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1 Introduction

This note is a survey of our paper [16] on the initial value problems for the Navier-Stokes
equations with the Coriolis force in R3, describing the motion of viscous incompressible fluids
in the rotational framework,

0
6—?—Au+ﬁegxu+(u-V)u+Vp:0 in R® x (0, 00),
divy = 0 inR® x (0, 00), (NSC)
u(x,0) = up(x) in R3,
where the unknown functions u = w(z,t) = (uy(z,t),us(x,t),us(x,t)) and p = p(x,t)
denote the velocity field and the pressure of the fluid, respectively, while uy = ug(z) =

(up1(x), up2(x), up3(x)) denotes the given initial velocity field satisfying the compatibility
condition divuy = 0. Here 2 € R represents the speed of rotation around the vertical unit
vector e3 = (0,0, 1), which is called the Coriolis parameter.

The main purpose of this note is to prove the local existence and the uniqueness of a mild
solution to (NSC). In particular, we are interested in the dispersive effect of the Coriolis force
and consider how the speed of rotation |2| affects the size of the existence time 7" of solutions
to (NSC). We make it clear the relation between the time interval 1" of local existence and the
size of (2.

For the local existence of solutions to (NSC), Sawada [22] proved the local existence and
uniqueness of the classical solution to (NSC) in the framework of the Besov space BQOJ(R?’).
Giga, Inui, Mahalov and Matsui [12] proved the uniform local solvability of (NSC) for large
initial velocity in F'M . Here the uniform local solvability means that the length of the existence
time interval of solutions is independent of the Coriolis parameter ). Moreover, they [13]
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showed the local existence and uniqueness of the mild solution to (NSC) in the framework
of L>=(R?), and obtained the lower estimate for the existence time 7 as T'(1 + QT)6+% >
C’/||u0||Lo<, for arbitrary § > 0.

For the global existence of solutions to (NSC), Chemin, DeSJardlns Gallagher and Grenier
[6] [7] proved that for given initial velocity uy € L*(R%)® + H2(R3)3 with divuy = 0, there
exists a positive parameter €2, such that for every Q € R with |Q] > g, (NSC) possesses a
unique global solution. Babin, Mahalov and Nicolaenko [2] [3] [4] obtained the global existence
and regularity of solutions to (NSC) for large |€2| under the periodic boundary conditions. On
the other hand, Giga, Inui, Mahalov and Saal [14] established the uniform global solvability
of (NSC) for small initial velocity in FM,'(IR®). Here the uniform global solvability means
that the smallness condition on the initial velocity is independent of the size of the speed of
ratation ). Hieber and Shibata [15] and Konieczny and Yoneda [19] obatained the uniform
global solvability of (NSC) in the Sobolev space H %(]RB') and the function spaces of Besov

type FB;;:/p(R3) with 1 < p < oo, respectively. In the case {2 = 0, (NSC) correspond to
the original Navier-Stokes equations. For the global well-posedness for the original Navier-
Stokes equations in the scaling invariant spaces, we refer to Fujita and Kato [9], Kato [17],
Kozono and Yamazaki [20], Koch and Tataru [18], Germain [10], Bourgain and Pavlovi¢ [5]
and Yoneda [23].

In order to state our results, we first introduce the notion of mild solutions to (NSC). Let
{R;}?_, denote the Riesz transforms, and let P = (4;; + R;R;)1<i j<3 denotes the Helmholtz
projection onto the divergence-free vector fields. Then, let T,(-) denotes the semigroup gen-
erated by the linearized operator L := —A + PQezx associated with (NSC), which is given
explicitly by

Ta(t)f = 7 [cos (20) 7 4 s (05¢) R0 i)

for ¢t > 0 and divergence-free vector fields f. Here I is the identity matrix in R? and R(€) is the
skew-symmetric matrix related to the symbol of the Riesz transforms, which is defined by

1 0 53 _52
RE=—1] -& 0 & ¢ e R?*\ {0}.
€l & & 0

For the derivation of the explicit form of Tq(+), we refer to Babin, Mahalov and Nicolaenko
[17 [2] [3], Giga, Inui, Mahalov and Matsui [13] and Hieber and Shibata [15]. In this note, we
consider the solution to the following integral equations:

u(t) = To(t)ug — /Ot To(t — 7)P[(u- V)u] (1)dT. (IE)

We call that u is a mild solution to (NSC) if u satisfies (IE) in some appropriate function space.
Before stating our result, we impose the following assumptions for our solution spaces.

Assumption (A). Let the exponent s satisfy 1/2 < s < 5/4.
Assumption (B). Let the exponents p and ¢ satisfy

1 3—-2s {3—25 8} 1 . {1 5—28} 1 1
0<-< , max ,— ¢ < — < min< = , —+-=->
D 6 6 3 q P q
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Assumption (C). Let the exponents ¢; and 6 satisfy

3.3 s 1 { 2 s 1 3}
————— <—<mnil——-—=-——>,
p

1 2 2704 22 2p
5.3 s_1_ (13 2 s 3
1 20 2 6, 2’2 2’ 2g

Note that for every fixed 1/2 < s < 5/4, the set of (p, q,01,05) € (2,00)" satisfying the
Assumptions (B) and (C) is not empty. The pairs (p, ¢;) and (g, 85) correspond to H* admissible
pairs of the Strichartz estimates for the free propagator e”*2 of the Schrodinger equations.

Our result on the local existence of the mild solution now reads :

Theorem 1.1. Let s,p,q,0, and 0y satisfy Assumptions (A),(B) and (C). Then there ex-
ists a positive constant C' = C(s,p, q,01,02) such that for every Q € R\ {0} and for ev-

ery initial velocity field uy € H?®(R®)3 with divug = 0, there exists a positive time T =
T(s,p,q, 61,04, |, ||uo| gs) such that (NSC) possesses a unique mild solution uw € Xp. Here

Xp = {u e C([0, 7] H*(R2)? | Jully < Cllu s, dive =0}
with
: —(1-3-%)
1wl x, S‘ET [w(®)] g + 12|70 v ||u||L91(0,T;LP(]R3))

Moreover; there exists a positive constant C' = C'(s,p, q, 01, 02) such that the existence time T
can be taken as

(1.1)

1 1
|Q|%—(%—%—%)>§°—F€ <|Q|%—(%—%—%)>%
)

ol s

Remark 1.2. Theorem 1.1 states that the mild solution of (NSC) can be constructed locally in
time for every Q € R\ {0} and for every initial velocity u, € H*(R3)? with 1/2 < 5 < 5/4.
Moreover, we can characterize the lower bound for a time interval 7' of its local existence in
terms of |€2| and ||ug|| z-. In particular, since the power of |2] in (1.1) is positive, the existence
time 7" of the mild solution to (NSC) can be taken arbitrarily large provided the speed of rotation
is sufficiently fast.

We remark that Theorem 1.1 holds even in the case 1/6, = 3/4 — 3/2p — s/2 and 1/, =
5/4 — 3/2q — s/2. Moreover, in such a case, we can prove the local existence theorem for all
2 € R. Our second result on the uniform local solvability of (NSC) reads as follows :

Theorem 1.3. Let s, p and q satisfy Assumptions (A) and (B), andlet 1/6, = 3/4—3/2p—s/2
and 1/0 = 5/4 — 3/2q — s/2. Then there exists a positive constant C = C(s,p, q, 6, 02) such
that for every initial velocity field uy € H $(R3)3 with div ug = 0, there exists a positive time
T =1T(s,p,q,04,02, ||uol g ) independent of 1 € R such that (NSC) possesses a unique mild
solution u € Yr for all ) € R. Here

Y = {ue C([0, 1 H*®)* | flullyy < Cllug| e, divee = 0}
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with

[ullyz == sup [lu()|lzs + ||u||L91(O,T;LP(R3)) + ||Vu||L92(O,T;Lq(R3))'
0<t<T

Moreover, there exists a positive constant C' = C'(s,p, q, 01, 02) such that the existence time T
can be taken as
C/
T> ——. (1.2)

Juoll 7.

Remark 1.4. In the case €2 = 0, it follows from Kato [17] and Giga [11] that the time interval
T for local existence of the strong solution with the initial data ug in H*(R3) with s > 1/2 is
characterized as c

Tr>——, (1.3)

ol

which corresponds to our characterization (1.2). Hence Theorem 1.3 covers the local existence
results for 2 = 0.

Remark 1.5. The characterization (1.1) of the existence time 7" in Theorem 1.1 seems to be
sharp in the sense that (1.1) coincides with (1.2) and (1.3) in the case 1/6; = 3/4—3/2p —s/2
and 1/0y = 5/4 — 3/2q — s/2. Therefore, our characterization (1.1) and (1.2) can be regarded
as a continuous extension of (1.3) with respect to 2 € R from {0} to R.

This note is organized as follows. In Section 2, we introduce some notation and function
spaces, and show the dispersive estimates for the oscillation part of the semigroup 7o (). In
Section 3, we introduce the admissible pairs (p, ;) and (g, 6,) and establish the estimates of
the Strichartz type for the semigroup Tq(t). In Section 4, we prove the nonlinear estimates for
(NSC) using the LP-L? smoothing properties of the semigroup Tq(¢). In Section 5, we present
the proofs of Theorem 1.1 and Theorem 1.3.

2 Dispersive Estimates

We first introduce function spaces. Let .%(IR?) be the Schwartz class of all rapidly decreasing

functions, and let ./ (R?) be the space of all tempered distributions. We first recall the definition

of the homogeneous Littlewood-Paley decompositions. Let ¢ be a radial function in .%(R?)

satisfying the following properties:

0<P(€) <1 forall € € R?,
pc{ceR® |27 ¢ <2},

and

> Gi(§) =1 forall € R*\ {0},

jez
where o;(z) := 2¥(2/z) and f denotes the Fourier transform of f € .%(R?). Then, we define
the Besov space B;q(]R?’) by the following definition.

Definition 2.1. For s € Rand 1 < p, ¢ < oo, the Besov space B;,Q(R*Q’) is defined to be the set
of all tempered distributions f € ./ (IR?) such that the following semi-norm is finite:

1 U5, = ({27005 % 7110} e

-



DISPERSIVE EFFECT OF THE CORIOLIS FORCE FOR THE NAVIER-STOKES EQUATIONS 141

Next, we shall prove the dispersive estimates for the oscillating parts of the semigroup 7 (t)

associated with the linear problem of (NSC). We define the operators G (7) of oscillatory
integral type as

€
Gu(r)lf) = 77 TR 1))
for 7 € R. Then, we can rewrite the semigroup T (t) as

To(t)f = 5G.(0) [2(T+ R)f] + 50 (01) [A( R ] .

fort > 0 and €2 € R, where R denotes the matrix of singular integral operators defined by

0 Rs —Ry
R = —Rg O Rl
Ry —R; O

The operators G (£2t) represent the oscillation parts of T (t).
Lemma 2.2. For any 2 < p < oo, there exists a positive constant C' = C(p) such that

log(e + |7]) 2(1-3)
stnq S ¢ ||.f||Bs+3(1—%)

”gi(T)[f]l 1_|_|7_|

st3(1-2
foralls e R, 1< g< oo, 7T€Rand f € Bpf;(l ”)(]R?’) with1/p+1/p' = 1.
In order to prove Lemma 2.2, we first prove the following lemma.
Lemma 2.3. There exists a positive constant C' such that
1
 [log(e+17]) \?
O, <oy = LU
19:(r) @)1, {reel
forall j € Zand ™ € R, where ®; 1= p;_1 + @; + ©jt1.

Remark 2.4. We remark that similar dispersive estimates were obtained by Dutrifoy [8] in the

context of non-viscous rotating fluids. Our estimates in Lemma 2.3 gives an improvement of
. . . 1

[8] in the sense that log(e + |7|) is replaced with {log(e + |7])}2.

Proof of Lemma 2.3. 1t suffices to show that there exists a positive constant C' such that

ivg iR T < (9% log(e + |7]) |
/Rs eee e <I>J(§)d§‘ <C2 T (2.2)

for all z € R?® with x, = 0 by the rotational symmetry with respect to (£1,&). In the case
|7] < e, it is easy to see that

/R 3 ewfei”%@@)dg] < /R RO

1
< 9% {log(e + I71) }2
= 1+ |7] '
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Therefore it suffices to show (2.2) for |7| > e. Since supp <I>o C {5 c€R3 | €] < 4} we
decompose the left hand side of (2.2) as

, . £3 —~~ .
/ em'gei”ﬁq)j(f)df‘ — 23]
R3

< 2%

R3

/ ezzaw.geiw@%(g)dg‘
|£1|<47|£2|<47|£3|<5

9] . iTE =

+2%

1% [62|RE,EXIS3 S
[E |<4,]621<e e<|€3<4

127 ir&s —~
/ 2 ﬁ%(f)df‘
|€1]<4,e<|€2|<4,e<| €3] <4
=L+ L+ (2.3)
for some ¢ € (0, 4) to be determined later. For /; and I, since |C/I>\0(§ )| < 1, we have

Il + _[2 < 023j€. (24)

For I3, we have by integration by parts with respect to &, that

237 ,E
I3 < 27— |(51—€3 ‘q)o (&1,e, 53)‘ SIS
elT] Jie) <aeies<a &3]
3j 3
+ 2_ / 61231‘5 :t“-|§| { |€| (I)o }d&‘
7] 1l 1<t e<ieal <t esies) <a 08 | §283
= 1371 + 1372. (25)

For I3 1, we have that

237 1
I < C—— —d&3
elTl Jecigyi<a 185l
237 4
<010 (_> | 2.6)
e|r| 5

For I3 5, since

0 [ [¢P = H C
D L M <
’352 {5253 &) 1€2]2 (&3]
for |£] < 4, we have that
23
Iso < C— d&odEs

17| Je<ita)<a,e<ies<a R |§3|
237 4
< C—log (—) ) 2.7

By (2.3), (2.4), (2.5), (2.6) and (2.7), we obtain that

/ em{eih%@(@df < 2% e+ilog 1
R3 Sk £

for all £ € (0,4). Choosing ¢ = 4|7|~2 {log |7'|}%, we obtain the desired estimates. d
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Proof of Lemma 2.2. Since ®; x ¢; = p; for all j € Z, we see that

0 % G (7) [f] = G (7) [®4] * (0 * f)

for all j € Z. Hence we have by the Hausdorff-Young inequality and Lemma 2.3 that

[ * G () [flll 1o < E 1G+(T) [®jrulll oo (0545 * [l 11
k=—1
log(e + 7)) 2
<oy 08T ITl 28

forall j € Z and f € L'(R3). In the case p = 2, it follows from the Plancherel theorem that

1@ % G (7) [fll 2 < 1122 (2.9)

forall j € Z and f € L*(R?). From (2.8) and (2.9), we have by the Riesz-Thorin interpolation
theorem that

o)
M} £l (2.10)

18+ ]l < c20-3 { LT

forall j € Z,2 < p < ooand f € L” (R?). Since
D% Gu(7) [0j * f] = @5 % G (7) [f],
we have by (2.10) that

log(e + |7])

3(1-3)
T+ 7| } 105 5 Sl Lo (2.11)

e * G=(7) [f]ll s < c2?(1-3)i {

for all j € Z,7 € R. Multiplying both sides of (2.11) by 2% and then taking the (4(Z)-norm,
we complete the proof of Lemma 2.2. ]

3 Linear Estimates

In this section, we establish the linear estimates for the semigroup 7o (t). We first recall the
behavior of the heat semigroup ¢*® in the Besov spaces established by Kozono, Ogawa and
Taniuchi [21].

Lemma 3.1 (Kozono-Ogawa-Taniuchi [21]). Let —oco < sg < 81 < 00. Then there exists a
positive constant C = C(sg, s1) such that

||€tA

£ | ]| e,
s 3
forallt >0,1<p,q<occand f € B (R)

We prove the uniform boundedness of Tq(t) in H*(R?) with respect to t > 0 and Q € R.
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Lemma 3.2. There exists a positive constant C' such that

1Ta(t) fll s <
forallt >0,Q € R, s € Rand f € H*(R%)3.

Proof. The desired estimate easily follows from the Plancherel theorem and the explicit form
of TQ (t) . ]

Next we shall establish the estimates of the Strichartz type for the semigroup T (t). We

impose the following assumption for s, p and 6;.

Assumption (L1). Let the exponent s satisfy 0 < s < 3/2.
Assumption (L2). Let the exponents p and 6, satisfy

1—230<1<3—28 3 3 s<1< . 11 2 s
max -_—— == — — = <—<ming—=,1—-—=>.
6 P 6 2 p 2

Note that in the case 1/6; = 3/4 — 3/2p — s/2, the pair (p,0;) corresponds to the H®
admissible pair of the Strichartz estimates for the free propagator of the Schrodinger equations.

Lemma 3.3. Let s, p and 0y satisfy Assumptions (L1) and (L2). Then there exists a positive
constant C' = C(s, p, 01) such that

1Ta() o0 mspmqasyy < ClOT G370}y G.1)

forall @ € R\ {0} and f € H*(R*)3. In particular, in the case 1/0; = 3/4 — 3/2p — 5/2,
(3.1) holds for all ) € R.

Proof. The proof is based on the duality argument. Since the relation (2.1) holds and since R
is a bounded operator in H*(IR3), it suffices to prove that

R3

Gi () [ (—A) 72 f] () o(x, t)dxdt’

<o G il o
= LA L1 (0,00; 17" (R3))

for all ¢ € C§°(R? x (0,00)), where 1/p + 1/p' = 1 and 1/6; + 1/0] = 1. By the Perseval
formula and the Holder inequality, we have

" [ getane (A)‘%f](x)_¢(rc,t)dxdt‘
Rsf +(Q)[etA(—A)~ %qﬁ(t)](x)dxdt‘
<117l / G- (e (~2) E(e)dt| (3.2)

Moreover, since the continuous embedding relation B0 5(R3) — LP(R3) holds for 2 < p < oo,
we have by the Perseval formula, the Holder inequality and Lemma 2.2 that

2

/O T G () (—A) F ()t

L2
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N /RS /°° /OO G ([ (=L)726(1)) ()G (Q7) [e™8 (= A) " 2¢(7)] (w)dtdr d
/ / R3¢xtgﬂ:( (t — 7)) [e®+DA(=A)=¢(7)|(x)dxdtdT

<[ [ 1o
<c / / 16(8))

Y og(e — T (1-2)
<CA A|WMW{IQ+KWQHW |MWMPM*MM%@%ﬁM

(Qt — 7)) (=2) G|, dtdr

(Q(t — 7)) [T (—=A) 2 (1 ||BO dtdr

D=

1_|_|Q||t P2
<o [ [ ot {log(ﬁmnt_ﬂ)}%u_%) L e
. / T 1-2)-2s GTAT.
o o 1P YT g L

Here, since s < 3/2and 1/p < (3 —2s)/6, we see that 3(1 — %) —2s > 0. Therefore, it follows
from Lemma 3.1 and the continuous embedding relation L¥'(R?) < BY, ,(R?) that

C
(t+7)A < )
e T 2y, <
| o )||le<’12 poee S T De o),
C
< 3(1_2)_ ||¢(7')||LP’- (3.4
It — 7|20

Combining (3.3) and (3.4), we have by the Holder inequality that
2

(Qt)[e" (= A) "= g(t)]dt

L2

log<e+|ﬂ||t )2 1

< 0||¢||L91(O,w;m o H [ b=l e 33

where we put

Y
L91(0,00)

ht) = log(e + 9Qth 12 1
' 1+ [Q[t] MHE

In the case 1/6, > 3/4 — 3/2p — s/2, since h € L%(R)
Bl oy, = Clof 1A=,
L7 (R
we have by (3.5) and the Hausdorff-Young inequality that
oo 2
| gstanies-a) o
0

<ol 1E G-k )2 (3.6)

12 L% (0,00;L7' (R3))

In the case 1/60, = 3/4 — 3/2p — s/2, since h(t) < |t|_%(1_%)+5, we have by (3.5) and the
Hardy-Littlewood-Sobolev inequality that
2

()" (= A) "2 g(t)]dt

< Clol3y, (3.7)

1(0,00;L7 (R3))"

L2



146 TSUKASA IWABUCHI AND RYO TAKADA

Combining (3.2), (3.6) and (3.7), we complete the proof of Lemma 3.3. ]

Next we prove the estimates of the Strichartz type for the derivative of the semigroup T ().
To this end, we impose the following assumption on s, ¢ and 5.

Assumption (L3). Let the exponent s satisfy 0 < s < 3/2.
Assumption (L4). Let the exponents ¢ and 6, satisfy

3—28<1< i 1 5—2s 5) 3 S<1< i 13 2 s
—<min{ -, ——— 5, ————— <—<min{-,-—=—= .
6 q 27 6 ’ 2

Lemma 3.4. Let s,q and 0, satisfy Assumptions (L3) and (L4). Then there exists a positive
constant C' = C(s, q, 03) such that

__ é_i_ﬁ
19T fll o mespasyy < Cl0Y 1752}

(3.8)

forall @ € R\ {0} and f € H*(R®). In particular, in the case 1/05 = 5/4—3/2q — s/2, (3.8)
holds for all 2 € R.

Proof. The proof is based on the duality argument and similar to that of Lemma 3.3. Since the
relation (2.1) holds and since R is a bounded operator in H*(IR?), it suffices to prove that

[ [ 0. Gutn)ed ) 10130 s
RS
< 10 EE DN L2011y ey

forall ¢ € C°(R3 x (0,00)) and j = 1,2,3, where 1/¢ + 1/¢' = 1 and 1/6, + 1/6, = 1. By
the Perseval formula and the Holder inequality, we have

0°° /R3 &cjgi(Qt)[etA(_A)_éf](xw(%t)dxdt‘

™ [ H0G @080, oot

< £l (3.9)

/0 T G (0[P (—A)F0,, b(0)dt

L2

Moreover, since the continuous embedding relation B0 o(R3) — LI(R3) holds for 2 < ¢ < oo,
similarly to (3.3), we have by the Perseval formula, the Holder inequality and Lemma 2.2 that

2

[ oxt@niee-ar-so, o0

<c [ [ ot

log(e + Q[ — ) 1207
C O, o (t+m)A 6, dtdr. (3.10
[ [ oo {REE o720 . 310

G=(Q (t—T))[ CDAA) 3 o(r)]||, dtdr

[




DISPERSIVE EFFECT OF THE CORIOLIS FORCE FOR THE NAVIER-STOKES EQUATIONS 147

Here, since s < 3/2 and 1/q < (5 — 2s)/6, we see that 5 — g — 25 > 0. Therefore, it follows
from Lemma 3.1 and the continuous embedding relation L9 (R?) < 38,72(]1%3) that

C

[ 2| s e < ——5=5= 19| - (3.11)
Bq/)Q |t — 7'| 27 ¢

Combining (3.10) and (3.11), we have by the Holder inequality that

2

| ot -ay o, omiar|

e log(e + QU — 7D \?"% 1
o [7 [ ool { = R

S |y T T G.12)
L92(0,00)
where we put
1(1_2)
= log(e + |Q¢) > 1
ht) = —=Tom — i,
1+ (¢ t]27a~"
In the case 1/65 > 5/4 — 3/2q — s/2, since h € L%Z(]R) and
2 (3-3
7l 5, = Cle {3,
we have by (3.12) and the Hausdorff-Young inequality that
> B Av-3 ’ (2-(3-3-5)}
| arenecayiaoma] <o EEE e, 61
In the case 1/0, = 5/4 — 3/2q — s/2, since h(t) < |t|” 5+, we have by (3.13) and the
Hardy-Littlewood-Sobolev inequality that
oo 2
/0 G (1) (~8) 500, 60| < WOy (3.14)
Combining (3.9), (3.13) and (3.14), we complete the proof of Lemma 3.4. ]

4 Nonlinear Estimates

In this section, we consider the estimates for the Duhamel term of (NSC). Put

N(u,v)(t) := /0 To(t — 7)P[(u - V)v](7)dr

for t > 0. We first recall the LP-L9 smoothing properties for the semigroup 7, obtained by
Hieber and Shibata [15].
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Lemma 4.1 (Hieber-Shibata [15]). Let 1 < p <

2 < ¢ < oo. Then for any o € (NU {0})?
there exists a positive constant C' = C(p, q, ) such that

g
10°Ta () fll e < Ot 2 2670 | £
forallt > 0,9 € Rand f € LP(R?)? with div f = 0.

Next we prove the bilinear estimates for N (-, ) in our solution spaces associated with the
linear estimates. We impose the following assumption on the exponents of our function spaces.

Assumption (NL1). Let the exponent s satisfy 0 < s < 3/2.
Assumption (NL2). Let the exponents p, ¢, 6, and 6, satisfy

0 < <1 s<1 1 1_|_1>1
p 3 3 q 2 p q 2
1 1 3 1 3
()<—<——— 0<—<1-—
91 2p’ 9 2q

Lemma 4.2. Let s, p, q, 01 and 0y satisfy Assumptions (N L1) and (N L2). Then there exists a
positive constant C = C(s,p, q,01, 05) such that

sup ||V (u, v)(t)]| o < OT" 3% sup ()l Vol o.rizaes) (4.1)
<<

0<t<T

forallT > 0,Q € R,u € L®(0,T; H*(R?))? and v € L% (0, T; W9(R?))3, and

1-3_ L
[N (w, v)|| Lor (0,700 3y < CT 20 92||U||L91 o.1;0 @) VU L0207 (m3)) 4.2)

VN (u, v)][ o» (0,T;L9(R3)) X CT2 T ]| Loy (0,T;LP ]R3))||VU||L92 (0,T;La(RR3)) (4.3)
forallT >0,Q € R,u e L(0,T; LP(R*))3 and v € L% (0, T; WhH4(R3))3.
Proof. We first prove (4.1). Choose r; such that
1 3-2s 1

T 6 q'

Since s/3 < 1/q < 1/2, it is easy to see that 1 < r; < 2. Hence by Lemma 3.1, Lemma 4.1,
the Holder inequality and the Sobolev embedding theorem, we have

IV (u, 0)(t)

t 1
<0 [ (= D Rl V)
t
<C [(t=n FITumndr sup ult)]s @
0 0<t<T

forall 0 <t < T. Here since 5 < 1— 5., we see that 505 < 1, where 1/65+1/6; = 1. Hence
by the Holder inequality we have

K _3 31
/ (t = 7)7% | Vo(7) || Ledr < CT' 2 2|V Loz 0,1; 0 (r3)) (4.5)
0
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forall 0 < ¢t < T'. Substituting (4.5) into (4.4), we obtain the estimate (4.1)
Next we shall prove (4.2) and (4.3). Choose 7, such that

1 1 1

o p g

Note that 1 < ry < 2since 1/p < 1/3,1/q < 1/2 and 1/p + 1/q > 1/2. Tt follows from
Lemma 4.1 and the Holder inequality that

t
_3
[N (w, 0) ()| < C/ (t = 7) 2 lu(r) | o [[VO(T) | adT (4.6)
0
forall 0 < ¢ < T'. Putting

1 1 2¢-3
— 44
2q

1_1 (.3
91_93 2q ’

Hence (4.6), the Hardy-Littlewood-Sobolev inequality and the Holder inequality yield that

Y

we see that

|V (u, U)HL"l(OTLP R3)) & C”HU Mze | Vo(t) ||Lq||L93 (0,7)

< CHUHL"I 0,T; Lp(R?»))HVUH

4.7)
LTS (0,15L9(R3))
Here we remark that the assumptlon =< 1l—-= 1mphes that ;=

5 < 0>. Hence by the Holder
inequality we have that

LTV
IVl 2223 .0 sy

2002 || Vl| L2 (0,7, 00 (R3))- (4.8)
Substituting (4.8) into (4.7), we obtain (4.2).

Similarly to (4.6), it follows from Lemma 4.1 and the Holder inequality that

IV (u, 0)(#)]| e < C/O (t=7)" 2% [[u(r) | o | VO ()| Ladr

(4.9)
forall 0 < ¢ < T'. Putting

6s " 6 2
we see that
11 1 3
75 (%)
Hence (4.9), the Hardy-Littlewood-Sobolev inequality and the Holder inequality yield that
VN (u, U)HL%(OTLP R3)) & C”HU Mze | Vo(t)

< Ol

Here we remark that the assumption -~ < & —
inequality we have that

[l

e ||L94 (0,7)

L7235 (0,0 (R?)) IVollzooinams)- (+-10)

5, implies that ]% < 6. Hence by the Holder

LFZ5 (0,1 Lr(R3)) TT%_GI [l o1 (0,20 3y - (4.11)
Substituting (4.11) into (4.10), we obtain (4.3). This completes the proof of Lemma 4.2

O
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5 Proof of Theorems

In this section, we shall give the proof of Theorem 1.1. One can prove Theorem 1.3 in the
similar way to that of Theorem 1.1.

Proof of Theorem 1.1. Let s,p,q, 6, and 6, satisfy Assumptions (A), (B) and (C). Note that
these exponents satisfy Assumptions (L1), (L2), (L3), (L4), (NL1) and (NL2). Let Q2 € R\ {0},
and suppose that uy € H*(R3)? satisfying div ug = 0. Lemma 3.2, Lemma 3.3 and Lemma 3.4
yield that there exists a positive constant C; = C(s, p, g, 01, 02) such that

swuﬂxMﬂm+mw<4%2M%ommﬁwmwn
0<t< 5.1

1 _(5_3_s
+jg 38 v Ty Jttol| o2 0,70y < G

for all 7' > 0. Then, we define the map W and the solution space X by

U(u)(t) := To(t)ug — N(u,u)(t),
Xp = {u € C([0,T); H*(R®)? | [[ullxp < 2C1]|uo]| 0, dive = o}

with

3_3_s
T Tl i Y

[ullxz :== sup_[lu(t)]
0<t<T
Lo(3-2-3%)
+ Q272N 22| V| oy (0,T;L9(R3))

for some 7" > 0 to be chosen later, where N (-, -) is defined in Section 4. From (5.1) and Lemma
4.2, there exists a positive constant Cy = Cs(s, p, q, 01, 0-) such that

T%_%_% Tl_%_%
HS + CQ { |Q L_(3 3 5) —I_ 1 5 3 s } ||U||§(T

()l xr < Crluo

< Cifluoll 7 +4CFCs

forall 7" > 0 and u € Xp. Moreover, it follows from Lemma 4.2 that there exists a positive
constant C3 = C3(s, p, q, 01, 63) such that

1_3_ 1 1
T2 2 9 T 2¢ 0
40103| T (3_2_g T (3_2_: ||U—U||XT (53)
|Q|91 17 2p 2 |Q|92 17 2¢ 2
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and
3 1

T 24 7 o { 1 1 }
< min , .
|Q|%_ %‘%—%) 80102||U0||Hs 160103||U0||Hs
Then we obtain from (5.2) and (5.3) that

1
1 (@)l < 2Ch[|uollge, 1Y) = T(0)]lxr < Fllu = vllxr

for all v and v in X7. Therefore, by the contraction mapping principle, we complete the proof
of Theorem 1.1. U
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