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Absence of embedded eigenvalues for the Schrödinger
operator on manifold
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Abstract

We discuss the absence of eigenvalues above some critical energy for the Schrödinger
operator on a manifold with asymptotically Euclidean and/or hyperbolic ends. The critical

energy can be computed only by the geometry of the ends. The main ingredients of proof are the

super‐exponential decay estimates for eigenfunctions and the absence of super‐exponentially
decaying eigenfunctions.

§1. Main result

This article is based on authors� recent work [IS]. Let (M, g) be a non‐compact con‐

nected Riemannian manifold of dimension d\geq 1 . We discuss the absence of eigenvalues
above some constant E_{0} for the Schrödinger operator H on \mathcal{H}=L^{2}(M) :

H=H_{0}+V ; H_{0}=-\displaystyle \frac{1}{2}\triangle=\frac{1}{2}p_{i}^{*}g^{ij}p_{j}, p_{i}=-\mathrm{i}@_{i}.

We impose the four conditions listed below.

We will denote, in local coordinates, for r\in C^{1}(M) and f\in C^{1}(M)

\partial^{r}f=(\partial_{i}r)g^{ij}(\partial_{j}f) ,

and for f\in C^{2}(M)

(\nabla^{2}f)_{ij}=\partial_{i}\partial_{j}f-$\Gamma$_{ij}^{k}\partial_{k}f ; $\Gamma$_{ij}^{k}=\displaystyle \frac{1}{2}g^{kl}(\partial_{i}g_{lj}+\partial_{j}g_{li-}\partial_{l}g_{ij}) .

These differential operators \partial^{r} and \nabla^{2} are the gradient vector field for r and the geo‐

metric Hessian, respectively.
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Condition 1.1. There exist an unbounded real‐valued function r\in C^{4}(M) ,  r(x)\geq
 1

,
constants c_{1}>c_{2}>0 and a decomposition \triangle r^{2}=$\rho$_{1}+$\rho$_{2}+$\rho$_{3} such that:

1. There exists a constant r_{0}\geq 1 such that, as quadratic forms on TM,

(1.1) \displaystyle \nabla^{2}r^{2}\geq(c_{1}+\frac{1}{2}$\rho$_{1})g and $\rho$_{1}\geq 0 for r\geq r_{0}.

Moreover,

(1.2) \displaystyle \lim_{r\rightarrow}\inf_{\infty}(r\partial^{r}|\mathrm{d}r|^{2}+(c_{2}+\frac{1}{2}$\rho$_{1})|\mathrm{d}r|^{2})>0, \displaystyle \lim_{r\rightarrow}\sup_{\infty}|\mathrm{d}r|<\infty.
2. The following bounds hold

(1.3) \displaystyle \lim_{r\rightarrow}\sup_{\infty}|r^{-1}\triangle r^{2}|<\infty,
(1.4) \displaystyle \lim_{r\rightarrow}\sup_{\infty}$\rho$_{1}<\infty, \displaystyle \lim_{r\rightarrow}\sup_{\infty}|\mathrm{d}$\rho$_{2}|<\infty, \displaystyle \lim_{r\rightarrow}\sup_{\infty}\triangle$\rho$_{3}<\infty.

The inequality (1.1) implies the convexity \nabla^{2}r^{2}\geq c_{1}g>0 for r\geq r_{0} and guarantees
the existence of �expanding end� with lower growth rate c_{1}>0 . Due to the equality

(\nabla^{2}r^{2})^{ij}(\partial_{i}r)(\partial_{j}r)=2|\mathrm{d}r|^{4}+2r(\nabla^{2}r)^{ij}(\partial_{i}r)(\partial_{j}r)=2|\mathrm{d}r|^{4} +r@dr
;

(1.2) imposes a further lower bound for the dr \otimes \mathrm{d}r component of \nabla^{2}r^{2} . On the other

hand, combining \triangle=\mathrm{t}\mathrm{r}\nabla^{2} and the positivity of \nabla^{2}r^{2} ,
we can think of (1.3) and (1.4)

as upper bounds for the growth rate.

Condition 1.2. There exists a decomposition V=V_{1}+V_{2}, V_{1}\in L_{1\mathrm{o}\mathrm{c}}^{2}(M) ,  V_{2}\in

 C^{1}(M) ,
such that V_{1} and V_{2} are real‐valued and

(1.5) \displaystyle \lim_{r\rightarrow}\sup_{\infty}|V|<\infty, \lim_{r\rightarrow}\sup_{\infty}r|V_{1}|<\infty, \lim_{r\rightarrow}\sup_{\infty}r\partial^{r}V_{2}<\infty.
Under Condition 1.2 the Schrödinger operator H is dened at least on C_{\mathrm{c}}^{\infty}(M) .

However it is not necessarily essentially self‐adjoint, since (M, g) is allowed to be incom‐

plete and that V is allowed to be unbounded. To fix a self‐adjoint extension we choose

a non‐negative  $\chi$\in C^{\infty}(\mathbb{R}) with

 $\chi$(r)=\left\{\begin{array}{l}
0 \mathrm{f}\mathrm{o}\mathrm{r} r\leq 1,\\
1 \mathrm{f}\mathrm{o}\mathrm{r} r\geq 2,
\end{array}\right.
and then set

$\chi$_{ $\nu$}(r)= $\chi$(r/v) , v\geq 1.

We consider the function $\chi$_{ $\nu$} as being composed with the function r from Condition 1.1.
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Condition 1.3. The operator H dened on C_{\mathrm{c}}^{\infty}(M) has a self‐adjoint extension,
denoted by H again, such that for any  $\psi$\in \mathcal{D}(H) there exists a sequence $\psi$_{n}\in C_{\mathrm{c}}^{\infty}(M)
such that for all large v\geq 1

\Vert$\chi$_{ $\nu$}( $\psi-\psi$_{n})\Vert+\Vert$\chi$_{ $\nu$}(H $\psi$-H$\psi$_{n})\Vert\rightarrow 0 as n\rightarrow\infty.

Finally we impose for this self‐adjoint extension the unique continuation property:

Condition 1.4. If  $\phi$\in \mathcal{D}(H) satises  H $\phi$=E $\phi$ for some  E\in \mathbb{R} ,
and  $\phi$(x)=0 in

some open subset, then  $\phi$(x)=0 in M.

In Section 2 we shall give some criteria for Conditions 1.1−1.4.

Theorem 1.5. Suppose Conditions 1.1−1.4, and dene E_{0}\in \mathbb{R} by

E_{0}=\displaystyle \inf_{c\in(0,c_{1}-c_{2}]}\lim_{r\rightarrow}\sup_{\infty}(V+\frac{| $\beta$|^{2}-c $\gamma$}{2c$\alpha$_{c}}) ,

where

(1.6) $\alpha$_{c}=c_{1}-c+\displaystyle \frac{1}{2}$\rho$_{1},  $\beta$=\frac{1}{4}\mathrm{d}$\rho$_{2}+V_{1}\mathrm{d}r^{2},  $\gamma$=-\frac{1}{4}\triangle$\rho$_{3}+(\triangle r^{2})V_{1}-2r\partial^{r}V_{2}.

Then the eigenvalues of H are absent above E_{0} , i.e., $\sigma$_{\mathrm{p}\mathrm{p}}(H)\cap(E_{0}, \infty)=\emptyset.

The proof of Theorem 1.5, the detail of which we omit in this article, follows the

scheme of [ \mathrm{F}\mathrm{H}\mathrm{H}2\mathrm{O}, \mathrm{F}\mathrm{H}
, DG, MS]. The proof employs, in particular, a Mourre‐type

commutator estimate with respect to the \backslash 

conjugate operator�

A=\displaystyle \mathrm{i}[H_{0}, r^{2}]=\frac{1}{2}\{(\partial_{i}r^{2})g^{ij}p_{j}+p_{i}^{*}g^{ij}(\partial_{j}r^{2})\}=rp^{r}+(p^{r})^{*}r ; p^{r}=-\mathrm{i}\partial^{r},

where the function r is that of Condition 1.1. Here we only note that the quantities in

(1.6) indeed appear in the Mourre‐type commutator computation:

Lemma 1.6. As a quadratic form on C_{\mathrm{c}}^{\infty}(M) ,

\mathrm{i}[H, A]=p_{i}^{*}(\nabla^{2}r^{2}-$\alpha$_{c}g)^{ij}p_{j}+2{\rm Re}($\alpha$_{c}H_{0})-2{\rm Im}($\beta$^{i}p_{i})+ $\gamma$,

where $\alpha$_{c},  $\beta$,  $\gamma$ are dened in (1.6).

Besides Theorem 1.5 itself, we also generalize [VW], see Section 3.

§2. Examples satisfying Conditions 1.1−1.4

§2.1. Global conditions

The following criterion regarding the essential self‐adjointness for  H is well‐known:
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Proposition 2.1. Let (M, g) be a complete Riemannian manifold of dimension

d\geq 1 . Then the free Schrödinger operator H_{0} is essentially self‐adjoint on C_{\mathrm{c}}^{\infty}(M) .

Suppose V is real‐valued, measurable, bounded outside a compact set and in addition:

V\in L_{1\mathrm{o}\mathrm{c}}^{2}(M) for d=1
, 2, 3, V\in L_{1\mathrm{o}\mathrm{c}}^{p}(M) for some p>2 if d=4 while V\in L_{1\mathrm{o}\mathrm{c}}^{d/2}(M)

for d\geq 5 . Then V is innitesimally relatively small. In particular H is essentially

self‐adjoint on C_{\mathrm{c}}^{\infty}(M) .

As for the unique continuation property, there is an extensive literature, and we

only refer to [Wo] and references therein, quoting here the following sufficient conditions

supplementing connectivity and the conditions in Proposition 2.1: 1) d=2
, 3, 4 and V

is globally bounded, or 2) d\geq 5 . One could, of course, add 3) d=1.

§2.2. Conditions inside an end

We consider a connected and complete (M, g) of dimension d\geq 2 and take V=0

for simplicity. We shall investigate the meaning of Condition 1.1 in the case where,

(M, g) has the following explicit end structure of warped‐product type: There exists an

open subset E\subset M such that the closure \overline{E} is isometric to [0, \infty ) \times S endowed with a

metric of the form

g=\mathrm{d}r\otimes \mathrm{d}r+f(r)h() \mathrm{d}$\sigma$^{ $\alpha$}\otimes \mathrm{d}$\sigma$^{ $\beta$}, (r,  $\sigma$)\in[0, \infty)\times S,  $\alpha$,  $\beta$=2 ,
. .

:; d,

where S is \mathrm{a}(d-1) ‐dimensional manifold. Then r is a distance function from \{0\}\times S
and smoothly dened in E . In particular we have |\mathrm{d}r|=1 which obviously implies (1.2)
for any c_{2}>0 . Notice here that Condition 1.1 involves only the part of the function

r at large values, so in agreement with Condition 1.1 we can cut and extend it to a

smooth function on M obeying r\geq 1 . This is tacitly understood below. To examine

the remaining statements (1.1), (1.3) and (1.4) of Condition 1.1 we compute

\nabla^{2}r^{2}=2\mathrm{d}r\otimes \mathrm{d}r+rf'(r)h() \mathrm{d}$\sigma$^{ $\alpha$}\otimes \mathrm{d}$\sigma$^{ $\beta$}, \triangle r^{2}=g^{ij}(\nabla^{2}r^{2})_{ij}=2+rf'(r) .

Then we have

Examples 2.2.

1. Let f=r^{2a} with a>0 . Then (1.1), (1.3) and (1.4) hold with c_{1}=\displaystyle \min\{2, 2a\} and

$\rho$_{1}=0, $\rho$_{2}=2+2a(d-1) , $\rho$_{3}=0 ,
and E_{0}=0.

2. Let f=\exp(2 $\kappa$ r^{q}) with  $\kappa$>0 and q\in(0,1) . Then (1.1), (1.3) and (1.4) hold with

c_{1}=2 and $\rho$_{1}=0, $\rho$_{2}=2+2 $\kappa$ q(d-1)r^{q}, $\rho$_{3}=0 ,
and E_{0}=0.

3. Let f=\exp(2\mathrm{r}) with  $\kappa$>0 . Then (1.1), (1.3) and (1.4) hold with c_{1}=2 and

$\rho$_{1}=0, $\rho$_{2}=2+2 $\kappa$(d-1)r, $\rho$_{3}=0 ,
and E_{0}=$\kappa$^{2}(d-1)^{2}/8.
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For all of these examples it is easy to compute that the essential spectrum $\sigma$_{\mathrm{e}\mathrm{s}\mathrm{s}}(H_{0})\supseteq
[E_{0}, \infty) . If in addition M\backslash E and S are compact then we have $\sigma$_{\mathrm{e}\mathrm{s}\mathrm{s}}(H_{0})=[E_{0}, \infty ).
Whence indeed the absence of eigenvalues in (E_{0}, \infty) as stated in Theorem 1.5 is optimal
under these additional conditions for the above examples.

The bounds in Condition 1.1 can be viewed as those for the principal curvatures of

angular manifolds S_{r}=\{r\}\times S ,
and we can obtain corollaries for Theorem 1.5 in terms

of these geometric quantities, recovering and extending various results of [K1, K2]. We

refer to [IS] for the detail.

§3. Absence of super‐exponentially decaying eigenfunctions

The proof of Theorem 1.5 is done combining the following two propositions, \mathrm{a}

priori super‐exponential decay estimates for eigenfunctions and the absence of super‐

exponentially decaying eigenfunctions:

Proposition 3.1. Suppose Conditions 1.1−1.3. If  $\phi$\in \mathcal{D}(H) satises  H $\phi$=E $\phi$ for

some  E>E_{0} ,
then \mathrm{e}^{ $\sigma$ r} $\phi$\in \mathcal{H} for any  $\sigma$\geq 0.

Proposition 3.2. Suppose Conditions 1.1−1.4. If  $\phi$\in \mathcal{D}(H) satises  H $\phi$=E $\phi$ for

some  E\in \mathbb{R} and \mathrm{e}^{ $\sigma$ r} $\phi$\in \mathcal{H} for any  $\sigma$\geq 0 ,
then  $\phi$(x)=0 in M.

We do not prove these propositions in this article, but here we note that we can

actually prove a little generalized version of Proposition 3.2. This generalized version

recovers the result of [VW]. Let us replace Conditions 1.1 and 1.2 by the following ones

stated in terms of a parameter  $\tau$\leq 1 :

Condition 3.3. There exist an unbounded real‐valued function r\in C^{4}(M) ,  r(x)\geq
 1

,
constants c_{1}>c_{2}>0 and a decomposition \triangle r^{2}=$\rho$_{1}+$\rho$_{2}+$\rho$_{3} such that:

1. There exist constants r_{0}\geq 1 and C>0 such that

(3.1) \displaystyle \nabla^{2}r^{2}\geq(c_{1}r^{ $\tau$}+\frac{1}{2}$\rho$_{1})g-Cr^{ $\tau$}\mathrm{d}r\otimes \mathrm{d}r and $\rho$_{1}\geq 0 for r\geq r_{0}.

Moreover,

(3.2) \displaystyle \lim_{r\rightarrow}\inf_{\infty}r^{- $\tau$}(r\partial^{r}|\mathrm{d}r|^{2}+(c_{2}r^{ $\tau$}+\frac{1}{2}$\rho$_{1})|\mathrm{d}r|^{2})>0, \displaystyle \lim_{r\rightarrow}\sup_{\infty}|\mathrm{d}r|<\infty.
2. The following bounds hold

(3.3) \displaystyle \lim_{r\rightarrow}\sup_{\infty}|r^{-1}\triangle r^{2}|<\infty,
(3.4) \displaystyle \lim_{r\rightarrow}\sup_{\infty}r^{- $\tau$}$\rho$_{1}<\infty, \displaystyle \lim_{r\rightarrow}\sup_{\infty}r^{- $\tau$}|\mathrm{d}$\rho$_{2}|<\infty, \displaystyle \lim_{r\rightarrow}\sup_{\infty}r^{- $\tau$}\triangle$\rho$_{3}<\infty.
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Condition 3.4. There exists a decomposition V=V_{1}+V_{2}, V_{1}\in L_{1\mathrm{o}\mathrm{c}}^{2}(M) ,  V_{2}\in

 C^{1}(M) such that V_{1} and V_{2} are real‐valued and

(3.5) \displaystyle \lim_{r\rightarrow}\sup_{\infty}|V|<\infty, \lim_{r\rightarrow}\sup_{\infty}r^{1- $\tau$}|V_{1}|<\infty, \lim_{r\rightarrow}\sup_{\infty}r^{1- $\tau$}\partial^{r}V_{2}<\infty.
The case  $\tau$=0 corresponds to Conditions 1.1 and 1.2 although even in this case

(3.1) is weaker than (1.1) since now possibly some negativity of \nabla^{2}r^{2} along the dr \otimes \mathrm{d}r

component occurs. The weakening of these conditions will be compensated by the as‐

sumption of super‐exponential decay for the considered eigenfunction. Another remark

here is that the negative case,  $\tau$<0 ,
is also allowed. With Examples 2.2 in mind,

this means that an end of very slow expansion, which is so slow that the end might be

asymptotic to a straight cylinder, could be treated. In the other extreme case  $\tau$=1 the

bounds (3.4) and (3.5) are relaxing (1.4) and (1.5), respectively.
Under these conditions we prove

Proposition 3.5. Suppose Conditions 3.3 and 3.4 for some  $\tau$\leq 1 . Suppose Con‐

ditions 1.3 and 1.4. If  $\phi$\in \mathcal{D}(H) satises  H $\phi$=E $\phi$ for some  E\in \mathbb{R} and \mathrm{e}^{ $\sigma$ r} $\phi$\in \mathcal{H} for

any  $\sigma$\geq 0 ,
then  $\phi$(x)=0 in M.

Proposition 3.5 generalizes [VW] when  $\tau$=1 while Proposition 3.2 does not. This

is because a manifold of bounded geometry and pinched negative curvature is always
endowed with an end with a metric of the form

g=\mathrm{d}r\otimes \mathrm{d}r+g_{ $\alpha \beta$}(r,  $\sigma$)\mathrm{d}$\sigma$^{ $\alpha$}\otimes \mathrm{d}$\sigma$^{ $\beta$},

uniformly and strictly positive \nabla^{2}r_{|S_{r}} and bounded derivatives of \triangle r for r large. Then

the verication of Condition 3.3 is straightforward. For these geometric terminologies
we refer to [VW] and references therein.
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