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Interpolation theorem

for harmonic Bergman functions

By

Kiyoki Tanaka *

Abstract

In this paper, we discuss an interpolation theorem for harmonic Bergman functions on

bounded smooth domains.

§1. Introduction

Let  $\Omega$ be a bounded smooth domain in the  n‐dimensional Euclidean space (n\geq 2) .

For  1\leq p<\infty ,
we denote by  b^{p}( $\Omega$) the harmonic Bergman space on  $\Omega$

, i.e., the set of

all real‐valued harmonic functions  f on  $\Omega$ such that

\displaystyle \Vert f\Vert_{p}:=(\int_{ $\Omega$}|f|^{p}dx)^{\frac{1}{p}}<+\infty,
where dx denotes the n‐dimensional Lebesgue volume measure on  $\Omega$ . As is well‐known,

 b^{p}( $\Omega$) is a closed subspace of L^{p}=L^{p}( $\Omega$) and hence, b^{p}( $\Omega$) is a Banach space (for
example see [2]). Especially, when p=2, b^{2}( $\Omega$) is a Hilbert space, which has the

reproducing kernel, i.e., there exists a unique symmetric function R ) on  $\Omega$\times $\Omega$ such

that for any  f\in b^{2}() and any x\in $\Omega$,

f(x)=\displaystyle \int_{ $\Omega$}R(x, y)f(y)dy.
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The function R ) is called the harmonic Bergman kernel of  $\Omega$ . It is known that for

any  1\leq p<\infty, f\in b^{p}( $\Omega$) has the following reproducing formula:

f(x)=\displaystyle \int_{ $\Omega$}f(y)R(x, y)dy,
for any  x\in $\Omega$ ,

see Proposition 2.3 in [3].
We denote by  P the corresponding integral operator, which is called the harmonic

Bergman projection,

P $\psi$(x):=\displaystyle \int_{ $\Omega$}R(x, y) $\psi$(y)dy
for  x\in $\Omega$ . It is known that  P:L^{p}( $\Omega$)\rightarrow b^{p}( $\Omega$) is bounded for  1<p<\infty ; see Theorem

4.2 in [8].
For any \{$\lambda$_{i}\}\subset $\Omega$ and any  1<p<\infty ,

we denote by  A=A_{p,\{$\lambda$_{i}\}} from lp to b^{p}( $\Omega$)

A\displaystyle \{a_{i}\}(x)=A_{p,\{$\lambda$_{i}\}}\{a_{i}\}(x)=\sum_{i=1}^{\infty}a_{i}R(x, $\lambda$_{i})r($\lambda$_{i})^{(1-\frac{1}{p})n},
where lp denotes the space of all sequences \{a_{i}\} such that \displaystyle \Vert\{a_{i}\}\Vert_{l^{p}}:=(\sum_{i=1}^{\infty}|a_{i}|^{p})^{\frac{1}{p}}<\infty
and  r(x) denotes the distance between x and the boundary of  $\Omega$ . The author obtained

in [9] the following representation theorem.

Theorem 1.1. Let  1<p<\infty and let  $\Omega$ be a smooth bounded domain. Then

we can choose a sequence \{$\lambda$_{i}\} in  $\Omega$ such that the operator  A_{p,\{$\lambda$_{i}\}} from lp to b^{p}() is

bounded and onto.

In this paper, we consider the adjoint operator and discuss the conditions these

operators are onto. We denote by V=V_{p,\{$\lambda$_{j}\}} from b^{p}( $\Omega$) to lp as follow:

V_{p,\{$\lambda$_{i}\}}f:=\{r($\lambda$_{i})^{\frac{n}{p}}f($\lambda$_{i})\}.

We remark that the relation A_{p}^{*}=V_{q} ,
where q is the exponent conjugate to p ,

for

detail see Theorem 4 in [9].
A main theorem in this paper is the following.

Theorem 1.2. Let  1<p<\infty . Then, we can choose a sequence \{$\lambda$_{i}\} in  $\Omega$ such

that  V:b^{p}( $\Omega$)\rightarrow l^{p} is bounded and onto.

The above theorem is called an interpolation theorem. A sequence \{$\lambda$_{i}\} given in

the above theorem is called interpolating sequence.

Interpolations theorem were studied on the various settings. In [1], E. Amar studied

the holomorphic Bergman spaces on the unit disc in \mathbb{C}^{n} ,
and obtained an interpolation
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theorem for the holomorphic Bergman functions. In [6], B. R. Choe and H. Yi studied

the harmonic Bergman spaces on the upper‐half space in \mathbb{R}^{n}
,

and proved representation
theorems and interpolation theorems for harmonic Bergman functions. In this paper,

we achieved to prove an interpolation theorem for the harmonic Bergman spaces over

bounded smooth domains.

We often abbreviate inessential constants involved in inequalities by writing X<Y\sim,
if there exists an absolute constant C>0 such that X\leq CY . In the following, we fix

p\in(1, \infty) and denote q is the exponent conjugate to p , i.e., it is satisfied that \displaystyle \frac{1}{p}+\frac{1}{q}=1.

§2. The harmonic Bergman kernels

In this section, we recall the estimates for the harmonic Bergman kernels. First,
we remark the estimates for the harmonic Bergman kernels introduced in [4] and [8].
The following estimates for the harmonic Bergman kernels is shown in [8].

Lemma 2.1 (Theorem 1.1 in [8]). Let  $\alpha$,  $\beta$ be multi‐indices.

(1) There exists a constant  C>0 such that

|D_{x}^{ $\alpha$}D_{y}^{ $\beta$}R(x, y)|\displaystyle \leq\frac{C}{d(x,y)^{n+| $\alpha$|+| $\beta$|}}
for every x,  y\in $\Omega$ ,

where  d(x, y)=r(x)+r(y)+|x-y|.

(2) There exists a constant C>0 such that

R(x, x)\displaystyle \geq\frac{C}{r(x)^{n}}
for every x\in $\Omega$.

From above lemma, we have easily the following corollaries. It is shown in [4].

Corollary 2.2. There exist a constant  $\delta$>0 and constants C_{1}>0 and C_{2}>0
such that

C_{1}r(x)^{-n}\leq R(x, y)\leq C_{2}r(x)^{-n}

for any  x\in $\Omega$ and any  y\in E_{ $\delta$}(x) ,
where

E_{ $\delta$}(x) :=B(x,  $\delta$ r(x))=\{y\in $\Omega$ : |y-x|< $\delta$ r(x)\}

Corollary 2.3. Let  1<p<\infty . There exist constants  C_{1}>0 and C_{2}>0 such

that

C_{1}r(x)^{(1-\frac{1}{p})n}\leq\Vert R(x, \cdot)\Vert_{b^{p}}\leq C_{2}r(x)^{(1-\frac{1}{p})n}
for every x\in $\Omega$.
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We prepare a tool for calculating integration.

Lemma 2.4 (Lemma 4.1 in [8]). Let s>-1 and t<1 . If s+t>0,

\displaystyle \int_{ $\Omega$}\frac{dy}{d(x,y)^{n+s}r(y)^{t}}<\sim\frac{1}{r(x)^{s+t}}
for every x\in $\Omega$.

Finally, by using Lemma 2.4, we immediately have the following corollary.

Corollary 2.5. The harmonic Bergman projection P:L^{p}( $\Omega$)\rightarrow b^{p}( $\Omega$) is bounded

for 1<p<\infty.

§3. Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2.

First, we discuss some properties of sequences \{$\lambda$_{i}\}\subset $\Omega$ in order to define the

operators  V_{p,\{$\lambda$_{i}\}} and A_{p,\{$\lambda$_{i}\}} . We define separated sequences.

Denition 3.1 (separated sequence). For  $\delta$>0 ,
we call a sequence \{$\lambda$_{i}\} in  $\Omega$ \mathrm{a}

 $\delta$‐separated sequence if  E_{ $\delta$}($\lambda$_{i})\cap E_{ $\delta$}()=\emptyset for  i\neq j.

When a sequence \{$\lambda$_{i}\} in  $\Omega$ is  $\delta$‐separated, then we can check the well‐definedness

of operators  V_{p,\{$\lambda$_{i}\}} and A_{p,\{$\lambda$_{i}\}} . These operators are important in the argument in [9].

Lemma 3.2. Let a sequence \{$\lambda$_{i}\} be  $\delta$ ‐separated. Then, for any  1\leq p<\infty, a

operator V_{p,\{$\lambda$_{i}\}} : b^{p}( $\Omega$)\rightarrow l^{p} is bounded.

Proof. For any f\in b^{p}( $\Omega$) , by using sub‐mean value property for a subharmonic

function |f|^{p} and the definition of  $\delta$‐separated, we have

\displaystyle \Vert Vf\Vert_{l^{p}}^{p}=\sum_{i=1}^{\infty}|f($\lambda$_{i})|^{p}r($\lambda$_{i})^{n}
\displaystyle \leq\sum_{i=1}^{\infty}\frac{1}{|E_{ $\delta$}($\lambda$_{i})|}\int_{E_{ $\delta$}($\lambda$_{i})}|f(x)|^{p}dxr($\lambda$_{i})^{n}
=\displaystyle \sum_{i=1}^{\infty}\frac{1}{$\delta$^{n}|B(0,1)|}\int_{E_{ $\delta$}($\lambda$_{i})}|f(x)|^{p}dx
\displaystyle \leq\frac{1}{$\delta$^{n}|B(0,1)|}\Vert f\Vert_{b^{p}}^{p}.

\square 
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We remark that the above lemma implies the boundedness of V_{p} for p\geq 1 . By
Lemma 14 in [9], the boundedness of V implies that of A for  1<p<\infty . Hence, we

obtain the following lemma.

Lemma 3.3. Let  1<p<\infty . If a sequence \{$\lambda$_{i}\} is  $\delta$ ‐separated, then  A_{p,\{$\lambda$_{i}\}} :

l^{p}\rightarrow b^{p}( $\Omega$) is bounded.

Second, according to F. W. Gehring and B. P. Palka [7], we define the quasi‐

hyperbolic metric, which plays important role in the proof of our interpolation theorem.

Denition 3.4 (Quasi‐hyperbolic metric). Let  $\Omega$ be a smooth bounded domain

in \mathbb{R}^{n} . We define the quasi‐hyperbolic metric  $\rho$(x, y) as the following:

 $\rho$(x, y):=\displaystyle \inf_{ $\gamma$\in$\Gamma$_{xy}},\int_{ $\gamma$}\frac{1}{r(z)}ds(z)
for x,  y\in $\Omega$ ,

where  ds denotes the line element in Euclidean space and $\Gamma$_{x,y} is the set

of all  $\gamma$ which are  C^{\infty} ‐curves in  $\Omega$ with the initial point  x and the end point y.

We can investigate an intersection of sets \{E_{ $\delta$} by using the quasi‐hyperbolic
metric.

Lemma 3.5. For any $\rho$_{0}>0 ,
there exists a constant $\delta$_{0}>0 such that  E_{$\delta$_{0}}(x)\cap

 E_{$\delta$_{0}}(y)=\emptyset for any  x,  y\in $\Omega$ with  $\rho$_{0}< $\rho$(x, y) .

Proof. For any  x\in $\Omega$ and  r>0 ,
we denote by D(x) the quasi‐hyperbolic ball

D_{r}(x)=\{y\in \mathbb{R}^{n}: $\rho$(x, y)<r\}.

It is sufficient to show there exists a constant $\delta$_{0} such that E_{$\delta$_{0}}(x)\subset D_{\frac{$\rho$_{0}}{2}}(x) for any

 x\in $\Omega$ . We denote by  $\gamma$_{x,y} the line with an initial point x and an end point y . For any

y\in E_{ $\delta$}(x) , by remarking $\gamma$_{x,y}\subset E_{ $\delta$}(x) ,
we have

 $\rho$(x, y)\displaystyle \leq\int_{$\gamma$_{x,y}}\frac{1}{r(z)}ds(z)\leq|x-y|\frac{1}{(1- $\delta$)r(x)}\leq\frac{ $\delta$}{1- $\delta$}.
Therefore, when we put $\delta$_{0} satisfying $\delta$_{0}<\displaystyle \frac{$\rho$_{0}}{2+$\rho$_{0}} ,

then we have  $\rho$(x, y)<\displaystyle \frac{$\rho$_{0}}{2} for any

y\in E_{$\delta$_{0}}(x) . This completes the proof. \square 

By Lemmas 3.2, 3.3 and 3.5, the following corollary is immediately shown.

Corollary 3.6. Let a sequence \{$\lambda$_{i}\} be in  $\Omega$ . If there exists a constant  $\rho$_{0}>0
such that  $\rho$($\lambda$_{i}, $\lambda$_{j})>$\rho$_{0} fori\neq j ,

then the operator V_{p,\{$\lambda$_{i}\}} and A_{p,\{$\lambda$_{i}\}} are bounded for

any 1<p<\infty.
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The following proposition is necessary in order to control a sequence \{$\lambda$_{i}\} in  $\Omega$
,

for

detail see [7].

Proposition 3.7 (Quasi‐hyperbolic metric). Let  $\Omega$ be a smooth bounded domain.

For any  x,  y\in $\Omega$ , quasi‐hyperbolic metric  $\rho$(x, y) has the following properties:

 $\rho$(x, y)\displaystyle \geq\log(\frac{|x-y|}{\min\{r(x),r(y)\}}+1) ,

 $\rho$(x, y)\displaystyle \geq|\log\frac{r(x)}{r(y)}|,
and

(3.1)  $\rho$(x, y)\displaystyle \leq C_{3}\log(\frac{|x-y|}{\min\{r(x),r(y)\}}+1)+C_{4}
for some positive C_{3} and C_{4}.

As the end of preparations to prove our interpolation theorem, we rewrite the above

proposition.

Lemma 3.8. There exist constants C_{3}>0 and C_{4}>0 such that

(3.2) \displaystyle \frac{1}{d(x,y)}\leq\frac{e^{-(\frac{ $\rho$(x,y)-C_{3}}{C_{4}})}}{\min\{r(x),r(y)\}}
for any x, y\in $\Omega$.

Proof. By the inequality (3.1), there exist constants C_{3}, C_{4}>0 such that

 $\rho$(x, y)\displaystyle \leq C_{3}\log(\frac{|x-y|+\min\{r(x),r(y)\}}{\min\{r(x),r(y)\}})+C_{4}\leq C_{3}\log(\frac{d(x,y)}{\min\{r(x),r(y)\}})+C_{4}
for any x,  y\in $\Omega$ . This immediately implies the inequality (3.2). \square 

Now, we can show Theorem 1.2.

Proof of interpolation theorem. We consider a sequence \{$\lambda$_{i}\} satisfying that there

exists  $\rho$>0 such that  $\rho$($\lambda$_{i}, $\lambda$_{j})> $\rho$ for  i\neq j . We take a $\rho$_{0} in Corollary 3.6. In the

following argument, we only consider the range of  $\rho$ is and fix a constant  $\delta$>0

such that  E_{ $\delta$}(x)\cap E_{ $\delta$}(y)=\emptyset for any  x,  y\in $\Omega$ with  $\rho$(x, y)>$\rho$_{0} . And we consider the

following operators:

(3.3) A\displaystyle \{a_{i}\}(x) :=\sum_{i=1}^{\infty}a_{i}R(x, $\lambda$_{i})r($\lambda$_{i})^{(1-\frac{1}{p})n},
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Vf:=\{f($\lambda$_{i})r($\lambda$_{i})^{\frac{n}{p}}\}_{i},
and

W\displaystyle \{a_{i}\}=W_{p,\{$\lambda$_{i}\}}\{a_{i}\}:=V\circ A\{a_{i}\}=\{r($\lambda$_{j})^{\frac{n}{p}}\sum_{i=1}^{\infty}a_{i}R($\lambda$_{j}, $\lambda$_{i})r($\lambda$_{i})^{(1-\frac{1}{p})n}\}_{j}.
By Corollary 3.6, we have A and V are bounded. From Theorem 1.1, it is sufficient

to show that there exists a number  $\rho$>0 such that W is bijective. To analyze W ,
we

write W=D+E where D is the diagonal part and E is the remainder, i.e.,

D\{a_{i}\}:=\{a_{j}R($\lambda$_{j}, $\lambda$_{j})r($\lambda$_{j})^{n}\}_{j}

and

E\displaystyle \{a_{i}\}:=\{r($\lambda$_{j})^{\frac{n}{p}}\sum_{i\neq j}a_{i}R($\lambda$_{j}, $\lambda$_{i})r($\lambda$_{i})^{(1-\frac{1}{p})n}\}_{j}.
First, we calculate the norm of D . By Corollary 2.2, there exist C_{1}>0 and C_{2}>0
such that for any x\in $\Omega$,

0<C_{1}\leq R(x, x)r(x)^{n}\leq C_{2}.

Hence, we have

(3.4) 0<\displaystyle \frac{1}{C_{2}}\leq\Vert D^{-1}\Vert\leq\frac{1}{C_{1}}.
By a fundamental discussion, we should only show

(3.5) \displaystyle \Vert E\Vert<\frac{1}{\Vert D^{-1}\Vert}.
Therefore, we calculate the norm of E . Before calculating the norm of E

,
we remark

the following inequalities:

(3.6)

(\displaystyle \sum_{i\neq j}a_{i}R($\lambda$_{j}, $\lambda$_{i})r($\lambda$_{i})^{\frac{n}{q}})^{p}\leq\sum_{i\neq j}|a_{i}|^{p}r($\lambda$_{i})^{\frac{1}{q}}|R($\lambda$_{j}, $\lambda$_{i})|(\sum_{i\neq j}r($\lambda$_{i})^{n-\frac{1}{p}}|R($\lambda$_{j}, $\lambda$_{i})|)^{\frac{p}{q}}
And

\displaystyle \sum_{i\neq j}r($\lambda$_{i})^{n-\frac{1}{p}}|R($\lambda$_{j}, $\lambda$_{i})|\leq$\delta$^{-n}\sum_{i\neq j}r($\lambda$_{i})^{-\frac{1}{p}}( $\delta$ r($\lambda$_{i}))^{n}|R($\lambda$_{j}, $\lambda$_{i})|
\displaystyle \sim<$\delta$^{-n}\sum_{i\neq j}\int_{E_{ $\delta$}($\lambda$_{i})}r($\lambda$_{i})^{-\frac{1}{p}}|R($\lambda$_{j}, $\lambda$_{i})dy
\displaystyle \sim<$\delta$^{-n}\sum_{i\neq j}\int_{E_{ $\delta$}($\lambda$_{j})}\frac{r(y)^{-\frac{1}{p}}}{d($\lambda$_{j},y)^{n}}dy

(3.7) \displaystyle \leq$\delta$^{-n}\int_{ $\Omega$}\frac{r(y)^{-\frac{1}{p}}}{d($\lambda$_{j},y)}dy\sim<$\delta$^{-n}r($\lambda$_{j})^{-\frac{1}{p}}.
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By (3.6) and (3.7), we have

(3.8) (\displaystyle \sum_{i\neq j}|a_{i}||R($\lambda$_{j}, $\lambda$_{i})|r($\lambda$_{i})^{\frac{n}{q}})^{p}\leq C$\delta$^{-n(p-1)}r($\lambda$_{j})^{-\frac{1}{q}}\sum_{i\neq j}|a_{i}|^{p}r($\lambda$_{i})^{\frac{1}{q}}|R($\lambda$_{j}, $\lambda$_{i})|
By (3.8), we have

\displaystyle \Vert E\{a_{i}\}\Vert_{l^{p=}}(\sum_{j=1}^{\infty}|r($\lambda$_{j})^{\frac{n}{p}}\sum_{i\neq j}a_{i}R($\lambda$_{j}, $\lambda$_{i})r($\lambda$_{i})^{\frac{n}{q}}|^{p})^{\frac{1}{p}}
\displaystyle \leq C$\delta$^{\frac{-n(p-1)}{p}}(\sum_{j=1}^{\infty}r($\lambda$_{j})^{n}r($\lambda$_{j})^{-\frac{1}{q}}\sum_{i\neq j}|a_{i}|^{p}r($\lambda$_{i})^{\frac{1}{q}}|R($\lambda$_{j}, $\lambda$_{i})|)^{\frac{1}{p}}
= $\delta$\displaystyle \frac{-n(p-1)}{p}(\sum_{i=1}^{\infty}|a_{i}|^{p}r($\lambda$_{i})^{\frac{1}{q}}\sum_{j\neq i}r($\lambda$_{j})^{n-\frac{1}{q}}|R($\lambda$_{j}, $\lambda$_{i})|)^{\frac{1}{p}}

Hence, we focus the inside of summation with respect to i
,

we have

r($\lambda$_{i})^{\frac{1}{q}}\displaystyle \sum_{j\neq i}r($\lambda$_{j})^{n-\frac{1}{q}}|R($\lambda$_{j}, $\lambda$_{i})|\sim<r($\lambda$_{i})^{\frac{1}{q}}\sum_{j\neq i}r($\lambda$_{j})^{-\frac{1}{q}}\int_{E_{ $\delta$}($\lambda$_{j})}|R(z, $\lambda$_{i})dz
\displaystyle \sim<\sum_{j\neq i}\int_{E_{ $\delta$}($\lambda$_{j})} d(z, $\lambda$_{i})^{n}\underline{r($\lambda$_{i})^{\frac{1}{q}}r(z)^{-\frac{1}{q}}}dz

\displaystyle \leq\int_{ $\Omega$\backslash E_{ $\delta$}($\lambda$_{i})} d(z, $\lambda$_{i})^{n}\underline{r($\lambda$_{i})^{\frac{1}{q}}r(z)^{-\frac{1}{q}}}dz.

By using Lemma 3.8, for any 0< $\epsilon$<1 we have

\displaystyle \int_{ $\Omega$\backslash E_{ $\delta$}($\lambda$_{i})}\frac{r($\lambda$_{i})^{\frac{1}{q}}r(z)^{-\frac{1}{q}}}{d(z,$\lambda$_{i})^{n}}dz\leq\int_{ $\Omega$\backslash E_{ $\delta$}($\lambda$_{i})}\frac{r($\lambda$_{i})^{\frac{1}{q}}r(z)^{-\frac{1}{q}}}{d(z,$\lambda$_{i})^{n- $\epsilon$}}\frac{e^{- $\epsilon$(\frac{ $\rho$($\lambda$_{i},z)-C_{3}}{C_{4}})}}{\min\{r($\lambda$_{i}),r(z)\}^{ $\epsilon$}}dz
for some constants C_{3}, C_{4}>0 . We put

 $\tau$:=e^{\frac{ $\rho$-C_{3}}{C_{4}}}

If we assume that \{$\lambda$_{i}\} has the following property

 $\rho$(z, $\lambda$_{i})> $\rho$ for any  z\in E_{ $\delta$}() whenever i\neq j,

then from Lemma 2.4 we have

\displaystyle \int_{ $\Omega$\backslash E_{ $\delta$}($\lambda$_{i})}\frac{r($\lambda$_{i})^{\frac{1}{q}}r(z)^{-\frac{1}{q}}}{d(z,$\lambda$_{i})^{n- $\epsilon$}}\frac{e^{- $\epsilon$(\frac{ $\rho$($\lambda$_{i},z)-C_{3}}{C_{4}})}}{r($\lambda$_{i})^{ $\epsilon$}}dz_{\sim}<$\tau$^{- $\epsilon$}
and

\displaystyle \int_{ $\Omega$\backslash E_{ $\delta$}($\lambda$_{i})}\frac{r($\lambda$_{i})^{\frac{1}{q}}r(z)^{-\frac{1}{q}}}{d(z,$\lambda$_{i})^{n- $\epsilon$}}\frac{e^{- $\epsilon$(\frac{ $\rho$($\lambda$_{i},z)-C_{3}}{C_{4}})}}{r(z)^{ $\epsilon$}}d<
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Hence, we have

\Vert E\{a_{i}\}\Vert_{l^{p}}\leq C_{5}$\delta$_{\mathcal{T}\Vert\{a_{i}\}_{i}\Vert_{l^{p}}}^{\frac{-n(p-1)}{p}-\frac{ $\epsilon$}{p}}
for some positive constant C_{5} . Because  $\delta$ is fixed and  $\tau$^{-\frac{ $\epsilon$}{p}}\rightarrow 0 as  $\rho$\rightarrow\infty ,

we can

control the operator norm \Vert E\Vert . In fact, if we put

$\rho$_{1}>\displaystyle \frac{C_{4}}{ $\epsilon$}(\log C_{5}-\log C_{1}-\frac{n(p-1)}{p}\log $\delta$)+C_{3},
by direct calculation, we have

C_{5}$\delta$_{\mathcal{T}}^{\frac{-n(p-1)}{p}- $\epsilon$}<C_{1}.

Therefore, for a sequence \{$\lambda$_{i}\}_{i} satisfying  $\rho$($\lambda$_{i}, $\lambda$_{j})>$\rho$_{1} for any i\neq j , by the inequality

(3.4), we have

\displaystyle \Vert E\Vert<\frac{1}{\Vert D^{-1}\Vert}.
Because D is invertible and D+E=W ,

we have \Vert I-WD^{-1}\Vert=\Vert ED^{-1}\Vert.
inequality (3.5), we have \Vert I-WD^{-1}\Vert<1 . This implies that WD^{-1} and

By the

W are

invertible. Hence, we obtain that V is onto. This is the end of proof. \square 
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