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On the Rasmussen-Tamagawa conjecture
for QM-abelian surfaces

By

Keisuke ARAT*

Abstract

In a previous article, we proved the Rasmussen-Tamagawa conjecture for QM-abelian
surfaces over almost all imaginary quadratic fields. In this article, we generalize the previous
work to QM-abelian surfaces over number fields of higher degree. We also give several explicit
examples.

§1. Introduction

For a number field K and a prime number p, let K denote an algebraic closure of
K, and let I?p denote the maximal pro-p extension of K (u,) in K which is unramified
away from p, where p,, is the group of p-th roots of unity in K. For a number field K,
an integer g > 0 and a prime number p, let &7 (K, g, p) denote the set of K-isomorphism
classes of abelian varieties A over K, of dimension g, which satisfy

(1.1) K(A[p™]) C K,,

where K(A[p>]) is the subfield of K generated over K by the p-power torsion of A. It
follows from [16, Theorem 1, p.493] that an abelian variety A over K has good reduction
at any prime of K not dividing p if its class belongs to <7 (K, g, p), because the extension
K(A[p™])/ K (up) is unramified away from p. So we can conclude that <7 (K, g,p) is a
finite set ([18, 1. Theorem, p.309], cf. [7, Satz 6, p.363]). For fixed K and g, define the
set

(K, qg):={([A],p) | p : prime number, [A] € & (K,g,p)}.

We have the following conjecture concerning finiteness for abelian varieties, which is
called the Rasmussen-Tamagawa conjecture ([13, p.2391]):
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Conjecture 1.1 ([15, Conjecture 1, p.1224]).
Let K be a number field, and let g > 0 be an integer. Then the set </ (K, g) is
finite.

For elliptic curves, we have the following result related to Conjecture 1.1 (owing to
[10, Theorem 7.1, p.153] and [11, Theorem B, p.330]):

Theorem 1.2 ([15, Theorem 2, p.1224 and Theorem 4, p.1227]).
Let K be Q or a quadratic field which is not an imaginary quadratic field of class
number one. Then the set o (K, 1) is finite.

We are interested in higher dimensional cases, in particular, in the case of QM-
abelian surfaces, which are analogous to elliptic curves. Let B be an indefinite quater-
nion division algebra over Q. Let

d = disc(B)

be the discriminant of B. Then d > 1 and d is the product of an even number of distinct
prime numbers. Choose and fix a maximal order O of B. If a prime number p does not
divide d, fix an isomorphism

O ®z Ly = M2(Zp)

of Z,-algebras. Now we recall the definition of QM-abelian surfaces.

Definition 1.3 (cf. [6, p.591]).

Let S be a scheme over Q. A QM-abelian surface by O over S is a pair (A, ) where
A is an abelian surface over S (i.e. A is an abelian scheme over S of relative dimension
2), and i : O — Endg(A) is an injective ring homomorphism (sending 1 to id). Here
Endg(A) is the ring of endomorphisms of A defined over S. We assume that A has a left
O-action. We will sometimes omit “by O” and simply write “a QM-abelian surface” if
there is no fear of confusion.

For a number field K and a prime number p, let &/ (K,2,p)p be the set of K-
isomorphism classes of abelian varieties A over K in «7(K,2,p) such that there is an
injective ring homomorphism O — Endg(A) (sending 1 to id). Let us also define the

set
A (K,2)g :={([A],p) | p : prime number, [A] € & (K,2,p)5}.

Let hx denote the class number of K. Conjecture 1.1 for QM-abelian surfaces has been
partly confirmed.

Theorem 1.4 ([4, Theorem 9.3], cf. [5]).
Let K be an imaginary quadratic field with hx > 2. Then the set o/ (K,2)p is
finite.
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The main result of this article is the following theorem, which is a generalization
of Theorem 1.4 to number fields of higher degree.

Theorem 1.5.
Let K be a finite Galois extension of Q which does not contain the Hilbert class field
of any imaginary quadratic field. Assume that there is a prime number q which splits

completely in K and satisfies B ®g Q(v/—¢q) Z M2(Q(v/—q)). Then the set o/ (K,2)p
1$ finite.

In the next section, we prove Theorem 1.5. In §4, we give examples of the main
result after recalling needed facts in §3.

Remark.

(1) The condition (1.1) is equivalent to the following assertion (see [15, Lemma 3,
p.1225] or [13, Definition 4.1, p.2390)):
The abelian variety A has good reduction outside p, and the group A[p](K) consisting
of p-torsion points of A has a filtration of Gx-modules {0} =V, CV; C--- C Ve 1 C
Va, = Alp](K) such that V; has dimension i for each 1 < i < 2g, where G is the
absolute Galois group of K. Furthermore, for each 1 < i < 2g, there is an integer
a; € Z such that Gg acts on V;/V;_; by gv = 6,(g9)%v, where g € Gg, v € V;/Vi_q,
and 6, is the mod p cyclotomic character.

(2) Conjecture 1.1 is equivalent to the following assertion:
There exists a constant Crr(K,g) > 0 depending on K and g such that we have
(K, g,p) = 0 for any prime number p > Crr(K,g).

(3) The set <7 (K,2,p)p (resp. &7 (K,2)p) is a subset of &7 (K, 2, p) (resp. & (K, 2)).
If one of the following two conditions is satisfied, we know that the sets </ (K,2,p)p,
o/ (K,2)p are empty for a trivial reason: there are no QM-abelian surfaces by O over
K ([17, Theorem 0, p.136], [8, Theorem (1.1), p.93]).
(i) K has a real place.
(ii) B ®g K % Ma(K).

(4) Let QM be the set of isomorphism classes of indefinite quaternion division
algebras over Q. Define the set

(K 2om:= |) #(K,2)s
BeoM
which is a subset of &7 (K, 2). We then have the following corollary to Theorem 1.4 (see
[4, Corollary 9.5]):
Let K be an imaginary quadratic field with hx > 2. Then the set o/ (K, 2)gn is finite.
(5) Conjecture 1.1 is solved for any K and g when restricted to semi-stable abelian
varieties ([13, Corollary 4.5, p.2392]) or abelian varieties with abelian Galois represen-
tations ([14, Theorem 1.2]). See also [2, §6] for a summary.
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Notation

For a field k, let k& denote an algebraic closure of k, let kP denote the separable
closure of k inside k, and let Gy, = Gal(k%P /k).

For an integer n > 1 and a commutative group (or a commutative group scheme)
G, let G[n] denote the kernel of multiplication by n in G.

For a prime number p and an abelian variety A over a field k, let T, A := l(gl Alp"](k)
be the p-adic Tate module of A, where the inverse limit is taken with respect to multi-
plication by p : A[p" (k) — A[p"](k).

For a number field K, let Ok denote the ring of integers of K, let K, denote the
completion of K at v where v is a place (or a prime) of K, and let Ram(K') denote the
set of prime numbers which are ramified in K.

Acknowledgments. The author would like to thank the organizers Noriyuki
Suwa, Atsushi Shiho and Kanetomo Sato for giving him an opportunity to talk at the
conference. He would also like to thank Noriyuki Suwa and the referee for helpful
comments.

8§ 2. Galois representations

A QM-abelian surface has a Galois representation which looks like that of an elliptic
curve as explained below (cf. [12]). Let k be a field of characteristic 0, and let (A, ) be
a QM-abelian surface by O over k, where O is a fixed maximal order of B which is an
indefinite quaternion division algebra over Q. We consider the Galois representations
associated to (A,7). Take a prime number p not dividing d = disc(B). We then have
isomorphisms of Z,-modules:

Ty = TyA= O @y Ly = Ma(Zy).

The middle is also an isomorphism of left O-modules; the last is also an isomorphism
of Z,-algebras (which was fixed in §1). We sometimes identify these Z,-modules. Take

1oy _(ory _ _(oo)y _foo
Yoo/ 7  \oo) 7 \10) T o1

of M3(Z,). Then the image of the natural map

a Zy-basis

Ms(Zp) = O ®z Z, < End(T,A) = My(Z,)

Iy bl 10
lies in @72 Of2 a,b,c,d € Z, ¢, where Iy = . The Gj-action on T}, A induces
CIQ dIQ 01

a representation

pA/k’p : Gk — Aut(f)@zzp (TpA) g Aut(TpA) = GL4(Zp),
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where Autog,z, (IpA) is the group of automorphisms of 7, A commuting with the action
of O ®z Z,. The above observation implies

Autoe,z, (TyA) = { (‘)é ;) ‘X € GLQ(ZP)} C GL4(Z,).

Then the representation p 4, factors as

X 0
PA/kp - Gr — {(0 X) ‘X c GLQ(Zp)} - GL4(Zp)

Let
P(Ai) k. G — GLa(Zp)

denote the Galois representation determined by “X”, so that we have p(a,;y/k,p(0) =

X(0) i paspp(o) = (X (@) 0

f € Gg. Let
0 X(a)) or o L. Le

ﬁA/kz,p : Gk — GL4(IFp) (resp. ﬁ(A,i)/k:,p : Gk — GLQ(FP))

denote the reduction of pa /i, (resp. p(a,)/k,p) modulo p. Note that this construction
of P41\ /k,p 18 slightly different from that in [4, §2], but the resulting representations are
the same.

We have the following criterion for Conjecture 1.1 for QM-abelian surfaces.

Lemma 2.1.

Assume that there is a constant C(B, K) depending on B and a number field K such
that Dea iy k,p 18 trreducible for any prime number p > C(B,K) and any QM-abelian
surface (A,1) by O over K. Then the set o/ (K,2)p is finite.

Proof.

Take an element ([A],p) € &/ (K, 2)p. Since [A] € & (K,2,p), we know that 4,
* ok ok %
0 * * *
00 * %
000 %

i: O — Endg(A). Then (A,i) is a QM-abelian surface by O over K. We have seen

is conjugate to ) By the definition of o/ (K,2)p, there is an embedding

X
that there is a map X : Gx — GL2(Fp) such that p, /(o) = ( (()U) X(() )> for any
o

M, My

0 € Gg. Then there is a matrix M =
Ms My

) € GL4(]FP) (Where Ml,Mg,Mg,M4
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¥ ok kK
X
are 2 x 2 matrices) such that M1 (0) 0 M e 0w for any o €
0 X(o) 00 % %
000 %

Ggk.

We claim the following.

(C): There is a matrix H € GLg(F,) such that H !X (0)H € { (3 i
*

) } for any

o€ Gg.
s(o) tlo) * x
L [(X(0) 0 0 uo) * x
et M1 = (a1 az2), M3 = (c1 ¢2) an ( 0 X(J)) 0 0 % x
0 0 0 %

Then X (0)a; = s(o)ay, X(0)az = t(o)a; +u(o)as, X(o)e; = s(o)ey, and X(o)ex =
t(o)er +u(o)cy for any o € Gg. If @y # 0, take a vector b € F2 not contained in the
linear subspace Fpa; and put H = (a; b). Then (C) holds. If a; = 0 and ay # 0, then
X(o)az = u(o)asz, and so (C) holds. If a; = as = 0, then ¢; # 0 or ¢z # 0 because

M, M-
the matrix M = ' "2 is invertible. Then (C) follows.
Ms M,
In this case P4 ;)/k p 18 reducible, and so p < C(B, K). Therefore §7(K,2)p < 0.

O

Theorem 1.5 is a consequence of the following theorem (Theorem 2.2) together with
Lemma 2.1. Before stating this theorem, we need some preparation. For a number field
K, let M be the set of prime numbers ¢ such that ¢ splits completely in K and ¢ does
not divide 6hg. Let A be the set of primes q of K such that q divides some prime
number ¢ € M. Take a finite subset ) # S C N such that S generates the ideal class
group of K. For each prime q € S, fix an element oy € O \ {0} satisfying "% = a,O.
For a prime number ¢, put

FR(q) :={BE(C|Bz—i-aﬁ—l—q:OforsomeintegeraEZwith lal §2\/§}.

For q € S, put N(q) = #(Ok/q). Then N(q) is a prime number. For a finite Galois
extension K of Q, define the sets (cf. [3], [4])
Mi(K) =

(9,60, 8q) |9 €S, €y = Z a0 with a,, € {0,4,6,8,12}, 8, € FR(N(q))
oE€Gal(K/Q)

(where g, is an element of the group ring Z[Gal(K/Q)]),
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My(K) i= { Normp(s, ) ja(ai? — B2 € Z | (a,2h, By) € M5 (K) }\ {0},
NY(K) := {1 : prime number | [ divides some integer m € M, (K) },
T(K) :={l': prime number | I’ is divisible by some prime q' € S } U {2, 3},

N(K) :=Ny(K)UT(K)URam(K).
Note that all the sets, FR(q), M} (K), ML(K), NJ(K), T(K), and N{(K), are finite.

Theorem 2.2 ([3, Theorem 6.5]).
Let K be a finite Galois extension of Q which does not contain the Hilbert class
field of any imaginary quadratic field. Assume that there is a prime number q which

splits completely in K and satisfies B ®g Q(v/—q) # Ma2(Q(v/—q)). Let p > 4q be a
prime number which also satisfies ptd and p € N{(k). Then the representation

Py kp - Gr — GLa(Fp)

is wrreducible for any QM-abelian surface (A,i) by O over K.

§3. Points on Shimura curves

Let MP be the coarse moduli scheme over Q, parameterizing isomorphism classes
of QM-abelian surfaces by @. Then M?® is a proper smooth curve over Q, called a
Shimura curve. The notation M P is permissible, although we should write M© instead
of MB because, even if we replace O by another maximal order ¢, we have a natural
isomorphism M© = M O since @ and O’ are conjugate in B. We discuss points on
M?PB . and the consequences of this section will be used to provide examples of Theorem
1.5 (see Proposition 4.1 in §4). For real points on M, we know the following.

Theorem 3.1 ([17, Theorem 0, p.136]).
We have MB(R) = .

The genus of the Shimura curve M5 is 0 if and only if d € {6,10,22} ([1, Lemma
3.1, p.168]). The defining equations of such curves are

d=6 : 2®4+y*+3=0,
(3.1) d=10 : 22 +y?>+2=0,
d=22 : 22 +9y°+11=0
(see [9, Theorem 1-1, p.279]). In these cases, for a field k of characteristic 0, the condition

MB (k) # 0 implies that the base change M? ®q k is isomorphic to the projective line
P}, and so $M B (k) = oc.
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Theorem 3.2 ([8, Theorem (1.1), p.93]).
Let k be a field of characteristic 0. A point of MP(k) can be represented by a
QM-abelian surface by O over k if and only if B ®g k = Ma(k).

Remark.

For a field k of characteristic 0, note that if M B (k) = oo and B ®g k = My(k),
then there are infinitely many k-isomorphism classes of QM-abelian surfaces (4,i) by
O over k.

Next we quote a recent result concerning algebraic points on Shimura curves of
To(p)-type, which is related to Theorem 2.2 (but there is no implication from or to
that theorem). For a prime number p not dividing d, let M (p) be the coarse moduli
scheme over Q parameterizing isomorphism classes of triples (A,4, V) where (A4,17) is a
QM-abelian surface by O and V is a left O-submodule of A[p] with F,-dimension 2.
Then MB(p) is a proper smooth curve over Q, which we call a Shimura curve of T'g(p)-
type. We have a natural map MB(p) — MPB over Q defined by (A,i,V) — (A,i).
So, Theorem 3.1 implies MZ (p)(R) = @ for any p. For a finite Galois extension K of Q,
define the finite sets
Ml(K ) =

(4.20,8) |4 €S, eo= > a,0 with a, € {0,8,12,16,24}, B, € FR(N(q))
ceGal(K/Q)

(where €g is an element of the group ring Z[Gal(K/Q)]),

My(K) = { Norm (g, )/q(es® — Be4"<) € Z | (9,20, 8q) € M1(K) }\ {0},

No(K) := {1 : prime number | [ divides some integer m € My(K) },

and

Nl(K) = No(K) UT(K) U Ram(K)

The following theorem is proved by a method similar to the proof of Theorem 2.2 (cf.

[11]).

Theorem 3.3 ([3, Theorem 1.4]).

Let K be a finite Galois extension of Q which does not contain the Hilbert class
field of any imaginary quadratic field. Assume that there is a prime number q which
splits completely in K and satisfies B ®g Q(v/—q) Z M2(Q(v/—q)). Let p > 4q be a
prime number which also satisfies p # 13, p{d and p € N1(K) UN](K).

(1) If B®g K = My(K), then ME(p)(K) = 0.

(2) If B®g K % My(K), then ME (p)(K) C {elliptic points of order 2 or 3}.

Here an elliptic point of order 2 (resp. 3) is a point whose corresponding triple
(A,3,V) (over K) satisfies Autp (A, V) = Z/4AZ (resp. Z/6Z), where Autp(A,V) is the
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group of automorphisms of A defined over K commuting with the action of O and
stabilizing V.

§4. Examples

We give several explicit examples of Theorem 1.5 in the following proposition.

Proposition 4.1.

Let d € {6,10,22} and K € {Q(v3,v=5),Q((s), Q(Cr)}.  Assume (d, K) #
(22,Q(¢s5)). Then there are infinitely many K -isomorphism classes of QM-abelian sur-
faces (A,i) by O over K, and the set o (K,2)p is finite.

To prove Proposition 4.1, we need the following four lemmas.

Lemma 4.2.

Let K be Q(v/3,v/—=5) (resp. Q((s), resp. Q(Ci7)). Then a prime number q splits
completely in K if and only if ¢ = 1,23,47,49 mod 60 (resp. ¢ = 1 mod 5, resp. ¢ =
1 mod 17).

Proof.

A prime number ¢ splits in Q(v/3) (resp. Q(v/=5)) if and only if ¢ = 41 mod 12
(resp. ¢ = 1,3,7,9 mod 20). Then the assertion for Q(v/3,/—5) follows. The rest of
the assertions are trivial.

(]

Lemma 4.3.
Let d be 6 (resp. 10, resp. 22). For a prime number q, we have B ®g Q(v/—q) #
M2 (Q(v/—q)) if and only if ¢ =2,5,7,11,17,23 mod 24
(resp. ¢ = 1,7,9,11,19,21,23, 29,31, 39 mod 40,
resp. ¢ = 2,7,13,15,17,19, 21, 23,29, 31, 35, 39, 41,43, 47, 51, 57, 61, 63, 65, 71, 73, 79, 83, 85, 87
mod88).

Proof.

For a quadratic field L, we have B ®g L 2 My(L) if and only if there is a prime
divisor of d which splits in L. The prime number 2 (resp. 3, resp. 5, resp. 11) splits in
Q(y/—q) if and only if ¢ = —1 mod 8 (resp. ¢ = —1 mod 3, resp. ¢ = +1 mod 5, resp.
q=2,6,7,810mod 11). Then we have done.

O

Lemma 4.4.

Let d € {6,10,22} and K € {Q(V3,V=5),Q((),Q(¢i7)}. Assume (d,K) #
(22,Q(¢5)). Then tMB(K) = .
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Proof.

It suffices to show MB(K) # 0. Looking at (3.1), it is enough to show MB(K,) # )
for any place v of K, owing to the Hasse principle. If v is infinite, it is trivial since
K, = C. For d = 6 (resp. d = 10, resp. d = 22) and a prime number p, we have
MB(Q,) = 0 if and only if p = 3 (resp. p = 2, resp. p = 11). (To show MB(Q,) # 0,
if p # 2, consider the equations in (3.1) modulo p and use Hensel’s lemma; if p = 2,
find explicit solutions of the equations (v/—=7)% + 22 +3 = 0 with /-7 € Qy and
(vV=15)? + 22 + 11 = 0 with /=15 € Qq. To show MB(Q,) = 0, we use the fact that
the equation z? + y? 4+ p = 0 has a solution in Q, if and only if p = 1 mod 4.) For any
quadratic extension L of Q,, we have MB (L) # (). So, for d = 6 (resp. d = 10, resp.
d = 22), it suffices to show that K, contains a quadratic extension of Qs (resp. Qa,
resp. Qq1) for any place v of K above 3 (resp. 2, resp. 11).

For a prime number p, let e,(K) (resp. fp(K), resp. ¢gp(K)) be the ramification
index of p in K/Q (resp. the degree of the residual field extension above p in K/Q, resp.
the number of primes of K above p). For

K = Q(v/3,V/75) (resp. Q((s), resp. Q(Gir)), we have

(e3(K), f3(K),g3(K)) = (2,1,2) (resp. (1,4,1), resp. (1,16,1)),

(e2(K), f2(K), g2(K)) = (2,1,2) (resp. (1,4,1), resp. (1,8,2)),

(e11(K), f11(K), g11(K)) = (1,2,2) (resp. (1,1,4), resp. (1,16,1)).

Then K, contains a quadratic extension of Qs (resp. Qq, resp. Q1) for any place v of
K above 3 (resp. 2, resp. 11) unless K = Q((5) and v|11. Note that if K = Q({5) and
v|11, then K, = Q1. For the proof of the next lemma, we add

(es(K), f5(K), g5(K)) = (2,2,1) (resp. (4,1,1), resp. (1,16,1)).

O

Lemma 4.5.

Let d € {6,10,22} and K € {Q(V3,V=5),Q((),Q(¢i7)}. Assume (d,K) #
(22,Q(¢5)). Then B @9 K = Ma(K).

Proof.
It suffices to show B®g K, = My(K,) for any place v of K. It is trivial if v is infinite,
or if v is finite and does not divide d. By the computation in the proof of Lemma 4.4,
no prime divisor of d splits completely in K unless (d, K) = (22,Q((5)). So, if (d, K) #
(22,Q(¢5)), and if v is finite and divides d, then K, contains a quadratic extension of
Qp(v), Where p(v) is the residual characteristic of v. In such a case, B®qg K, = My(K,).
O

(Proof of Proposition 4.1)

The only imaginary quadratic subfields of Q(v/3,/=5) are Q(v/—5) and Q(v/—15),
which are not of class number one. Since the extension Q(v/3,v/—5)/Q(v/=5) (resp.
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Q(v3,v/=5)/Q(v/—15)) is ramified over the primes above 3 (resp. 2), the field Q(v/3, v/—5)
is not the Hilbert class field of Q(v/—5) (resp. Q(v/—15)). The only quadratic subfield

of Q(Cs) (resp. Q(Gir)) is Q(V5) (resp. Q(VTT)). So, none of Q(v/3, v=5), Q(¢s), QCr7)
contains the Hilbert class field of any imaginary quadratic field. By Lemmas 4.2 and 4.3,
there is a prime number ¢ which splits completely in K and satisfies B ®g Q(v/—¢q) #
M2(Q(v/—¢)). Then Lemma 2.1 and Theorem 2.2 imply o7 (K,2)p < co. By the re-
mark in §3, together with Lemmas 4.4 and 4.5, there are infinitely many K-isomorphism
classes of QM-abelian surfaces (A,i) by O over K.
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