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A periodic Schrodinger operator with two degenerate
spectral gaps

By

HIROAKI NIIKUNI *

Abstract

In this paper, we consider the one-dimensional Schrédinger operators with periodic gener-
alized point interactions. Let us suppose that there are 4 point interactions in the basic period
cell [0,27). Moreover, we assume that each point interaction is given by a rotation. Under
these assumption, we investigate the coexistence problem. Especially, we construct a periodic
Schroédinger operators with exactly two degenerate spectral gaps.

§1. Introduction and main result

In this article, we consider the spectrum of the one-dimensional Schrodinger oper-
ators with periodic point interactions. By the Floquet—Bloch theory, the spectrum of
the Schrodinger operators with periodic potentials has the band structure. Namely, its
spectrum consists of infinitely many closed intervals. Two consecutive closed intervals
are separated by an open interval, which is called the spectral gap. Each spectral gap
can be the empty set. In [9], we constructed an example of the periodic Schrédinger
operators with exactly two degenerate specrtal gaps. In this article, we survey the
results.

To describe the main results, we introduce notations. For an open set I C R, we
introduce the Sobolev space

H(I) = {y(z) € L*(D)| y'(2),y"(x) € L*(])}.

Let 0 < K1 < K2 < K3 < K4 = 27 be a partition of the interval (0,27). We
put I' = I’y UTo UT3 UTy, where I'; = {k;} + 27Z for j = 1,2,3,4. We de-
note by SL(2,R) the special linear group, and by E the 2 x 2 unit matrix. For
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01,02,03,04 € R and Ay, Ay, A3, Ay € SL(2,R) \ {E,—E}, we define the operator
H = H(01,02,03,04,A1,A2,A3,A4) in LQ(R) as follows:

(Hy)(z) = —y"(z), xeR\T,

y(l' + O) — eij~ y(a: - 0)
Dom(H) =<{y € H*>(R\T) y'(x +0) "\ y(z—0)
for z€Ty, j7=1,2,3,4

This is called the generalized Kronig—Penney Hamiltonian by Hughes [3]. The Schrodinger
operators with periodic point-interactions play an important role in the solid state
physics. The theory of the point interactions is summarized in [1, 2]. The basic spec-
tral properties of H have been studied in our previous work [6, Proposition 1.1]. Let us
quote the results. The self-adjointness of the operator H is shown in a similar way to [5,
Proposition 2.1]. Since the potential of H is periodic, H has an expression of the direct
integral decomposition (see [10, Section XIII-16]). Namely, H is unitary equivalent to
0% ®H,dp, where
(Huy)(z) = —y"(z), x€R\T,

( y € W2((0,2m) \ {K1, ka2, K3}),

Dom(H,) = {y € H, (y(x+0)>:eiejAj<y(x—0)> :

\

y'(z+0) y'(z—0)
for ze€Tly, j=1,23,4

in the Hilbert space

H,={ue L} (R) u(z+27n)=c"u(z) for almost every = € R}

loc

equipped with the inner product

27 -
(u,v)9, = / u(x)v(x)de, u,v € Hy,
0

for ;1 € R. Since the set o(H (01,62, 03,04, A1, A, A3, Ay)) is independent of {6; }?zl, we
may assume that #; = 6, = 3 = 64 = 0 without any loss of generality. We abbreviate
H(0,0,0,0,A;, Ay, Az, As) to H(A1, Az, A3, As). We denote by A;() the jth eigenvalue
counted with multiplicity for j € N. Then, A;(-) is continuous on [0, 27] and strictly
monotone function on [0, 7] for each j € N. Every eigenvalue A;(u) is simple if p & 7Z.
The spectrum of H(Aj, As, Az, Ay) is given by these eigenvalues as follows:

o(H (A1, Az, Az, Ay)) = U )‘j([077r]) = U U {)‘j(u)}'

J=1 pel0,n)
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For j € N, the closed interval B; defined by B; = \;([0, 7]) is called the jth band of the
spectrum of H. We put B; = [Ayj_2,A2j_1] for j € N. Then, two consecutive bands
Bj and Bj; are separated by an open interval G; = (Ag;_1,A2;). This is called the
jth spectral gap of H. If a spectral gap is degenerate, i.e., there exists some j7 € N
satisfying G; = 0, then the corresponding segments B; and Bjy; merge. This implies
that all solutions to the equations

(1.1) —y"(x,\) = Ay(z,\), xe€R\T,
y(x+0,A)\ [ yl@—0,A) . L
(1.2) (y’(x—lro,)\)) = A (y,(x_O,A)>, eT;, j=1,2,34

are 2m-periodic or 2m-antiperiodic for A = Ag;(= A2;_1). In this case, one says that the
periodic solutions to (1.1) and (1.2) coexist (see [4]). The purpose of this work is to
determine whether the jth spectral gap is degenerate or not for a given 57 € N. This
problem is called the coexistence problem.

8§2. Main results

We denote by SO(2) the 2-dimensional rotation group. In [9], we solved the co-
existence problem in the case where Ay, As, A3, Ay € SO(2) \ {E,—FE}. Under this
assumption, we write the conponents of A; as

A; = ( i bi) .
—b; a;

Furthermore, we suppose consider the following statements (I), (II), (III), (IV), and
(V).
) A A3AA =E.

) (A, Ag) # (A3, Ag), (A3, —Aa),  (—43,A4),  (—A3,—A4).
(IIl) k1 =k € (0,7/2)U(7/2,7), ke =T, K3 =T + K.

) aibs +asby = 0.

) (araz — b1by) sinh k cosh(m — k) + (asaq + b1b2) cosh k sinh(w — k) = 0.
Then, we have the following theorems.

Theorem 2.1.  We suppose that (I), (II), (III), (IV), (V), and /7 ¢ Q. Then,
the periodic solutions to (1.1) and (1.2) coexist if and only if A = +1. Especially, if
(A1As, Ay Ay) = £(E, E), then the second and fourth spectral gaps are degenerate and
the jth gap is non-degenerate for j # 2,4.
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Theorem 2.2.  We assume that (I),(II),(III), (IV), (V), k/27 = q/p(# 1/4), (p,q) €
N2, and ged(p, q) = 1. Then, we have the following statements (A), (B), (C) and (D).

(A) Suppose that (A;A4s, AsAy) # £(E, FE). Then the periodic solutions to (1.1) and
(1.2) coexist if and only if A € {1} U {—1} U {p?j?| j € N}

(B) Suppose that (A1 A3, AsAy) = £(E, E), a1bs +asby # 0 and a1by + agbs # 0. Then,

we have

Gj=0 ifandonlyif je{2}U{4}uU{2pj+2| jeN}L

(C) Assume that (A;As, AsAy) = £(E, E) and a1bs + asb; = 0. Then, we have

Gj=0 ifandonlyif je{2tU{4}uU{pj+2| jeN}.

(D) Assume that (A3 As, AsAy) = +(E, E), a1by + azby # 0 and a1by + a4bs = 0.

e If p =2p’ and p’ # 0(mod 2), then we have

p

2+2| j €N}

Gj=0 ifandonlyif je{2}u{4}u{2pj+2| jeN}U{pj—

e Otherwise, the second and fourth gaps are degenerate.

§3. Outline of the proof of main results

In this section, we see the outline of the proof of Theorem 2.1 and 2.2. First, let us
explain the method to calculate the degenerate points of the degenerate spectral gaps
of H. Let y1(z,A\) and y2(x, A) be the solutions to (1.1) and (1.2) subject to the initial
conditions

y1(+0,\) =1, ¥ (+0,A) =0

and
Y2(+0,A) =0, y5(4+0,A) =1,

respectively. The set of all degenerate points B = U2, B; N Bj is characterized by

the monodromy matrix

_ m11(>‘) m12(>‘) I (27T +0, )‘) Y2 (27‘- +0, )‘)

In fact, since all solutions to (1.1) and (1.2) for A € B are 2w-periodic or 2m-antiperiodic,

we have
B={AeR|] MAN)=FE or M\ =-FE}.
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We notice that every component of this matrix can be obtained explicitly. K. Yoshitomi
[11] utilized this relationship in order to solve the coexistence peroblem for the one-
dimensional Schrodinger operators with two periodic 6 and §’-interactions in the basic
period cell [0,27). He reduced the problem to a system of algebraic equations

(3.1) y1(27 4+ 0,0) — 45(27 + 0, A) = 52 (27 + 0,A) = ¢/, (27 4 0, ) = 0.

In the case where the number of point interactions in [0,27) is 2 or 3, this idea can
be utilized for various types of point interactions (see [5, 7, 8]). However, not only the
equation (3.1) for H is quite complicated but also it is hard to determine every solution
A € R satisfying (3.1). To overcome this difficulty, we make use of the factrization of
the monodromy matrix. We put 7 = 7 — k. The monodromy matrix can be factrize as
follows:

(3.2) M(X) = AyTy(N)A3T3(N) AT (N) A1 T1(N),
where

v

B =T = (—\/Xsin KV cos kv

cosTVA = sinTVA
B =T = (—\/XSiIlT\/X \/CXOST\/X ) '

cos /-»MX L sin m/X)

Due to this factrization, we reduce the monodromy equations M(\) = E and M(\) =
—F to AT ()\)AlTl ()\) = (A4T4()\)A3T3()\))_1 and AsTs ()\)AlTl ()\) = —(A4T4()\)A3T3()\))_1,
respectively. We put

cos kv cos TV
sin kv cos TVA
_ A
U(/\) - cos kVAsin TV
VX
sin kv X sin TV A
A

We note that there exist 4 x 4 matrices ®1 () and ®_ () such that AsTo(N)A1T1(N) =
(A4Ty(N)A3T3(N)) 71 and AsTo (M) A1 T (N) = —(A4Ty (M) AsTs(N)) ! are equivalent to

O, (ANv(A) =0 and P_(N)v(N) =0,
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respectively. Solving these two equations, we obtain the set B explicitly. The explicit
formula of ®1 () is given by ®1(\) = (¢T(\) ¢ (A) @i () @i()\)), where

ayaz — biby £ (bsby — asay)
—a1by — asby F (asbs + asbs)
asbi + a1bs £ (asbs + asbs)
—b1bo + ayas + (bsby — azay)

azby + asbz F (azby + a1bz) A
+y —(=b1ba + aras F (bzbs — azaa))A
902 ()‘) - 9
aiags — b1b2 + (CL36L4 — b3b4)

—a1by — ashy £ (CL4b3 + a3b4))\

—CL2b1 + CL3b4 + (:|:a4b3 — Cblbg))\

+ blbg + b3b4 — (CL16L2 + CL3CL4)/\
3 (A) = )
ai1a9 + asayg — (blbg + b3b4)/\

—Cblbg + CL4b3 + (:I:a3b4 — Cbgbl))\
blbg/\2 + (:I:CLgCL4 — alag))\ + b3b4
(CLle + a4b3))\2 + (a,lbg + a3b4))\

(—aiba F azbs) X — azby F asbs
:Fb3b4)\2 + (:|:a4a3 — a1a2))\ + b1b2

Next, we give 4 classifications on the equation @, (A)v(\) = 0. There exist some
quadratic polynomials f1(A) and fa(\) such that

|(I)_|_ (/\)| = (/\— 1)2 (CL16L2 —b1b2+b3b4—a3a4)f1 (/\) — (/\— 1)2 (Cblbz +CL2l)1 +a3b4+a4bg)f2(/\),

where | (\)| implies the determinant of the matrix &, (A). On this formula, we give
the following 4 classifications:
(a) aras — biby + bsby — azag =0, aibs + asby + azby + agbsz = 0.
(b) ajas — bybg + b3by — azag #0, a1bs + asby + azby + agbs = 0.
(C) aijag — bybs 4+ b3by — azay = 0, a1bs + asby + azby + aqbs # 0.
(d) a1as — bybg + b3by — azag #0, a1bs 4+ asby + azby + agbs # 0.
In this work, we consider the case (a), which is equivalent to (I).
Define By = {A €e R| M(\) = E} and B_ = {A € R| M(\) = —E}. On the
equation ®4 (AN)v(\) = 0, we obtain the followings.

Lemma 3.1.  Assume that (I), (IT), (III). Then, we have the followings.

{-1}u{1}us if (IV) and (V) is valid,
{1}us otherwise,

where S = {\ € R\ {0} sinxV\ =sinTVA = 0}.
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In order to construct an example of the Schrodinger operators with two degenerate
spectral gap, we assume that (I), (II), (III), (IV) and (V) are valid.
Next, we consider the equation ®_(A)v(A) = 0. Using (I), we have

|(I)_()\)| = 4(61,1()2 + a2b1)(a1a2 — CL3CL4)(CL1b1 — a,3b3)()\ — 1)4,

where |®_(\)| means the determinant of the matrix ®_(\). By simple calculations with
(IV) and x # 7/2, we have a1b; — agbs # 0. On the equation ®_(\)v(A) = 0, we have
the followings.

Lemma 3.2. We have the following statements.
(a) If (a1bs + a2by)(ajas — azay) # 0, we have B_ = 0.
(b) If a1b2 4+ agby = 0, then we have

B_.={\eR| sinTVA=-coskVA =0}

(c) If a1by 4+ a2by # 0 and ajas — azay = 0, then we have the followings.

0 if a1bo + aqbs # 0,

B_ =
{(ANeR| sinkVA=cosTV\=0} ifayby+asbs =0.

01
Next, we prepare two lemma. Put J = ( 0). Using (IV), we have the following
lemma.
Lemma 3.3. We have (b1by + asaq)(aiae — azay) = 0. Furthermore, we have

the followings.
o If ajas —agay = 0, then we have (A1 A3, AsAy) = £(E, E).
e If b1bs + agay = 0, then we have (A1 Ay, AzAz) = +(J, J).
Moreover, the following lemma follows from (IV) and (V).
Lemma 3.4. If (A1 A3, Ay Ay) # (E, E), then we obtain a1bs + asb; # 0.

We notice that (A; Az, AsAy) = £(F, F) implies that ajas — azay = 0. Therefore,
we have the followings by summarizing lemmas 3.1-3.4.

Lemma 3.5. We obtain the following statements (a), (b), (c) and (d).
(a) If(A1A3,A2A4) 7£ :l:(E,E),

B={1}U{-1}U{r e R\ {0} sinskVA =sinTVA = 0}.
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(b) If (AlAg, A2A4) = :l:(E, E), a1b2 + CLle 7£ O, a,lbg + a4b3 7é 0, then

B={1}U{-1}U{r e R\ {0}| sinskVA =sin7vVX = 0}.

(C) If (A1A3,A2A4) = :IZ(E,E), albg + azbl = 0, then
B={1}U{-1}U{X e R\ {0} sinkVX=sin7vVX=0}
U{A e R\ {0} sinkVX = cosTVA = 0}.
(d) If (AlAg, A2A4) = :IZ(E, E), a1bs + azby 75 0, a1bs + agbs = 0, then
B={1}U{-1}U{X e R\ {0} sinkVX=sin7V\ =0}
U{A e R\ {0} sinTVA = cos VA = 0}.

This is why we need classifications in Theorem 2.2. Next, we enhance this lemma.

Lemma 3.6.  We obtain the following statements (a) and (b).
(a) If k/m ¢ Q, then we have the followings.

e (AcR\ {0} sinwvA=sin7vVA=0}=0.
e (MeR\ {0} sinwvVA=cosTvVA=0}=0.
e (NcR\ {0} sinTVA=cosuvVA=0}=0.
(b) If k/27 = q/p, (p,q) € N? and ged(p, q¢) = 1, then we have the followings.
o (AeR\ {0} sinkvVA=sin7vVX=0}={p?j%| jeN}

e {AeR\ {0} SiIllQ\/XZCOST\/X:O}:{% jEN}.

(PO jeN}  if B isoad,

e {AeR\ {0} SinT\/X_COS/i\/X—O}—{

0 otherwise.

Put (p,q) € N? and ged(p, ¢) = 1. Summarizing lemmas 3.5 and 3.6, we obtain the
first statement in Theorem 2.1 and the following lemma.

Lemma 3.7.  Assume that (A;As, A2A4) = £(E,E).
(A) If a1ba 4 aby # 0, a1ba + agbs # 0, we have

{Bu{-13u{p??l jeN} if =1

{{1}u{1} if5¢Q,
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(B) If a1bs + agby; = 0, then we have

J{u{-1 if ¢ Q,
puf-ntu{Er| jen} ifg =g
(C) If a1by + a2by # 0, a1by + agbs = 0, then we have
A {1}U{—1}U{p2j2|jEN}U{M’]EN} if 37 = 1,5 is odd,
{1} U{-1} otherwise.

In order to determine the indices of the degenerate spectral gaps, we make use of
the rotation number for H. In this article, we only prove the followings:

e )\ = —1 corresponds to the 2nd degenerate spetral gap.
e )\ =1 corresponds to the 4th degenerate spectral gap.

We quote the definition and the properties of the rotation number for H from [6].
Let y(z,A) be a non-trivial solution to (1.1) and (1.2). We denote by (r,w) the polar
coordinates of (y',y);

Y (z,\) =r(z,\)cosw(z,\) and y(z,\) =r(z,\)sinw(z,N).

We call w(z, A) the Priifer transform of y(x,A). We put a; = cosj, b; = sin;, where
a; € (—m,0)U (0,7). The function w(x, A) satisfies the following equations:

W2, N\) = cos?w(x, \) + Asin®w(z, ), =€ R\T.
(3.4) w@+0,\) —w(x—-0,\)=q;, 2z€ly, j=1,234.

For wy € R, let w(x, A\,wp) be the solution to (3.3) and (3.4) subject to
w(40, A) = wo.

Definition 3.8.  We define the rotation number for H .

(ke N).

. w(2km 4+ 0, \,wp) — wo
. A) =1
(3:5) PN = lim, ok

Theorem 3.9 ([6]).
(a) The limit (3.5) exists.
(b) The function p(A) does not depend on wy.

(c) The function p(A) is continuous and non-decreasing on R.
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(d) For j € N, we have

)\Qj_g = max {)\ S R‘ p()\) = 'ﬂ} ,

)\Qj_]_ = min {)\ € R| p(/\) = T} ,

where ¢ =% {j € {1,2,3,4}| «a; <0}.

Using this theorem, we prove that A = 1 is the 4th spectral gap. For this purpose,
we assume that (A As, A3Ay) = £(E,E).

w2mk +0,1,wp) —wo = (27 + a1 + @z + ag + ay)k, ke N.

Since
(a1 +as, s + ayg)
(0,0) if (A1As3, A2Ay) = (B, E),
") (7,7, (7). (=), (=, —7)if (A1 A, ApAy) = (—E, —E),
we have

drk if (o + a3, as + ag) = (m,7),
W(27Tk' + 07 ]-7 0) =10 if (051 + az,az + 064) = (_7T7 _7T)7
2wk otherwise.

By the definition of the rotation number, we have

2 if (a1 + a3, as + ay) = (w,m),
p(1) =140 if (1 +az, a0 +ay) = (-7, —m),
1 otherwise.

On the other hand, we have

0 if (aq +as,as +ayq) = (m,7),
(3.6) (=144 if (g +az,as +aq) = (—m, —m),

2  otherwise.

This combined with Theorem 3.9 implies that A = 1 corresponds to 4th spectral gap.
It follows by M(—1) = E that A = —1 corresponds to an even numbered spectral
gap. Namely, it turns out that A = —1 corresponds to the 2nd spectral gap.
In a similar way, we can prove the other part of Theorem 1.2.



[1]

2]
[3]

[4]
[5]

[6]
[7]
(8]
[9]
[10]

[11]

A PERIODIC SCHRODINGER OPERATOR WITH TWO DEGENERATE SPECTRAL GAPS 111

Acknowledgment

The auther thanks the referee for his/her useful comments.

Reference

S. Albeverio, F. Gesztesy, R. Hgegh-Krohn, and H. Holden. Solvable models in quantum
mechanics, 2nd ed., With an appendix by Pavel Exner, AMS Chelsea publishing, Rhode
Island, 2005.

S. Albeverio and P. Kurasov. Singular Perturbations of Differential Operators. London
Mathematical Society Lecture Note Series, vol. 271, Cambridge Univ. Press, 1999.

R. J. Hughes. Generalized Kronig-Penney Hamiltonians, J. Math. Anal. Appl. 222 (1998),
no.1, 151-166.

W. Magnus and S. Winkler. Hill’s Equation, Wiley, 1966.

H. Niikuni. Identification of the absent spectral gaps in a class of generalized Kronig-
Penney Hamiltonians, Tsukuba J. Math. 31 (2007), no.1, 39-65.

H. Niikuni. The rotation number for the generalized Kronig-Penney Hamiltonians, Ann.
Henri Poincaré 8 (2007), 1279-1301.

H. Niikuni. Absent spectral gaps of the generalized Kronig-Penney Hamiltonians, Kyushu
J. Math. 62 (2008), no.1, 89-105.

H. Niikuni. Coexistence Problem for the one-dimensional Schrodinger operators with the
double or triple periodic 8V -interactions, J. Math. Appl. Anal.366 (2010), 283-296.

H. Niikuni, A periodic Schridinger operator with two degenerate spectral gaps, Far East
Journal of Mathematical Science, 71-2 (2012), 205-246.

M. Reed and B. Simon. Methods of modern mathematical physics, IV. Analysis of oper-
ators. Academic Press, New York, 1978.

K. Yoshitomi. Spectral gaps of the one-dimensional Schrédinger operators with periodic
point interactions. Hokkaido Math. J. 35 (2006), no.2, 365-378.



