefore (2.6) holds by a continuity

argument.
\square 

The last proposition shows that for a large number of mollified energies E(I_{N_{0}}u) ,

the decay of the potential term is total:

Proposition 3.4. Let u be a solution of (0.1) on [0, T] . Assume that

(3.14) N_{0}^{4s-3}\gg\langle T\rangle^{1+}.

Let t\in[0, T] . Then we have

(3.15) \displaystyle \int_{|x|\leq R+t}|I_{N_{0}}u(t, x)|^{4}dx<\sim\frac{R'}{R+t}N_{0}^{2(1-s)}.

Proof. (Sketch)
The proof of Proposition 3.4 relies upon Proposition 3.1, Proposition 3.2 and finite

speed of propagation. More precisely, we would like to use (3.1) with a :=0, b:=T

and N:=N_{0} satisfying (3.14). But, in order to get an estimate that looks like (3.15)
one must make X_{1} and X_{2} small with X_{1} and X_{2} defined by

5Here we ignore the + sign in (3.11) for convenience. The estimates we get are in fact more

complicated than (3.13). We refer to [15] for more details
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 X_{1}:=\displaystyle \frac{1}{\sqrt{2}(T+R')}\int_{\partial K_{R'}([0,T])}\frac{|\nabla I_{N_{0}}u\cdot x+(t+R')\partial_{t}I_{N_{0}}u+I_{N_{0}}u|^{2}}{t+R}d $\sigma$
and

 X_{2}:=\displaystyle \frac{1}{T+R'}\int_{K_{R'}([0,T])^{\Re}}[_{(|I_{N_{0}}u|^{2}I_{N_{0}}u-I_{N_{0}}(|u|^{2}u))}^{(\overline{(t+R')\partial_{t}I_{N_{0}}u+x\cdot\nabla I_{N_{0}}u+I_{N_{0}}u})}]dz.
In order to do that, we assume that we have the a priori estimates (3.15) and (2.4)
6. In order to use the full power of the a priori estimate (3.15) we apply the following

procedure

\bullet divide [0, T] into subintervals J_{j}=[j-1, j+1]_{1\leq j\leq J} so that we are localized in

time on each J_{j}

\bullet divide each  J_{j} into subintervals J_{j,k} of size \displaystyle \sim(\frac{R'+j}{R})^{1-}N_{0}^{2(s-1)-} so that we can

apply Proposition 3.3 on each J_{j,k} and estimate the number Z(J_{j,k}, u)

Then we iterate over j and k to cover [0, T] : this allows to make X_{2} small compare

with the natural upper bound of the decay term of (3.1) 7, that is \displaystyle \frac{R'}{R+T}N_{0}^{2(1-s)} . It

is much easier to make X_{1} smaller than this upper bound. Indeed, by integrating the

mollified energy identity
8 outside the cone K_{R'}([0, T we can bound this integral over

the surface \partial K_{R'}([0, T]) by the sum of two terms

\bullet the mollified energy outside the ball |x|>R' at time 0 ,
i.e

E_{R',ext}(I_{N_{0}}u_{0}) :=\displaystyle \frac{1}{2}\int_{|x|\geq R}, |\partial_{t}I_{N_{0}}u(0)|^{2}dx+\frac{1}{2}\int_{|x|\geq R}, |\nabla I_{N_{0}}u(0)|^{2}dx
+\displaystyle \frac{1}{4}\int_{|x|\geq R'}|I_{N_{0}}u(0)|^{4}dx

\bullet an error term that appears because  I does not commute with the nonlinearity))
Error Term=|\displaystyle \int_{K_{R}^{c},([0,T])}\Re(\overline{\partial_{t}I_{N_{0}u}}(I_{N_{0}}(|u|^{2}u)-|I_{N_{0}}u|^{2}I_{N_{0}}u))dz|

By our assumptions regarding the data, by finite speed of propagation and by Propo‐
sition 3.2, both terms can be made very small since they involve integrals outside the

region where there is localization of smoothness. We refer to [15] for more details.

\square 

6Again we shall prove that these estimates hold a posteriori
7Here we use (2.3)
8i.e the identity that we get after plugging the multiplier I_{N_{0}} into the energy identity
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§3.2. Sketch of the proof of Theorem 1.1

First we estimate \Vert P_{<1}u(T)\Vert_{H^{\mathrm{s}}} . By finite speed of propagation, Proposition 3.2

and Proposition 3.4, we see that 9

\Vert P_{<1}u(T)\Vert_{H^{\mathrm{s}}\sim}^{2}<\Vert I_{N_{0}}u(T)\Vert_{L^{2}}^{2}
(3.16) \sim\Vert I_{N_{0}}u(T)\Vert_{L^{2}(B(O,R'+T))}^{2}

\sim<T^{1+$\alpha$_{2}(s,3)},

the last inequality coming from the optimization of (3.15), in view of the constraint

(3. 14). Hence we proved (1.4).
Next we estimate \Vert(P_{>1}u(T), \partial_{t}u(T))\Vert_{H^{\mathrm{s}}\times H^{\mathrm{s}-1}} . Notice that we cannot use (2.8) with

N:=N_{0} . Indeed, recall that \displaystyle \sup_{t\in[0,T]}E(I_{N_{0}}u(t)) and \Vert I_{N_{0}}u\Vert_{L_{t}^{\infty}L_{x}^{4}(|x|\leq R+t)}^{4} were

estimated at the same time in the proof of Proposition 3.4. Since the error appearing in

the proof of (3.15) is more difficult to control than that appearing in the proof of (2.4),
one has to choose a parameter N_{0} very large, which yields a bad estimate of E(I_{N_{0}}u) .

The idea is to introduce a new almost conservation law

(3.17)
E(I_{N_{1}}u(t)) :=\displaystyle \frac{1}{2}\int_{\mathbb{R}^{3}}|\partial_{t}I_{N_{1}}u(t)|^{2}dx+\frac{1}{2}\int_{\mathbb{R}^{3}}|\nabla I_{N_{1}}u(t)|^{2}dx+\frac{1}{p+1}\int_{\mathbb{R}^{3}}|I_{N_{1}}u(t)|^{4}dx

defined by a new parameter N_{1}\gg 1 (to be chosen) and to estimate the variation of this

new almost conservation law through the decay estimate (3.15) on an arbitrarily long
time interval [0, T] . Since we do no longer need to establish again a decay estimate, we

expect to choose a parameter N_{1}<<N_{0} in order to control the error term appearing
in the proof of this new almost conservation law. In order to use the full power of this

decay estimate, we apply again the procedure explained in Subsection 3.1, starting from
( ( divide [0, T]

� and finishing by
��

Z(J_{j,k}, u)
� 10. Consequently we can estimate the

variation of E(I_{N_{1}}u) on J_{j,k} . By iterating over j and k
,

one can control the variation

of E(I_{N_{1}}u) on [0, T] if one chooses

N_{1}\sim N_{0}^{\frac{2(1-\mathrm{s})}{2\mathrm{s}-1}}\langle T\rangle^{+}.
As it is expected, we find N_{1}<<N_{0} ,

which justifies all the computations above. Now

using (2.8) with N:=N_{1} ,
we get (1.3).
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