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Abstract

Let d\geq 1 be an integer and \mathrm{r}= (r0, . . . , r_{d-1})\in \mathbb{R}^{d} . The shift radix system $\tau$_{\mathrm{r}} : \mathbb{Z}^{d}\rightarrow \mathbb{Z}^{d} is defined

by

$\tau$_{\mathrm{r}}(\mathrm{z})=(z_{1}, \ldots, z_{d-1}, -\lfloor \mathrm{r}\mathrm{z}\rfloor)^{t} (\mathrm{z}=(z_{0}, \ldots, z_{d-1})^{t}) .

$\tau$_{\mathrm{r}} has the finiteness property if each \mathrm{z}\in \mathbb{Z}^{d} is eventually mapped to 0 under iterations of $\tau$_{\mathrm{r}} . In the

present survey we summarize results on these nearly linear mappings. We discuss how these mappings
are related to well‐known numeration systems, to rotations with round‐offs, and to a conjecture on

periodic expansions w.r. \mathrm{t} . Salem numbers. Moreover, we review the behavior of the orbits of points
under iterations of $\tau$_{\mathrm{r}} with special emphasis on ultimately periodic orbits and on the finiteness property.
We also describe a geometric theory related to shift radix systems.
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§1. Introduction

Shift Radix Systems and their relation to beta‐numeration seem to have appeared first in

Hollander�s PhD thesis [38] from 1996. Already in 1994 Vivaldi [79] studied similar mappings in

order to investigate rotations with round‐off errors. In 2005 Akiyama et al. [4] introduced the

notion of shift radix system formally and elaborated the connection of these simple dynamical

systems to several well‐known notions of number systems such as beta‐numeration and canonical

number systems. We recall the definition of these objects (here for y \in \mathbb{R} we denote by \lfloory \rfloor the

largest n \in \mathbb{Z} with n \leq y ; moreover, we set \{y\}=y-\lfloor y\rfloor ).

Definition 1.1 (Shift radix system). Let d \in \mathbb{N} and r =(r_{0}, \ldots

,  r_{d-1})\in \mathbb{R}^{d} . Then we

define the shift radix system (SRS by short) to be the following mapping $\tau$_{\mathrm{r}} : \mathbb{Z}^{d}\rightarrow \mathbb{Z}^{d} : For

z =(z_{0}, \ldots

,  z_{d-1})^{t}\in \mathbb{Z}^{d} let

(1.1) $\tau$_{\mathrm{r}}(\mathrm{z})=(z_{1}, \ldots

,  z_{d-1}, -\lfloor \mathrm{r}\mathrm{z}\rfloor)^{t},

where rz =r_{0}z_{0}+\cdots+r_{d-1}z_{d-1}.

If for each \mathrm{z}\in \mathbb{Z}^{d} there is k\in \mathbb{N} such that the k‐fold iterate of the application of $\tau$_{\mathrm{r}} to \mathrm{z}

satisfies $\tau$_{\mathrm{r}}^{k}(\mathrm{z})=0 we say that $\tau$_{\mathrm{r}} has the finiteness property.

It should be noticed that the definition of SRS differs in literature. Our definition agrees

with the one in [21], but the SRS in [4] coincide with our SRS with finiteness property.
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Equivalently to the above definition we might state that $\tau$_{\mathrm{r}}(\mathrm{z})= (zl, . . .

, z_{d-1}, z_{d})^{t} ,
where

z_{d} is the unique integral solution of the linear inequality

(1.2) 0\leq r_{0}z_{0}+\cdots+r_{d-1}z_{d-1}+z_{d}<1.

Thus, the investigation of shift radix systems has natural relations to the study of almost linear

recurrences and linear Diophantine inequalities.
Shift radix systems have many remarkable properties and admit relations to several seem‐

ingly unrelated objects studied independently in the past. In the present paper we will survey

these properties and relations. In particular, we will emphasize on the following topics.

\bullet For an algebraic integer  $\beta$>1 the beta‐transfO rmation T_{ $\beta$} is conjugate to $\tau$_{\mathrm{r}} for a parameter

\mathrm{r} that is defined in terms of  $\beta$ . Therefore, the well‐known beta‐expansions (Rényi [65], Parry

[59]) have a certain finiteness property called property (F) (cf. Frougny and Solomyak [35]) if

and only if the related  $\tau$_{\mathrm{r}} is an SRS with finiteness property. Pisot numbers  $\beta$ are of special

importance in this context.

\bullet The backward division mapping used to define canonical number systems is conjugate to $\tau$_{\mathrm{r}} for

certain parameters \mathrm{r} . For this reason, characterizing all bases of canonical number systems
is a special case of describing all vectors \mathrm{r} giving rise to SRS with finiteness property (cf.
Akiyama et al. [4]).

\bullet The Schur‐Cohn region (see Schur [72]) is the set of all vectors \mathrm{r}= (r0, . . . , r_{d-1})\in \mathbb{R}^{d} that

define a contractive polynomial X^{d}+r_{d-1}X^{d-1}+\cdots+r_{1}X+r_{0} . This region is intimately
related to the set of all parameters \mathrm{r} for which each orbit of $\tau$_{\mathrm{r}} is ultimately periodic.

\bullet Vivaldi [79] started to investigate discretized rotations which are of interest in computer

science because they can be performed in integer arithmetic. A fundamental problem is to

decide whether their orbits are periodic. It turns out that discretized rotations are spe‐

cial cases of shift radix systems and their periodicity properties have close relations to the

conjecture of Bertrand and Schmidt mentioned in the following item.

\bullet Bertrand [23] and Schmidt [71] studied beta‐expansions w.r. \mathrm{t} . a Salem number  $\beta$ . They

conjectured that each element of the number field \mathbb{Q}( $\beta$) admits a periodic beta‐expansion.
As a Salem number has conjugates on the unit circle it can be shown that this conjecture
can be reformulated in terms of the periodicity of the orbits of $\tau$_{\mathrm{r}} ,

where \mathrm{r} is a parameter

whose companion matrix R(\mathrm{r}) (see (1.3)) has non‐real eigenvalues on the unit circle.

\bullet Shift radix systems admit a geometric theory. In particular, it is possible to define so‐called

 SRS tiles (see Berthé et al. [21]). In view of the conjugacies mentioned above these tiles

contain Rauzy fractals [3, 63] as well as self‐affine fundamental domains of canonical number

systems (see Kátai and Kórnyei [43]) as special cases. However, also new tiles with different

(and seemingly new) geometric properties occur in this class. It is conjectured that SRS tiles

always induce tilings of their representation spaces. This contains the Pisot conjecture (see
e.g. Arnoux and Ito [17] or Baker et al. [18]) in the setting of beta‐expansions as a special
case.
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\bullet Akiyama et al. [10] study number systems with rational bases and establish relations of

these number systems to Mahler�s \displaystyle \frac{3}{2} ‐problem (cf. [57]). Also these number systems can be

regarded as special cases of SRS (see Steiner and Thuswaldner [75]) and there seem to be

relations between the \displaystyle \frac{3}{2} ‐problem and the length of SRS tiles associated with $\tau$_{-2/3} . These

tiles also have relations to the Josephus problem (see again [75]).

\bullet In recent years variants of shift radix systems have been studied. Although their definition

is very close to that of $\tau$_{\mathrm{r}} ,
some of them have different properties. For instance, the �tiling

properties� of SRS tiles are not the same in these modified settings.

It is important to recognize that the mapping $\tau$_{\mathrm{r}} is �almost linear� in the sense that it is

the sum of a linear function and a small error term caused by the floor function occurring in

the definition. To make this more precise define the matrix

(1.3) R(\mathrm{r})=(-r_{0}-r_{1}\cdot\cdot.\cdot-r_{d-1}00\cdot\cdot.\cdot..\cdot 0.101..\cdot 0.\cdot\cdot..\cdot\cdot.0) (\mathrm{r}=(r_{0}, \ldots, r_{d-1})\in \mathbb{R}^{d})
and observe that its characteristic polynomial

(1.4) $\chi$_{\mathrm{r}}(X)=X^{d}+r_{d-1}X^{d-1}+\cdots+r_{1}X+r_{0}

is also the characteristic polynomial of the linear recurrence z_{n}+r_{d-1}z_{n-1}+\cdots+r_{0}z_{n-d}=0.

Thus (1.2) implies that

(1.5) $\tau$_{\mathrm{r}}(\mathrm{z})=R(\mathrm{r})\mathrm{z}+\mathrm{v}(\mathrm{z}) ,

where \mathrm{v}(\mathrm{z})=(0, \ldots, 0, \{\mathrm{r}\mathrm{z}\})^{t} (in particular, ||\mathrm{v}(\mathrm{z})||_{\infty}<1 ). Moreover, again using (1.2) one

easily derives that

(1.6) either $\tau$_{\mathrm{r}}(\mathrm{z}_{1}+\mathrm{z}_{2})=$\tau$_{\mathrm{r}}(\mathrm{z}_{1})+$\tau$_{\mathrm{r}}(\mathrm{z}_{2}) or $\tau$_{\mathrm{r}}(\mathrm{z}_{1}+\mathrm{z}_{2})=$\tau$_{\mathrm{r}}(\mathrm{z}_{1})-$\tau$_{\mathrm{r}} (‐z2)

holds for \mathrm{z}_{1}, \mathrm{z}_{2}\in \mathbb{Z}^{d}.
The following sets are of importance in the study of various aspects of SRS.

Definition 1.2 ( \mathcal{D}_{d} and \mathcal{D}_{d}^{(0)} ). For d\in \mathbb{N} set

\mathcal{D}_{d}:=\{\mathrm{r}\in \mathbb{R}^{d} : \forall \mathrm{z}\in \mathbb{Z}^{d}\exists k, l\in \mathbb{N} : $\tau$_{\mathrm{r}}^{k}(\mathrm{z})=$\tau$_{\mathrm{r}}^{k+l}(\mathrm{z})\} and

(1.7)
\mathcal{D}_{d}^{(0)}:=\{\mathrm{r}\in \mathbb{R}^{d} : $\tau$_{\mathrm{r}} is an SRS with finiteness property \}.

Observe that \mathcal{D}_{d} consists of all vectors \mathrm{r} such that the iterates of $\tau$_{\mathrm{r}} end up periodically for

each starting vector \mathrm{z}.

In order to give the reader a first impression of these sets, we present in Figure 1 images
of (approximations of) the sets \mathcal{D}_{2} and \mathcal{D}_{2}^{(0)} . As we will see in Section 6, the set \mathcal{D}_{d}^{(0)} can be
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Figure 1. The large triangle is (up to its boundary) the set \mathcal{D}_{2} . The black set is an approximation
of \mathcal{D}_{2}^{(0)} (see [4, Figure 1]).

constructed starting from \mathcal{D}_{d} by �cutting out� polyhedra. Each of these polyhedra corresponds
to a nontrivial periodic orbit. Using this fact, in Section 6.1 we shall provide algorithms for the

description of \mathcal{D}_{d}^{(0)} . (Compare the more detailed comments on \mathcal{D}_{d} and \mathcal{D}_{d}^{(0)} in Sections 3 and 6,

respectively.)

§2. The relation between shift radix systems and numeration systems

In the present section we discuss relations between SRS and beta‐expansions as well as

canonical number systems (see e.g. [4, 38]). Moreover, we provide a notion of radix expansion
for integer vectors which is defined in terms of SRS.

§2.1. Shift radix systems and beta‐expansions

The notion of beta‐expansion (introduced by Rényi [65] and Parry [59]) is well‐known in

number theory.
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Definition 2.1 (Beta‐expansion). Let  $\beta$>1 be a non‐integral real number and define

the set of �digits� to be \mathcal{A}=\{0, 1, . . . , \lfloor $\beta$\rfloor\} . Then each  $\gamma$\in[0, \infty ) can be represented uniquely

by

(2.1)  $\gamma$=\displaystyle \sum_{i=m}^{\infty}\frac{a_{i}}{$\beta$^{i}}
with m\in \mathbb{Z} and a_{i}\in \mathcal{A} chosen in a way that

(2.2) 0\displaystyle \leq $\gamma$-\sum_{i=m}^{n}\frac{a_{i}}{$\beta$^{i}}<\frac{1}{$\beta$^{n}}
for all n\geq m . Observe that this means that the representation in (2.1) is the greedy expansion
of  $\gamma$ with respect to  $\beta$.

For  $\gamma$\in[0 ,
1 ) we can use the beta‐transfO rm

(2.3) T_{ $\beta$}( $\gamma$)= $\beta \gamma$-\lfloor $\beta \gamma$\rfloor,

to establish this greedy expansion, namely we have

 a_{i}=\lfloor $\beta$ T_{ $\beta$}^{i-1}( $\gamma$)\rfloor

(cf. Renyi [65]). This holds no longer for  $\gamma$=1 ,
where the beta‐transform yields a representation

(whose digit string is often denoted by d(1,  $\beta$) ) different from the greedy algorithm (see [59]).
In the investigation of beta‐expansions two classes of algebraic numbers, Pisot and Salem

numbers play an important role. For convenience, we recall their definitions.

\bullet An algebraic integer  $\alpha$>1 is called a Pisot number if all its algebraic conjugates have

absolute value less than 1.

\bullet An algebraic integer  $\alpha$>1 is called a Salem number if all its algebraic conjugates have

absolute value less than or equal to 1 with at least one of them lying on the unit circle.

Bertrand [23] and Schmidt [71] provided relations between periodic beta‐expansions and

Pisot as well as Salem numbers (see Section 5.2 for details). Frougny and Solomyak [35] inves‐

tigated the problem to characterize base numbers  $\beta$ which give rise to finite beta‐expansions for

large classes of numbers. Denoting the set of positive reals having finite greedy expansion with

respect to  $\beta$ by Fin (  $\beta$ ) ,
we say that  $\beta$>1 has property (F) if

(2.4) Fin ( $\beta$)=\mathbb{Z}[1/ $\beta$]\cap[0, \infty ).

As it is shown in [35] property (F) can hold only for Pisot numbers  $\beta$ ,
on the other hand, not all

Pisot numbers have property (F).
Characterizing all Pisot numbers with property (F) has turned out to be a very difficult prob‐

lem: many partial results have been established, e.g. by Frougny and Solomyak [35] (quadratic
Pisot numbers), or Akiyama [2] (cubic Pisot units). The following theorem is basically due

to Hollander [38] (except for the notion of SRS) and establishes the immediate relation of the

problem in consideration with shift radix systems (recall that \mathcal{D}_{d}^{(0)} is defined in (1.7)).
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Theorem 2.2. Let  $\beta$>1 be an algebraic integer with minimal polynomial

X^{d+1}+b_{d}X^{d}+\cdots+b_{1}X+b_{0}.

Set

(2.5) r_{j}:=-(b_{j}$\beta$^{-1}+b_{j-1}$\beta$^{-2}+\cdots+b_{0}$\beta$^{-j-1}) , 0\leq j\leq d-1.
Then  $\beta$ has property (F) if and only if (r0, . . . , r_{d-1})\in \mathcal{D}_{d}^{(0)}.

Remark 2.3. Observe that r_{0} ,
. . .

, r_{d-1} in (2.5) can also be defined in terms of the identity

X^{d+1}+b_{d}X^{d}+\cdots+b_{1}X+b_{0}=(X- $\beta$)(X^{d}+r_{d-1}X^{d-1}+\cdots+r_{0}) .

It turns out that Theorem 2.2 is an immediate consequence of the following more general
observation (cf. Berthé et al. [21]).

Proposition 2.4. Under the assumptions of Theorem 2.2 and denoting \mathrm{r}=(r_{0}, \ldots, r_{d-1})
we have

(2.6) \{\mathrm{r}$\tau$_{\mathrm{r}}(\mathrm{z})\}=T_{ $\beta$}(\{\mathrm{r}\mathrm{z}\}) for all \mathrm{z}\in \mathbb{Z}^{d}

In particular, the restriction of T_{ $\beta$} to \mathbb{Z}[ $\beta$]\cap[0 , 1) is conjugate to $\tau$_{\mathrm{r}} , i.e., denoting $\Phi$_{\mathrm{r}}:\mathrm{z}\mapsto\{\mathrm{r}\mathrm{z}\}
we have the following commutative diagram.

\mathbb{Z}^{d} \rightarrow^{$\tau$_{\mathrm{r}}} \mathbb{Z}^{d}

$\Phi$_{\mathrm{r}}\downarrow \downarrow$\Phi$_{\mathrm{r}}
\mathbb{Z}[ $\beta$]\cap[0, 1) \rightarrow^{T_{ $\beta$}}\mathbb{Z}[ $\beta$]\cap[0, 1)

Proof. Let the notations be as in Theorem 2.2. Let \mathrm{z}=(z_{0}, \ldots, z_{d-1})^{t}\in \mathbb{Z}^{d}, z_{d}=-\lfloor \mathrm{r}\mathrm{z}\rfloor,
and \mathrm{b}= (b0, . . . , b_{d}) . Then we have, with the (d+1)\times(d+1) companion matrix R(\mathrm{b}) defined

analogously as R(\mathrm{r}) in (1.3) (note that the vector \mathrm{b} has d+1 entries),

\{(r_{0}, \ldots, r_{d-1},1)R(\mathrm{b})(z_{0}, \ldots, z_{d})^{t}\}=\{(-b_{0}, r_{0}-b_{1}, \ldots, r_{d-1}-b_{d})(z_{0}, \ldots, z_{d})^{t}\}

=\{-b_{0}z_{0}+(r_{0}-b_{1})z_{1}+\cdots+(r_{d-1}-b_{d})z_{d}\}

(2.7) =\{r_{0}z_{1}+\cdots+r_{d-1}z_{d}\}

=\{(r_{0}, \ldots, r_{d-1})(z_{1}, \ldots, z_{d})^{t}\}

=\{\mathrm{r}$\tau$_{\mathrm{r}}(\mathrm{z})\}.

In the third identity we used that b_{0} ,
. . .

, b_{d}, z_{0} ,
. . .

, z_{d} are integers. Observing that (r_{0}, \ldots, r_{d-1},1)
is a left eigenvector of the matrix R(\mathrm{b}) with eigenvalue  $\beta$ we conclude that

\{(r_{0}, \ldots, r_{d-1},1)R(\mathrm{b})(z_{0}, \ldots, z_{d})^{t}\}=\{ $\beta$(r_{0}, \ldots, r_{d-1},1)(z_{0}, \ldots, z_{d})^{t}\}

=\{ $\beta$(\mathrm{r}\mathrm{z}+z_{d})\}

(2.8) =\{ $\beta$(\mathrm{r}\mathrm{z}-\lfloor \mathrm{r}\mathrm{z}\rfloor)\}

=\{ $\beta$\{\mathrm{r}\mathrm{z}\}\}

=T_{ $\beta$}(\{\mathrm{r}\mathrm{z}\}) .



8 P. Kirschenhofer and J. M. Thuswaldner

Combining (2.7) and (2.8) yields (2.6).
Since the minimal polynomial of  $\beta$ is irreducible, \{r_{0}, . . . , r_{d-1}, 1\} is a basis of \mathbb{Z}[ $\beta$] . Therefore

the map

$\Phi$_{\mathrm{r}}:\mathrm{z}\mapsto\{\mathrm{r}\mathrm{z}\}

is a bijective map from \mathbb{Z}^{d} to \mathbb{Z}[ $\beta$]\cap[0 , 1). This proves the conjugacy between T_{ $\beta$} on \mathbb{Z}[ $\beta$]\cap[0 , 1)
and $\tau$_{\mathrm{r}}. \square 

Theorem 2.2 is now an easy consequence of this conjugacy:

Proof of Theorem 2.2. Let  $\gamma$\in \mathbb{Z}[1/ $\beta$]\cap[0, \infty ). Then, obviously,  $\gamma \beta$^{k}\in \mathbb{Z}[ $\beta$]\cap[0, \infty ) for

a suitable integer exponent  k
,

and the beta‐expansions of  $\gamma$ and  $\gamma \beta$^{k} have the same digit string.
Thus  $\beta$ admits property (F) if and only if every element of \mathbb{Z}[ $\beta$]\cap[0, \infty ) has finite beta‐expansion.
The greedy condition (2.2) now shows that it even suffices to guarantee finite beta‐expansions
for every element of \mathbb{Z}[ $\beta$]\cap[0 , 1). Thus the conjugacy in Proposition 2.4 implies the result. \square 

Example 2.5 (Golden mean and Tribonacci). First we illustrate the above Proposition 2.4

for  $\beta$ equal to the golden mean  $\varphi$=\displaystyle \frac{1+\sqrt{5}}{2} which is a root of the polynomial X^{2}-X-1=

(X- $\varphi$)(X+r_{0}) with r_{0}=\displaystyle \frac{1}{ $\varphi$}=\frac{-1+\sqrt{5}}{2} . By Proposition 2.4 we therefore get that T_{ $\varphi$} is conju‐

gate to $\tau$_{1/ $\varphi$} . As  $\varphi$ has property (F) (see [35]), we conclude that \displaystyle \frac{1}{ $\varphi$}\in \mathcal{D}_{1}^{(0)} . Let us confirm the

conjugacy for a concrete example. Indeed, starting with 3 we get $\tau$_{1/ $\varphi$}(3)=-\displaystyle \mathrm{L}\frac{3}{ $\varphi$}\rfloor=-1 . The

mapping $\Phi$_{1/ $\varphi$} for these values is easily calculated by $\Phi$_{1/ $\varphi$}(3)= \displaystyle \{\frac{3}{ $\varphi$}\}=\{3 $\varphi$-3\}=3 $\varphi$-4 and

$\Phi$_{1/ $\varphi$}(-1)=- $\varphi$+2 . As T_{ $\varphi$}(3 $\varphi$-4)=\{3$\varphi$^{2}-4 $\varphi$\}=\{- $\varphi$+3\}=- $\varphi$+2 the conjugacy is checked

for this instance.

The root  $\beta$>1 of the polynomial X^{3}-X^{2}-X-1 is often called Tr ibonacci number. In this

case Proposition 2.4 yields that r_{0}=\displaystyle \frac{1}{ $\beta$} and r_{1}=\displaystyle \frac{1}{ $\beta$}+\frac{1}{$\beta$^{2}} . Thus T_{ $\beta$} is conjugate to $\tau$_{(1/ $\beta$,1/ $\beta$+1/$\beta$^{2})}.

Property (F) holds also in this case.

§2.2. Shift radix systems and canonical number systems

It was already observed in 1960 by Knuth [49] and in 1965 Penney [60] that  $\alpha$=-1+\sqrt{-1}
can be used as a base for a number system in the Gaussian integers. Indeed, each non‐zero

 $\gamma$\in \mathbb{Z}[\sqrt{-1}] has a unique representation of the shape  $\gamma$=c_{0}+c_{1} $\alpha$+\cdots+c_{h}$\alpha$^{h} with c_{i}\in\{0 ,
1 \}

(0\leq i<h) , c_{h}=1 and h\in \mathbb{N} . This simple observation has been the starting point for several

generalizations of the classical q‐ary number systems to algebraic number fields, see for instance

[36, 44, 45, 46, 52].
The following more general notion has proved to be useful in this context.

Definition 2.6 (Canonical number system, see Pethó [61]). Let

P(X)=p_{d}X^{d}+p_{d-1}X^{d-1}+\cdots+p_{1}X+p_{0}\in \mathbb{Z}[X], p_{0}\geq 2, p_{d}\neq 0 ;

\mathcal{N}=\{0, 1, . . . , p_{0}-1\},

and \mathcal{R}:=\mathbb{Z}[X]/P(X)[X] and let x be the image of X under the canonical epimorphism from

\mathbb{Z}[X] to \mathcal{R} . If every B\in \mathcal{R}, B\neq 0 ,
can be represented uniquely as

B=b_{0}+b_{1}x+\cdots+b_{\ell}x^{\ell}
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with b_{0} ,
. . .

, b_{\ell}\in \mathcal{N}, b_{\ell}\neq 0 ,
the system (P,\mathcal{N}) is called a canonical number system (CNS for

short); P is called its base or CNS polynomial, \mathcal{N} is called the set of digits.

Using these notions the problem arises, whether it is possible to characterize CNS polyno‐
mials by algebraic conditions on their coefficients and roots. First of all, it is easy to see that a

CNS polynomial has to be expanding (see [61]). Further characterization results could be gained

e.g. by Brunotte [30], who gave a characterization of all quadratic monic CNS polynomials. For

irreducible CNS polynomials of general degree, Kovács [51] proved that a polynomial P given
as in Definition 2.6 is CNS if p_{0}\geq 2 and p_{0}\geq p_{1}\geq\cdots\geq p_{d-1}>0 . In [12, 70] characterization

results under the condition p_{0}>|p_{1}|+\cdots+|p_{d-1}| were shown, [33] treats polynomials with small

p_{0} . A general characterization of CNS polynomials is not known and seems to be hard to obtain.

It has turned out that in fact there is again a close connection to the problem of determining
shift radix systems with finiteness property. The corresponding result due to Akiyama et al. [4]
and Berthé et al. [21] is given in the following theorem (recall the definition of \mathcal{D}_{d}^{(0)} in (1.7)).

Theorem 2.7. Let P(X) :=p_{d}X^{d}+p_{d-1}X^{d-1}+\cdots+p_{1}X+p_{0}\in \mathbb{Z}[X] . Then P is a

CNS‐polynomial if and only if \displaystyle \mathrm{r}:=(\frac{p_{d}}{p_{0}},\frac{p_{d-1}}{p_{0}}, \ldots,\frac{p_{1}}{p_{0}})\in \mathcal{D}_{d}^{(0)}.
By a similar reasoning as in the proof of Theorem 2.2 we will derive the result from a more

general one, this time establishing a conjugacy between $\tau$_{\mathrm{r}} and the restriction of the following
backward division mapping D_{P} : \mathcal{R}\rightarrow \mathcal{R} (with \mathcal{R} :=\mathbb{Z}[X]/P(X)\mathbb{Z}[X] as above) to a well‐suited

finitely generated \mathbb{Z}‐submodule of \mathcal{R} (compare [21]).

Definition 2.8 (Backward division mapping). The backward division mapping D_{P} : \mathcal{R}\rightarrow

\mathcal{R} for B=\displaystyle \sum_{i=0}^{\ell}b_{i}x^{i}, b_{i}\in \mathbb{Z} ,
is defined by

 D_{P}(B)=\displaystyle \sum_{i=0}^{\ell-1}b_{i+1}x^{i}-\sum_{i=0}^{d-1}qp_{i+1^{X^{i}}}, q=\lfloor\frac{b_{0}}{p_{0}}\rfloor .

Observe that  D_{P}(B) does not depend on the representative of the equivalence class of B,
that

(2.9) B=(b_{0}-qp_{0})+xD_{P}(B) ,

and that c_{0}=b_{0}-qp_{0} is the unique element in \mathcal{N} with B-c_{0}\in x\mathcal{R} (compare [4] for the case

of monic P and [68] for the general case). Iterating the application of D_{P} yields

(2.10) B=\displaystyle \sum_{n=0}^{m-1}c_{n}x^{n}+x^{m}D_{P}^{m}(B)
with c_{n}=D_{P}^{n}(B)-xD_{P}^{n+1}(B)\in \mathcal{N} . If we write formally

(2.11) B=\displaystyle \sum_{n=0}^{\infty}c_{n}x^{n}
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then it follows from the reasoning above that this representation is unique in having the property
that

(2.12) B-\displaystyle \sum_{i=0}^{m-1}c_{n}x^{n}\in x^{m}\mathcal{R}, c_{n}\in \mathcal{N} ,
for all m\in \mathbb{N}.

Expansion (2.11) is called the (P,\mathcal{N}) ‐representation of B\in \mathcal{R}.

In order to relate D_{P} to an SRS, it is appropriate to use the so‐called Brunotte module [68].

Definition 2.9 (Brunotte module). The Brunotte basis modulo P=p_{d}X^{d}+p_{d-1}X^{d-1}+
. . . +p_{1}X+p_{0} is the set \{w_{0}, . . . , w_{d-1}\} with

(2.13) w_{0}=p_{d}, w_{1}=p_{d}x+p_{d-1}, w_{2}=p_{d}x^{2}+p_{d-1}x+p_{d-2} ,
. . .

, w_{d-1}=p_{d}x^{d-1}+\cdots+p_{1}.

The Brunotte module $\Lambda$_{P} is the \mathbb{Z}‐submodule of \mathcal{R} generated by the Brunotte basis. We further‐

more denote the representation mapping with respect to the Brunotte basis by

$\Psi$_{P}:$\Lambda$_{P}\displaystyle \rightarrow \mathbb{Z}^{d}, B=\sum_{k=0}^{d-1}z_{k}w_{k}\mapsto(z_{0}, \ldots, z_{d-1})^{t}
We call \mathrm{P} monic, if p_{d}=\pm 1 . Note that in this instance $\Lambda$_{P} is isomorphic to \mathcal{R} , otherwise

\mathcal{R} is not finitely generated.
Now we can formulate the announced conjugancy between backward division and the SRS

transform (compare [21]).

Proposition 2.10. Let P(X)=p_{d}X^{d}+p_{d-1}X^{d-1}+\cdots+p_{1}X+p_{0}\in \mathbb{Z}[X], p_{0}\geq 2,

p_{d}\neq 0, \displaystyle \mathrm{r}=(\frac{p_{d}}{p_{0}}, \ldots,\frac{p_{1}}{p_{0}}) . Then we have

(2.14) D_{P}$\Psi$_{P}^{-1}(\mathrm{z})=$\Psi$_{P}^{-1}$\tau$_{\mathrm{r}}(\mathrm{z}) for all \mathrm{z}\in \mathbb{Z}^{d}

In particular, the restriction of D_{P} to $\Lambda$_{P} is conjugate to $\tau$_{\mathrm{r}} according to the diagram

\mathbb{Z}^{d}\rightarrow^{$\tau$_{\mathrm{r}}}\mathbb{Z}^{d}

$\Psi$_{\mathrm{P}}^{-1}\downarrow \downarrow$\Psi$_{\mathrm{P}}^{-1}
$\Lambda$_{P}\rightarrow^{D_{P}}$\Lambda$_{P}

Proof. It follows immediately from the definitions that on $\Lambda$_{P} we have

(2.15) D_{P}(\displaystyle \sum_{k=0}^{d-1}z_{k}w_{k})=\sum_{k=0}^{d-2}z_{k+1}w_{k}-\lfloor\frac{z_{0}p_{d}+\cdots+z_{d-1}p_{1}}{p_{0}}\rfloor w_{d-1},
which implies (2.14). Since $\Psi$_{P} : $\Lambda$_{P}\rightarrow \mathbb{Z}^{d} is bijective the proof is complete. \square 

For monic P Proposition 2.10 establishes a conjugacy between D_{P} on the full set \mathcal{R} and $\tau$_{\mathrm{r}}.

Proof of Theorem 2. 7.

Observing Proposition 2.10 the theorem follows from the fact, that it is sufficient to establish

the finiteness of the (P,\mathcal{N}) ‐representations of all B\in$\Lambda$_{P} in order to check whether (P,\mathcal{N}) is a

CNS (compare [68]). \square 
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Example 2.11 (The \displaystyle \frac{3}{2} ‐number system). Considering P(X)=-2X+3 and \mathcal{R}=\mathbb{Z}[X]/P(X)[X]
we get \displaystyle \mathcal{R}\cong \mathbb{Z}[\frac{3}{2}]=\mathbb{Z}[\frac{1}{2}] . Thus in this case we can identify the image of X under the natural

epimorphism \mathbb{Z}[X]\rightarrow \mathcal{R} with x=\displaystyle \frac{3}{2} and the backward division mapping yields representations
of the form  B=b_{0}+b_{1}\displaystyle \frac{3}{2}+b_{2}(\frac{3}{2})^{2}+\cdots for  B\displaystyle \in \mathbb{Z}[\frac{1}{2}] . For B\in \mathbb{Z} this was discussed (apart from a

sented a \displaystyle \mathrm{s}B=\frac{1}{2}\sum_{n=0}^{\ell(n)}^{\frac{1}{2})}b_{n}(\frac{3}{2})^{n} with d \mathrm{i}\mathrm{g}\mathrm{i}\mathrm{t}\mathrm{s}
�

b_{n}\in\{0,1,2\}\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{l}anguage o \mathrm{f}\mathrm{p} ossible digitstringsleading
factor under t \mathrm{h}\mathrm{e}\mathrm{n}otation \displaystyle \frac{3}{2} number s ystem\mathrm{i}\mathrm{n}[\mathrm{l}0] Namely,each B \in \mathbb{N}\mathrm{c}\mathrm{a}\mathrm{n}\mathrm{b}\mathrm{e}\mathrm{r}epre

turns out to be very complicated. If we restrict ourselves to the Brunotte module $\Lambda$_{P} (which is

equal to 2\mathrm{Z} in this case) Proposition 2.10 implies that the backward division mapping D_{-2X+3}
is conjugate to the SRS $\tau$_{-2/3} . As -1 doesn�t have a finite (-2X+3, \{0,1,2\}) ‐representation,
we conclude that − \displaystyle \frac{2}{3}\not\in \mathcal{D}_{1}^{(0)}.

We mention that the \displaystyle \frac{3}{2} ‐number system was used in [10] to established irregularities in the

distribution of certain generalizations of Mahler�s \displaystyle \frac{3}{2} ‐problem (cf. [57]).

Example 2.12 (Knuth�s Example). Consider P(X)=X^{2}+2X+2 . As this polynomial
is monic with root  $\alpha$=-1+\sqrt{-1} ,

we obtain \mathcal{R}\cong \mathbb{Z}[\sqrt{-1}]\cong$\Lambda$_{P} . In this case (X^{2}+2X+2, \{0,1\})
is a CNS (see Knuth [49]) that allows to represent each  $\gamma$\in \mathbb{Z}[\sqrt{-1}] in the form  $\gamma$=b_{0}+b_{1} $\alpha$+
. . . +b_{\ell}$\alpha$^{\ell} with digits b_{j}\in\{0 ,

1 \} . According to Proposition 2.10 the backward division mapping

D_{P} is conjugate to the SRS mapping $\tau$_{(\frac{1}{2},1)} . Therefore, (\displaystyle \frac{1}{2},1)\in \mathcal{D}_{2}^{(0)}.

§2.3. Digit expansions based on shift radix systems

In the final part of this section we consider a notion of representation for vectors \mathrm{z}\in \mathbb{Z}^{d}

based on the SRS‐transformation $\tau$_{\mathrm{r}} (compare [21]).

Definition 2.13 (SRS‐representation). Let \mathrm{r}\in \mathbb{R}^{d} . The SRS‐representation of \mathrm{z}\in \mathbb{Z}^{d}

with respect to \mathrm{r} is the sequence (v_{1}, v_{2} , V3, . . where v_{k}=\{\mathrm{r}$\tau$_{\mathrm{r}}^{k-1}(\mathrm{z})\} for all k\geq 1.

Observe that vectors \mathrm{r}\in \mathcal{D}_{d}^{(0)} give rise to finite SRS‐representations, and vectors \mathrm{r}\in \mathcal{D}_{d} to

ultimately periodic SRS‐representations.
Let (v_{1}, v_{2}, v_{3}, \ldots) denote the SRS‐representation of \mathrm{z}\in \mathbb{Z}^{d} with respect to \mathrm{r} . The following

lemma shows that there is a radix expansion of integer vectors where the companion matrix R(\mathrm{r})
acts like a base and the vectors (0, \ldots, 0, v_{j})^{t} act like the digits (see [4, Equation (4.2)]). This

justifies the name shift radix system.

Lemma 2.14. Let \mathrm{r}\in \mathbb{R}^{d} and ( v_{1} , v2, . . .) be the SRS‐representation of \mathrm{z}\in \mathbb{Z}^{d} with

respect to \mathrm{r} . Then we have

(2.16) R(\displaystyle \mathrm{r})^{n}\mathrm{z}=$\tau$_{\mathrm{r}}^{n}(\mathrm{z})-\sum_{k=1}^{n}R(\mathrm{r})^{n-k}(0, \ldots, 0, v_{k})^{t}
Proof. Starting from (1.5) and using induction we immediately get for the n‐th iterate of

$\tau$_{\mathrm{r}} that

(2.17) $\tau$_{\mathrm{r}}^{n}(\displaystyle \mathrm{z})=R(\mathrm{r})^{n}\mathrm{z}+\sum_{k=1}^{n}R(\mathrm{r})^{n-k}\mathrm{v}_{k}
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with vectors \mathrm{v}_{k}=(0, \ldots, 0, \{\mathrm{r}$\tau$_{\mathrm{r}}^{k-1}(\mathrm{z})\})^{t}. \square 

There is a direct relation between the digits of a given beta‐expansion and the digits of the

associated SRS‐representation of \mathrm{z}\in \mathbb{Z}^{d} (cf. [21]; a related result for CNS is contained in [21,
Lemma 5.5]).

Proposition 2.15. Let  $\beta$ and \mathrm{r} be defined as in Theorem 2.2. Let (v_{1}, v_{2}, v_{3}, \ldots) be the

SRS‐representation of \mathrm{z}\in \mathbb{Z}^{d} and {rz} =\displaystyle \sum_{n=1}^{\infty}a_{n}$\beta$^{-n} be the beta‐expansion of v_{1}= {rz}. Then

we have

v_{n}=T_{ $\beta$}^{n-1}(\mathrm{r}\mathrm{z}) and a_{n}= $\beta$ v_{n}-v_{n+1} for all n\geq 1.

Proof. By Definition 2.13 and (2.6), we gain v_{n}=\{\mathrm{r}$\tau$_{\mathrm{r}}^{n-1}(\mathrm{z})\}=T_{ $\beta$}^{n-1} (rz), which yields
the first assertion. Using this equation and the definition of the beta‐expansion, we obtain

a_{n}=\lfloor $\beta$ T_{ $\beta$}^{n-1}(\{\mathrm{r}\mathrm{z}\})\rfloor= $\beta$ T_{ $\beta$}^{n-1}(\{\mathrm{r}\mathrm{z}\})-\{ $\beta$ T_{ $\beta$}^{n-1}(\{\mathrm{r}\mathrm{z}\})\}= $\beta$ v_{n}-T_{ $\beta$}^{n}(\{\mathrm{r}\mathrm{z}\})= $\beta$ v_{n}-v_{n+1}.

\square 

Example 2.16 (Golden mean, continued). Again we deal with  $\beta$= $\varphi$ ,
the golden mean,

and consider the digits of  3 $\varphi$-4=$\Phi$_{1/ $\varphi$}(3) . Using (2.2) one easily computes the beta expansion

3 $\varphi$-4=\displaystyle \frac{1}{ $\beta$}+\frac{1}{$\beta$^{3}} . Using the notation of Proposition 2.15 we have that a_{1}=a_{3}=1 and a_{i}=0

otherwise. On the other hand we have $\tau$_{1/ $\varphi$}(3)=-\displaystyle \mathrm{L}\frac{3}{ $\varphi$}\rfloor=-1, $\tau$_{1/ $\varphi$}(-1)=-\displaystyle \mathrm{L}-\frac{1}{ $\varphi$}\rfloor=1 ,
and

$\tau$_{1/ $\varphi$}(1)=-\displaystyle \mathrm{L}\frac{1}{ $\varphi$}\rfloor=0 . Thus, for the SRS‐representation 3= ( v_{1} , v2, . . .) we get v_{1}= \displaystyle \{\frac{3}{ $\varphi$}\}=
\{3 $\varphi$-3\}=3 $\varphi$-4, v_{2}= \displaystyle \{- \frac{1}{ $\varphi$}\}=\{- $\varphi$+1\}=- $\varphi$+2, V3= \displaystyle \{\frac{1}{ $\varphi$}\}=\{ $\varphi$-1\}= $\varphi$-1 ,

and

v_{i}=0 for i\geq 4 . It is now easy to verify the formulas in Proposition 2.15. For instance,

 $\varphi$ v_{1}-v_{2}= $\varphi$(3 $\varphi$-4)-(- $\varphi$+2)=3$\varphi$^{2}-3 $\varphi$-2=1=a_{1}.

§3. Shift radix systems with periodic orbits: the sets \mathcal{D}_{d} and the Schur‐Cohn

region

§3.1. The sets \mathcal{D}_{d} and their relations to the Schur‐Cohn region

In this section we focus on results on the sets \mathcal{D}_{d} defined in (1.7). To this aim it is helpful
to consider the Schur‐Cohn region (compare [72])

\mathcal{E}_{d}:=\{\mathrm{r}\in \mathbb{R}^{d}: $\rho$(R(\mathrm{r}))<1\}.

Here  $\rho$(A) denotes the spectral radius of the matrix A . The following important relation holds

between the sets \mathcal{E}_{d} and \mathcal{D}_{d} (cf. [4])

Proposition 3.1. For d\in \mathbb{N} we have

\mathcal{E}_{d}\subset \mathcal{D}_{d}\subset\overline{\mathcal{E}_{d}}.
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Proof. We first deal with the proof of the assertion \mathcal{E}_{d}\subset \mathcal{D}_{d} . Let us assume now 0<

 $\rho$(R(\mathrm{r}))<1 (the instance \mathrm{r}=0 is trivial) and choose a number \tilde{ $\rho$}\in( $\rho$(R(\mathrm{r})), 1) . According e.g.

to [53, formula (3.2)] it is possible to construct a norm || ||_{\overline{ $\rho$}} on \mathbb{Z}^{d} with the property that

(3.1) ||R(\mathrm{r})\mathrm{x}||_{\overline{ $\rho$}}\leq\tilde{ $\rho$}||\mathrm{x}||_{\overline{ $\rho$}}.

Using (2.17) it follows that

\displaystyle \Vert$\tau$_{\mathrm{r}}^{n}(\mathrm{z})\Vert_{\overline{ $\rho$}}\leq\tilde{ $\rho$}^{n}\Vert \mathrm{z}\Vert_{\tilde{ $\rho$}}+c\sum_{k=1}^{n}\tilde{ $\rho$}^{n-k}\leq\tilde{ $\rho$}^{n}\Vert \mathrm{z}\Vert_{\overline{ $\rho$}}+\frac{c}{1-\tilde{ $\rho$}},
where c=\displaystyle \sup\{||(0, \ldots, 0,  $\epsilon$)^{t}||_{\overline{ $\rho$}} :  $\epsilon$\in[0, 1)\} is a finite positive constant. Hence, for n large

enough,

(3.2) \displaystyle \Vert$\tau$_{\mathrm{r}}^{n}(\mathrm{z})\Vert_{\overline{ $\rho$}}\leq\frac{c}{1-\tilde{ $\rho$}}+1.
Since the set of all iterates $\tau$_{\mathrm{r}}^{n}(\mathrm{z}) , n\in \mathbb{N} ,

is bounded in \mathbb{Z}^{d} it has to be finite and, hence, the

sequence ($\tau$_{\mathrm{r}}^{n}(\mathrm{z}))_{n\in \mathbb{N}} has to be ultimately periodic. Therefore we have \mathrm{r}\in \mathcal{D}_{d}.

We now switch to the assertion \mathcal{D}_{d}\subset\overline{\mathcal{E}_{d}} . Let us assume $\tau$_{\mathrm{r}}\in \mathcal{D}_{d} and, by contrary, that

there exists an eigenvalue  $\lambda$ of  R(\mathrm{r}) with | $\lambda$|>1 . Let \mathrm{u}^{t} be a left eigenvector of R(\mathrm{r}) belonging
to  $\lambda$ . Multiplying (2.17) by \mathrm{u}^{t} from the left we find that

(3.3) |\displaystyle \mathrm{u}^{t}$\tau$_{\mathrm{r}}^{n}(\mathrm{z})|=|$\lambda$^{n}\mathrm{u}^{t}\mathrm{z}+\sum_{k=1}^{n}$\lambda$^{n-k}\mathrm{u}^{t}\mathrm{v}_{k}|
for any \mathrm{z}\in \mathbb{Z}^{d} . Since ||\mathrm{v}_{k}||_{\infty}<1 there is an absolute constant, say c_{1} ,

such that |\mathrm{u}^{t}\mathrm{v}_{k}|\leq c_{1}
for any k . Choosing \mathrm{z}\in \mathbb{Z}^{d} such that |\displaystyle \mathrm{u}^{t}\mathrm{z}|>\frac{c_{1}+1}{| $\lambda$|-1} it follows from (3.3) that |\mathrm{u}^{t}$\tau$_{\mathrm{r}}^{n}(\mathrm{z})|\geq c_{2}| $\lambda$|^{n}
with some positive constant c_{2} . Therefore the sequence ($\tau$_{\mathrm{r}}^{n}(\mathrm{z}))_{n\in \mathbb{N}} cannot be bounded, which

contradicts the assumption that \mathrm{r}\in \mathcal{D}_{d}. \square 

Using the last proposition and the fact that the spectral radius of a real monic polynomial
is a continuous function in the coefficients of the polynomial it can easily be shown that the

boundary of \mathcal{D}_{d} can be characterized as follows (compare [4] for details).

Corollary 3.2. For d\in \mathbb{N} we have that

\partial \mathcal{D}_{d}:=\{\mathrm{r}\in \mathbb{R}^{d}: $\rho$(R(\mathrm{r}))=1\}.

§3.2. The Schur‐Cohn region and its boundary

We want to give some further properties of \mathcal{E}_{d} . Since the coefficients of a polynomial depend

continuously on its roots it follows that \mathcal{E}_{d}= int (\overline{\mathcal{E}_{d}}) . Moreover, one can prove that \mathcal{E}_{d} is simply
connected (cf. [34]). By a result of Schur [72] the sets \mathcal{E}_{d} can be described by determinants.
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Figure 2. The set \mathcal{E}_{3}

Proposition 3.3 (cf. Schur [72]). For 0\leq k<d let

$\delta$_{k}(r0, . . . , r_{d-1})=[r_{d-k-1}.\cdot\cdot.\cdot r_{d.'.-.\cdot 1_{0.r_{d-1}}^{0}}10.\cdot\cdot..\cdot.0\cdots r_{0}r_{d-1}.\cdot.\cdot\cdot..\cdot 0r_{k}.r_{0}0^{\cdot}..0^{\cdot}.1r_{0}0.\cdot\cdot.\cdot 01r_{d.-..1}\cdot.\cdot.\cdot r_{d-k-1}1.0.\cdot..\cdot\cdot.\cdot.\cdot\cdot.\cdot 0r_{0}0.\cdot\cdot.\cdot\cdot.\cdot\cdot.\cdot.r_{k}]\in \mathbb{R}^{2(k+1)\times 2(k+1)}.
Then the sets \mathcal{E}_{d} are given by

(3.4) \mathcal{E}_{d}=\{(r_{0}, \ldots, r_{d-1})\in \mathbb{R}^{d}:\forall k\in\{0, . . . , d-1\}:\det($\delta$_{k}(r_{0}, \ldots, r_{d-1}))>0\}.

Example 3.4. Evaluating the determinants for d\in\{1 , 2, 3 \} yields (see also [34])

\mathcal{E}_{1}=\{x\in \mathbb{R}:|x|<1\},

(3.5) \mathcal{E}_{2}=\{(x, y)\in \mathbb{R}^{2}:|x|<1, |y|<x+1\},

\mathcal{E}_{3}=\{(x, y, z)\in \mathbb{R}^{3}:|x|<1, |y-xz|<1-x^{2}, |x+z|<y+1\}.

Thus \mathcal{E}_{2} is the (open) triangle in Figure 1. \mathcal{E}_{3} is the solid depicted in Figure 2.

The boundary of \mathcal{E}_{d} consists of all parameters \mathrm{r} for which R(\mathrm{r}) has an eigenvalue of modu‐

lus 1. Thus \partial \mathcal{E}_{d} naturally decomposes into the three hypersurfaces

E_{d}^{(1)}:=\{\mathrm{r}\in\partial \mathcal{E}_{d} : R(\mathrm{r}) has 1 as an eigenvalue,

E^{(-1)}
d :=\{\mathrm{r}\in\partial \mathcal{E}_{d} : R(\mathrm{r}) has -1 as an eigenvalue,

E_{d}^{(\mathbb{C})}:= { \mathrm{r}\in\partial \mathcal{E}_{d} : R(\mathrm{r}) has a non‐real eigenvalue of modulus 1},
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i.e.,

(3.6) \partial \mathcal{E}_{d}=E_{d}^{(1)}\cup E_{d}^{(-1)}\cup E_{d}^{(\mathbb{C})}.
These sets can be determined using \mathcal{E}_{d-1} and \mathcal{E}_{d-2} . To state the corresponding result, we

introduce the following terminology. Define for vectors \mathrm{r}= (r0, . . . , r_{p-1}) ,
\mathrm{s}= (s0, . . .

, s_{q-1} ) of

arbitrary dimension p, q\in \mathbb{N} the binary operation \ovalbox{\tt\small REJECT} by

(3.7) $\chi$_{\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}}=$\chi$_{\mathrm{r}}\cdot$\chi$_{\mathrm{s}},

where means multiplication of polynomials. For D\subset \mathbb{R}^{p} and E\subset \mathbb{R}^{q} let D\ovalbox{\tt\small REJECT} E:=\{\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s} : \mathrm{r}\in

 D, \mathrm{s}\in E\} . Then, due to results of Fam and Meditch [34] (see also [47]), the following theorem

holds.

Theorem 3.5. For d\geq 3 we have

E_{d}^{(1)}=(1)\ovalbox{\tt\small REJECT}\overline{\mathcal{E}_{d-1}},
(3.8) E_{d}^{(-1)}=(-1)\ovalbox{\tt\small REJECT}\overline{\mathcal{E}_{d-1}},

E_{d}^{(\mathbb{C})}=\{(1, y):y\in(-2,2)\}\ovalbox{\tt\small REJECT}\overline{\mathcal{E}_{d-2}}.

Moreover, E_{d}^{(1)} and E_{d}^{(-1)} are subsets of hyperplanes while E_{d}^{(\mathbb{C})} is a hypersurfa ce in \mathbb{R}^{d}

In order to characterize \mathcal{D}_{d} ,
there remains the problem to describe \mathcal{D}_{d}\backslash \mathcal{E}_{d} ,

which is a subset

of \partial \mathcal{D}_{d}=\partial \mathcal{E}_{d} . The problem is relatively simple for d=1
,

where it is an easy exercise to prove

that \mathcal{D}_{1}=[-1, 1] . For dimensions d\geq 2 the situation is different and will be discussed in the

following two sections.

§4. The boundary of \mathcal{D}_{2} and discretized rotations in \mathbb{R}^{2}

In this section we consider the behavior of the orbits of $\tau$_{\mathrm{r}} for \mathrm{r}\in\partial \mathcal{D}_{2} . In particular we are

interested in whether these orbits are ultimately periodic or not. To this matter we subdivide

the isosceles triangle \partial \mathcal{D}_{2} into four pieces (instead of three as in (3.5)), in particular, we split

E_{2}^{(1)} in two parts as follows.

E_{2-}^{(1)}=\{(x, -x-1)\in \mathbb{R}^{2} : -1\leq x\leq 0\},
E_{2+}^{(1)}=\{(x, -x-1)\in \mathbb{R}^{2} : 0<x\leq 1\},

E_{2}^{(-1)}=\{(x, x+1)\in \mathbb{R}^{2} : -1\leq x\leq 1\},
E_{2}^{(\mathbb{C})}=\{(1, y)\in \mathbb{R}^{2}:-2<y<2\}.

It turns out that the behavior of the orbits is much more complicated for \mathrm{r}\in E_{2}^{(\mathbb{C})} than it is

for the remaining cases. This is due to the fact that the matrix R(\mathrm{r}) has one eigenvalue that is

equal to -1 for \mathrm{r}\in E_{2}^{(-1)} ,
one eigenvalue that is equal to 1 for \mathrm{r}\in E_{2}^{(1)} ,

but a pair of complex

conjugate eigenvalues on the unit circle for \mathrm{r}\in E_{2}^{(\mathbb{C})} . Figure 3 surveys the known results on the

behavior of the orbits of $\tau$_{\mathrm{r}} for \mathrm{r}\in\partial \mathcal{D}_{2}.



16 P. Kirschenhofer and J. M. Thuswaldner

Figure 3. An image of the isosceles triangle \partial \mathcal{D}_{2} . The black lines belong to \mathcal{D}_{2} ,
the dashed line

doesn�t belong to \mathcal{D}_{2} . For the grey line E_{2}^{(\mathbb{C})} it is mostly not known whether it belongs to \mathcal{D}_{2}

or not. Only the 11 black points in E_{2}^{(\mathbb{C})} could be shown to belong to \mathcal{D}_{2} so far (compare [47,
Figure 1]). For the two points (1, 2) and (1, -2) it is easy to see that they do not belong to \mathcal{D}_{2}

by solving a linear recurrence relation.

§4.1. The case of real roots

We start with the easier cases that have been treated in [8, Section 2]. In this paper the

following result is proved.

Proposition 4.1 ([8, Theorem 2.1]). If \mathrm{r}\in(E_{2}^{(-1)}\cup E_{2-}^{(1)})\backslash \{(1,2)\} then \mathrm{r}\in \mathcal{D}_{2}\backslash \mathcal{D}_{2}^{(0)},
i.e., each orbit of $\tau$_{\mathrm{r}} is ultimately periodic, but not all orbits end in 0.

If \mathrm{r}\in E_{2+}^{(1)}\cup\{(1,2)\} then \mathrm{r}\not\in \mathcal{D}_{2} , i.e., there exist orbits of $\tau$_{\mathrm{r}} that are not ultimately periodic.

Sketch of the proof. We subdivide the proof in four parts.

(i) \mathrm{r}=(x, x+1)\in E_{2}^{(-1)} with x\leq 0 . The cases x\in\{-1, 0\} are trivial, so we can assume that

-1<x<0 . It is easy to see by direct calculation that $\tau$_{\mathrm{r}}^{2}((-n, n)^{t})=(-n, n)^{t} holds for

each n\in \mathbb{N} . This implies that \mathrm{r}\not\in \mathcal{D}_{2}^{(0)} holds in this case. To show that \mathrm{r}\in \mathcal{D}_{2} one proves

that ||$\tau$_{\mathrm{r}}(\mathrm{z})||_{\infty}\leq||\mathrm{z}||_{\infty} . This is accomplished by distinguishing four cases according to the

signs of the coordinates of the vector \mathrm{z} and examining $\tau$_{\mathrm{r}}(\mathrm{z}) in each of these cases.

(ii) \mathrm{r}=(x, -x-1)\in E_{2-}^{(1)} . This is treated in the same way as the previous case; here $\tau$_{\mathrm{r}}((n, n)^{t})=
(n, n)^{t} holds for each n\in \mathbb{N}.

(iii) \mathrm{r}=(x, x+1)\in E_{2}^{(-1)} with x>0 . Here again $\tau$_{\mathrm{r}}^{2}((-n, n)^{t})=(-n, n)^{t} implies that \mathrm{r}\not\in \mathcal{D}_{2}^{(0)}.
To prove that \mathrm{r}\in \mathcal{D}_{2} for x<1 is a bit more complicated. First ultimate periodicity is shown

for starting vectors contained in the set M=\{(-n, m)^{t} : m\geq n\geq 0\} . This is done by an
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easy induction argument on the quantity m-n . After that one shows that each \mathrm{z}\in \mathbb{Z}^{2}\backslash M
hits M after finitely many applications of $\tau$_{\mathrm{r}} . Proving this is done by distinguishing several

cases. If x=1 the fact that \mathrm{r}\not\in \mathcal{D}_{2} follows by solving a linear recurrence relation.

(iv) \mathrm{r}=(x, -x-1)\in E_{2+}^{(1)} . If n>m>0 then $\tau$_{\mathrm{r}}((m, n)^{t})=(n, p)^{t} with p>n follows from the

definition of $\tau$_{\mathrm{r}} . Thus ||$\tau$_{\mathrm{r}}^{k}(1,2)||_{\infty}\rightarrow\infty for  k\rightarrow\infty implying that the orbit of ( 1, 2)^{t} is not

ultimately periodic.

\square 

For \mathrm{r}\in E_{2}^{(\mathbb{C})} we can only exclude that \mathrm{r}\in \mathcal{D}_{2}^{(0)} . Indeed, in this case \mathrm{r}=(1, y) with |y|<2.
This implies that $\tau$_{\mathrm{r}}^{-1}((0,0)^{t})=\{(0,0)^{t}\} . In other words, in this case each orbit starting in a

non‐zero element does not end up at (0,0)^{t} . Combining this with Proposition 4.1 we obtain that

\mathcal{D}_{2}^{(0)}\cap\partial \mathcal{D}_{2}=\emptyset . By Proposition 3.1 this is equivalent to the following result.

Corollary 4.2 ([8, Corollary 2.5]).

\mathcal{D}_{2}^{(0)}\subset \mathcal{E}_{2}.

§4.2. Complex roots and discretized rotations

We now turn our attention to periodicity results for parameters \mathrm{r}\in E_{2}^{(\mathbb{C})} , i.e., to \mathrm{r}=(1,  $\lambda$)
with | $\lambda$|<2 . From the definition of $\tau$_{\mathrm{r}} it follows that E_{2}^{(\mathbb{C})}\subset \mathcal{D}_{2} is equivalent to the following

conjecture.

Conjecture 4.3 (see e.g. [8, 29, 55, 79 For each  $\lambda$\in \mathbb{R} satisfying | $\lambda$|<2 the sequence

(a_{n})_{n\in \mathbb{N}} defined by

(4.1) 0\leq a_{n-1}+ $\lambda$ a_{n}+a_{n+1}<1

is periodic for each pair of starting values (a_{0}, a_{1})\in \mathbb{Z}^{2}.

Remark 4.4. Several authors (in particular Franco Vivaldi and his co‐workers) study the

slightly different mapping $\Phi$_{ $\lambda$} : \mathbb{Z}^{2}\rightarrow \mathbb{Z}^{2}, (z_{0}, z_{1})^{t}\mapsto(\lfloor $\lambda$ z_{0}\rfloor-z_{1}, z_{0})^{t} . Their results — which we

state using $\tau$_{(1,- $\lambda$)}
—

carry over to our setting by obvious changes of the proofs.

To shed some light on Conjecture 4.3, we emphasize that $\tau$_{(1, $\lambda$)} can be regarded as a dis‐

cretized rotation. Indeed, the inequalities in (4.1) imply that

\left(\begin{array}{l}
a_{n}\\
a_{n+1}
\end{array}\right)=\left(\begin{array}{ll}
0 & 1\\
-1- $\lambda$ & 
\end{array}\right)\left(\begin{array}{l}
a_{n-1}\\
a_{n}
\end{array}\right)+\left(\begin{array}{l}
0\\
\{ $\lambda$ a_{n}\}
\end{array}\right),
and writing  $\lambda$=-2\cos( $\pi \theta$) we get that the eigenvalues of the involved matrix are given by

\exp(\pm i $\pi \theta$) . Thus $\tau$_{(1, $\lambda$)} is a rotation followed by a �round‐off�. As in computer arithmetic round‐

offs naturally occur due to the limited accuracy of floating point arithmetic, it is important to

worry about the effect of such round‐offs. It was this application that Vivaldi and his co‐authors

had in mind when they started to study the dynamics of the mapping $\tau$_{(1, $\lambda$)} in the 1990\mathrm{s} (see
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Figure 4. Two examples of orbits of $\tau$_{(1, $\varphi$)} . The picture on the left is the orbit of ( 5, 5)^{t} . Its

period is 65. The orbit of ( 13, 0)^{t} on the right has period 535.

[55, 56, 79]). Of special interest is the case of rational rotation angles  $\theta$=p/q ,
as rotations by

these angles have periodic orbits with period q . In these cases, for the discretization one gets
that ||$\tau$_{(1, $\lambda$)}^{q}(\mathrm{z})-\mathrm{z}||_{\infty} is uniformly small for all \mathrm{z}\in \mathbb{Z}^{2} . The easiest non‐trivial cases (if  $\lambda$\in \mathbb{Z}

everything is trivial) occur for q=5 . For instance, consider  $\theta$=\displaystyle \frac{2}{5} which gives  $\lambda$=\displaystyle \frac{1-\sqrt{5}}{2}=-\frac{1}{ $\varphi$},
where  $\varphi$=\displaystyle \frac{1+\sqrt{5}}{2} is the golden ratio. Although the behavior of the orbits of $\tau$_{(1,-1/ $\varphi$)} looks rather

involved and there is no upper bound on their period, Lowenstein et al. [55] succeeded in proving
that nevertheless each orbit of $\tau$_{(1,-1/ $\varphi$)} is periodic. This confirms Conjecture 4.3 in the case

 $\lambda$=-\displaystyle \frac{1}{ $\varphi$} . In their proof, they consider a dynamical system on a subset of the torus, which is

conjugate to $\tau$_{(1,-1/ $\varphi$)} (see Section 4.4 for more details). This system is then embedded in a

higher dimensional space where the dynamics becomes periodic. This proves that $\tau$_{(1,-1/ $\varphi$)} is

quasi‐periodic which is finally used in order to derive the result. The case  $\theta$=\displaystyle \frac{4}{5} corresponds to

$\tau$_{(1, $\varphi$)} and is treated in detail in the next subsection.

§4.3. A parameter associated with the golden ratio

Akiyama et al. [6] came up with a very simple and beautiful proof for the periodicity of the

orbits of $\tau$_{(1, $\varphi$)} . In particular, in their argument they combine the fact that ||$\tau$_{(1, $\varphi$)}^{5}(\mathrm{z})-\mathrm{z}||_{\infty} is

small (see the orbits in Figure 4) with Diophantine approximation properties of the golden mean.

In what follows we state the theorem and give a sketch of this proof (including some explanations
to make it easier to read).

Theorem 4.5 ([6, Theorem 5.1]). Let  $\varphi$=\displaystyle \frac{1+\sqrt{5}}{2} be the golden mean. Then ( 1,  $\varphi$)\in \mathcal{D}_{2}.
In other words, the sequence (a_{n})_{n\in \mathbb{N}} defined by

(4.2) 0\leq a_{n-1}+ $\varphi$ a_{n}+a_{n+1}<1

is periodic for each pair of starting values (a_{0}, a_{1})\in \mathbb{Z}^{2}.
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Sketch of the proof (cf. [6]). First we make precise our observation that $\tau$_{(1, $\varphi$)}^{5}(\mathrm{z}) is close

to \mathrm{z} for each \mathrm{z}\in \mathbb{Z}^{2} . In particular, we shall give an upper bound for the quantity |a_{n+5}-a_{n}|
when (a_{n})_{n\in \mathbb{Z}} satisfies (4.2). These inequalities immediately yield

(4.3) a_{n+1}=-a_{n-1}- $\varphi$ a_{n}+\{ $\varphi$ a_{n}\},

a representation of a_{n+1} in terms of a_{n} and a_{n-1} . We wish to express a_{n+5} by these two elements.

To accomplish this we have to proceed in four steps. We start with a representation of a_{n+2} in

terms of a_{n} and a_{n-1} . As

(4.4)  a_{n+2}=-\lfloor a_{n}+ $\varphi$ a_{n+1}\rfloor

we first calculate

-a_{n}- $\varphi$ a_{n+1}=(-1+$\varphi$^{2})a_{n}+ $\varphi$ a_{n-1}- $\varphi$\{ $\varphi$ a_{n}\} ( \mathrm{b}\mathrm{y} (4.3))
= $\varphi$ a_{n}+ $\varphi$ a_{n-1}- $\varphi$\{ $\varphi$ a_{n}\} ( \mathrm{b}\mathrm{y} $\varphi$^{2}= $\varphi$+1 )

(4.5)
=\lfloor $\varphi$ a_{n}\rfloor+ $\varphi$ a_{n-1}+(1- $\varphi$)\{ $\varphi$ a_{n}\}
=\lfloor $\varphi$ a_{n}\rfloor+\lfloor $\varphi$ a_{n-1}\rfloor-$\varphi$^{-1}\{ $\varphi$ a_{n}\}+\{ $\varphi$ a_{n-1}\} ( \mathrm{b}\mathrm{y} $\varphi$^{2}= $\varphi$+1 ).

Inserting (4.5) in (4.4) we obtain

a_{n+2}=\lfloor $\varphi$ a_{n}\rfloor+\lfloor $\varphi$ a_{n-1}\rfloor+c_{n} ,
where c_{n}=\left\{\begin{array}{ll}
1, & \mathrm{i}\mathrm{f} $\varphi$^{-1}\{ $\varphi$ a_{n}\}<\{ $\varphi$ a_{n-1}\};\\
0, & \mathrm{i}\mathrm{f} $\varphi$^{-1}\{ $\varphi$ a_{n}\}\geq\{ $\varphi$ a_{n-1}\},
\end{array}\right.

the desired representation of a_{n+2} . We can now go on like that for three more steps and succes‐

sively gain representations of a_{n+3}, a_{n+4} ,
and a_{n+5} in terms of a_{n} and a_{n-1} . The formula for

a_{n+5} ,
which is relevant for us, reads

(4.6) a_{n+5}=a_{n}+d_{n}

where

d_{n}=\left\{\begin{array}{l}
1, \mathrm{i}\mathrm{f} \{ $\varphi$ a_{n-1}\}\geq $\varphi$\{ $\varphi$ a_{n}\}, \{ $\varphi$ a_{n-1}\}+\{ $\varphi$ a_{n}\}>1\\
\mathrm{o}\mathrm{r}  $\varphi$\{ $\varphi$ a_{n-1}\}\leq\{ $\varphi$ a_{n}\},  $\varphi$\{ $\varphi$ a_{n}\}\leq 1+\{ $\varphi$ a_{n-1}\};\\
0, \mathrm{i}\mathrm{f}  $\varphi$\{ $\varphi$ a_{n-1}\}>\{ $\varphi$ a_{n}\}, \{ $\varphi$ a_{n-1}\}+\{ $\varphi$ a_{n}\}\leq 1, $\varphi$^{2}\{ $\varphi$ a_{n-1}\}<1\\
\mathrm{o}\mathrm{r} \{ $\varphi$ a_{n}\}< $\varphi$\{ $\varphi$ a_{n-1}\}<$\varphi$^{2}\{ $\varphi$ a_{n}\}, \{ $\varphi$ a_{n-1}\}+\{ $\varphi$ a_{n}\}>1;\\
-1, \mathrm{i}\mathrm{f}  $\varphi$\{ $\varphi$ a_{n-1}\}>\{ $\varphi$ a_{n}\}, \{ $\varphi$ a_{n-1}\}+\{ $\varphi$ a_{n}\}\leq 1, $\varphi$^{2}\{ $\varphi$ a_{n-1}\}\geq 1\\
\mathrm{o}\mathrm{r}  $\varphi$\{ $\varphi$ a_{n}\}>1+\{ $\varphi$ a_{n-1}\}.
\end{array}\right.
In particular, this implies that

(4.7) |a_{n+5}-a_{n}|\leq 1.

To conclude the proof we use the Fibonacci numbers F_{k} defined by F_{0}=0, F_{1}=1 and

F_{k}=F_{k-1}+F_{k-2} for k\geq 2 . In particular, we will use the classical identity (see e.g. [66, p.12])

(4.8)  $\varphi$ F_{k}=F_{k+1}+\displaystyle \frac{(-1)^{k+1}}{$\varphi$^{k}}.
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Let (a_{n})_{n\in \mathbb{N}} be an arbitrary sequence satisfying (4.2) and choose m\in \mathbb{N} in a way that a_{n}\leq F_{2m}
holds for n\in\{0 ,

. . .

, 5 \} . We claim that in this case a_{n}\leq F_{2m} holds for all n\in \mathbb{N} . Assume

on the contrary, that this is not true. Then there is a smallest n\in \mathbb{N} such that a_{n+5}>F_{2m}.
In order to derive a contradiction, we distinguish two cases. Assume first that a_{n}<F_{2m} . In

this case (4.7) implies that a_{n+5}\leq F_{2m} ,
which already yields the desired contradiction. Now

assume that a_{n}=F_{2m} . Here we have to be more careful. First observe that (4.2) implies that

 $\varphi$ a_{n-1}\geq-a_{n-2}-a_{n}\geq-2F_{2m} and, hence, (4.8) yields a_{n-1}\geq-2$\varphi$^{-1}F_{2m}=-2$\varphi$^{-2}F_{2m+1}+
2$\varphi$^{-2m-2}>-F_{2m+1} . Summing up, we have -F_{2m+1}<a_{n-1}\leq F_{2m} . As the Fibonacci numbers

are the denominators of the convergents of the continued fraction expansion  $\varphi$=[1;1 , 1, 1, . . . ]
(cf. e.g. [66, p.12]) we obtain that

(4.9) \{ $\varphi$ a_{n}\}\leq\{ $\varphi$ a_{n-1}\}\leq 1-\{ $\varphi$ a_{n}\}.

This chain of inequalities rules out the case d_{n}=1 in (4.6). Thus we get a_{n+5}-a_{n}\in\{-1, 0\},
hence, a_{n+5}\leq a_{n}\leq F_{2m} ,

and we obtain a contradiction again.
We have now shown that a_{n}\leq F_{2m} holds for each n\in \mathbb{N} . However, in view of (4.3),

a_{n+1}\leq F_{2m} implies that a_{n}\geq-(1+ $\varphi$)F_{2m}-1 ,
which yields that -(1+ $\varphi$)F_{2m}-1\leq a_{n}\leq F_{2m}

holds for each n\in \mathbb{N} . Thus, the orbit \{a_{n} : n\in \mathbb{N}\} is bounded and, hence, there are only

finitely many possibilities for the pairs (a_{n}, a_{n+1}) . In view of (4.2) this implies that (a_{n})_{n\in \mathbb{N}} is

ultimately periodic. By symmetry of forward and backward orbits it is even purely periodic. \square 

This proof depends on the very particular continued fraction expansion of the golden ratio

 $\varphi$ . It seems not possible to extend this argument to other parameters (apart from its conjugate

 $\varphi$'=\displaystyle \frac{1-\sqrt{5}}{2}) . In fact, inequalities of the form (4.9) do not hold any more and so it cannot be

guaranteed that the orbit does not �jump� over the threshold values.

§4.4. Quadratic irrationals that give rise to rational rotations

One of the most significant results on Conjecture 4.3 is contained in Akiyama et al. [7]. It

reads as follows.

Theorem 4.6. If  $\lambda$\displaystyle \in\{\frac{\pm 1\pm\sqrt{5}}{2}, \pm\sqrt{2}, \pm\sqrt{3}\} ,
then ( 1,  $\lambda$)\in \mathcal{D}_{2} , i.e., each orbit of $\tau$_{(1, $\lambda$)} is

periodic.

Observe that this settles all the instances  $\lambda$=-2\cos( $\theta \pi$) with rational rotation angle  $\theta$ such

that  $\lambda$ is a quadratic irrational. The proof of this result is very long and tricky. In what follows,
we outline the main ideas. The proof runs along the same lines for each of the eight values of  $\lambda$.

As the technical details are simpler for  $\lambda$= $\varphi$=\displaystyle \frac{1+\sqrt{5}}{2} we use this instance as a guideline.
As in the first proof of periodicity in the golden ratio case given in [55], a conjugate dynamical

system that was also studied in Adler et al. [1] is used here. Indeed, let ((a_{k-1}, a_{k})^{t})_{k\in \mathbb{N}} be an

orbit of $\tau$_{(1, $\varphi$)} and set x=\{ $\varphi$ a_{k-1}\} and y=\{ $\varphi$ a_{k}\} . Then, by the definition of $\tau$_{(1, $\varphi$)} we have

that

\{ $\varphi$ a_{k+1}\}=\{- $\varphi$ a_{k}-1-$\varphi$^{2}a_{k}+ $\varphi$ y\}=\{-x+( $\varphi$-1)y\}=\{-x-$\varphi$'y\}
where $\varphi$'=\displaystyle \frac{1-\sqrt{5}}{2} is the algebraic conjugate of  $\varphi$ . Thus (the according restriction of) the mapping

 T : [0, 1)^{2}\rightarrow[0, 1)^{2}, (x, y)\mapsto(y, \{-x-$\varphi$'y\})
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is conjugate to $\tau$_{(1, $\varphi$)} and it suffices to study the orbits of elements of \mathbb{Z}[ $\varphi$]^{2}\cap[0, 1)^{2} under T to

prove the conjecture. (Computer assisted work on almost all orbits on T was done in [50]; however

the results given there are not strong enough to imply the above theorem.) Let A=\left(\begin{array}{ll}
0 & -1\\
11/ $\varphi$ & 
\end{array}\right)
and write T in the form

(4.10) T(x, y)=\left\{\begin{array}{ll}
(x, y)A, & \mathrm{f}\mathrm{o}\mathrm{r} y\geq $\varphi$ x\\
(x, y)A+(0,1) , & \mathrm{f}\mathrm{o}\mathrm{r} y< $\varphi$ x.
\end{array}\right.
We will now iteratively determine pentagonal subregions of [0, 1)^{2} whose elements admit periodic
orbits under the mapping T . First define the pentagon

R=\{(x, y)\in[0, 1)^{2}:y< $\varphi$ x, x+y>1, x< $\varphi$ y\}

and split the remaining part D=[0, 1)^{2}\backslash R according to the cases in the definition of T in (4.10),
i.e., set

D_{0}=\{(x, y)\in D:y\geq $\varphi$ x\}\backslash \{0, 0\},

D_{1}=D\backslash D_{0}.

Using the fact that A^{5} is the identity matrix one easily derives that T^{5}(\mathrm{z})=\mathrm{z} for each \mathrm{z}\in R.

This exhibits the first pentagon of periodic points of T . We will now use first return maps of T

on smaller copies of [0, 1)^{2} to exhibit more periodic pentagons.

R

D_{0}

D_{1}

T(R)
T(D_{1})

T(D_{0})

Figure 5. The effect of the mapping T on the regions R, D_{0} ,
and D_{1} (compare [7, Figure 2.1]).

To this matter we first observe that by the definition of D_{0} and D_{1} ,
the mapping T acts in

an easy way on these sets (see Figure 5). Now we scale down D by a factor 1/$\varphi$^{2} and and follow

the T‐trajectory of each \mathrm{z}\in D until it hits D/$\varphi$^{2} . First we determine all \mathrm{z}\in D that never hit

D/$\varphi$^{2} . By the mapping properties illustrated in Figure 5 one easily obtains that the set of these

parameters is the union P of the the five shaded pentagons drawn in Figure 6. Again we can use

the mapping properties of Figure 5 to show that all elements of P are periodic under T . Thus,
to determine the periodic points of T it is enough to study the map induced by T on D/$\varphi$^{2}.
The mapping properties of this induced map on the subsets D_{0}/$\varphi$^{2} and D_{1}/$\varphi$^{2} are illustrated in

Figure 7. They are (apart from the scaling factor) the same as the ones in Figure 5.



22 P. Kirschenhofer and J. M. Thuswaldner

T^{4}(\displaystyle \frac{D_{1}}{$\phi$^{2}})
T(\displaystyle \frac{D_{1}}{$\phi$^{2}})

T^{3}(\displaystyle \frac{D_{1}}{$\phi$^{2}}1
\displaystyle \frac{D_{0}}{$\phi$^{2}}

\displaystyle \frac{D_{1}}{$\phi$^{2}}

R

T^{2}(\displaystyle \frac{D_{1}}{$\phi$^{2}}1

T^{5}(\displaystyle \frac{D_{1}}{$\phi$^{2}}1
Figure 6. The region of induction (black frame) of T and the five (shaded) rectangles containing

points with periodic orbits of T (compare [7, Figure 2.2]).

\displaystyle \frac{D_{0}}{$\phi$^{2}}

\displaystyle \frac{D_{1}}{$\phi$^{2}}

$\tau$^{6}(\displaystyle \frac{D_{1}}{$\phi$^{2}})

 $\tau$(\displaystyle \frac{D_{0}}{$\phi$^{2}})
Figure 7. The effect of the mapping T on the induced regions D_{0}/$\varphi$^{2} and D_{1}/$\varphi$^{2} . As can be

seen by looking at the lower left corner of Figure 5, the region D_{0}/$\varphi$^{2} is mapped into the induced

region D/$\varphi$^{2} after one application of T . To map D_{1}/$\varphi$^{2} back to D/$\varphi$^{2} we need to apply the sixth

iterate of T (see Figure 6, where T^{i}(D_{0}/$\varphi$^{2}) is visualized for i\in\{0,1,2,3,4,5\} ). The induced

mapping on D/$\varphi$^{2} shows the same behavior as T on D
,

thus we say that T is self‐ inducing.

Now we can iterate this procedure by defining a sequence of induced maps on D/$\varphi$^{2k} each

of which exhibits 5^{k} more pentagonal pieces of periodic points of T in [0, 1)^{2} . To formalize this,
let s(\displaystyle \mathrm{z})=\min\{m\in \mathbb{N} : T^{m}(\mathrm{z})\in D/$\varphi$^{2}\} and define the mapping

S:D\backslash P\rightarrow D, \mathrm{z}\mapsto$\varphi$^{2}T^{s(\mathrm{z})}(\mathrm{z}) .

The above mentioned iteration process then leads to the following result.
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Figure 8. The aperiodic set X (see [7, Figure 2.3]).

Lemma 4.7 ([7, Theorem 2.1]). The orbit (T^{k}(\mathrm{z}))_{k\in \mathbb{N}} is periodic if and only if \mathrm{z}\in R or

S^{n}(\mathrm{z})\in P for some n\geq 0.

This result cannot only be used to characterize all periodic points of T in [0, 1)^{2} ,
it even

enables one to determine the exact periods (see [7, Theorem 2.3]). An approximation of the set

X\subset[0, 1)^{2} of aperiodic points of T is depicted in Figure 8. To prove the theorem it suffices to

show that  X\cap \mathbb{Z}[ $\varphi$]^{2}=\emptyset . By representing the elements of  X with help of some kind of digit

expansion one can prove that this can be achieved by checking periodicity of the orbit of each

point contained in a certain finite subset of X . This finally leads to the proof of the theorem.

We mention that Akiyama and Harriss [11] show that the dynamics of T on the set of aperiodic

points X is conjugate to the addition of 1 on the set of 2‐adic integers \mathbb{Z}_{2}.

Analogous arguments are used to prove the other cases. However, the technical details get
more involved (the worst case being \pm\sqrt{3}). The most difficult part is to find a suitable region
of induction for T and no �rule� for its shape is known. Although the difficulty of the technical

details increases dramatically, similar arguments should be applicable for an arbitrary algebraic
number  $\alpha$ that induces a rational rotation. However, if  d is the degree of  $\alpha$ the dynamical system
 T acts on the set [0, 1)^{2d-2} . This means that already in the cubic case we have to find a region
of induction for T in a 4‐dimensional torus.

§4.5. Rational parameters and p‐adic dynamics

Bosio and Vivaldi [24] studyl $\tau$_{(1, $\lambda$)} for parameters  $\lambda$=q/p^{n} where p is a prime and q\in \mathbb{Z}
with |q|<2p^{n} . They exhibit an interesting link to p‐adic dynamics for these parameters. Before

lsee Remark 4.4
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we give their main result we need some preparations.
For p and q given as above consider the polynomial

p^{2n}$\chi$_{(1, $\lambda$)}(\displaystyle \frac{X}{p^{n}})=X^{2}+qX+p^{2n}
If we regard this as a polynomial over the ring \mathbb{Z}_{p} of p‐adic integers, by standard methods from

algebraic number theory one derives that it has two distinct roots  $\theta$, $\theta$'\in \mathbb{Z}_{p} . Obviously we have

(4.11)  $\theta \theta$'=p^{2n} and  $\theta$+$\theta$'=-q.

With help of  $\theta$ we now define the mapping

(4.12) \mathcal{L} : \mathbb{Z}^{2}\rightarrow \mathbb{Z}_{p}, (x, y)^{t}\displaystyle \mapsto y-\frac{ $\theta$ x}{p^{n}}.
If  $\sigma$ : \mathbb{Z}_{p}\rightarrow \mathbb{Z}_{p} denotes the shift mapping

 $\sigma$(\displaystyle \sum_{i\geq 0}b_{i}p^{i})=\sum_{i\geq 0}b_{i+1}p^{i}
we can state the following conjugacy of the SRS $\tau$_{(1, $\lambda$)} to a mapping on \mathbb{Z}_{p}.

Theorem 4.8 ([24, Theorem 1 Let p be a prime number and q\in \mathbb{Z} with |q|<2p^{n},
and set  $\lambda$=q/p^{n} . The function \mathcal{L} defined in (4.12) embeds \mathbb{Z}^{2} densely into \mathbb{Z}_{p} . The mapping

$\tau$_{(1, $\lambda$)}^{*}=\mathcal{L}\circ$\tau$_{(1, $\lambda$)}\circ \mathcal{L}^{-1} : \mathcal{L}(\mathbb{Z}^{2})\rightarrow \mathcal{L}(\mathbb{Z}^{2}) is therefO re conjugate to $\tau$_{(1, $\lambda$)} . It can be extended

continuously to \mathbb{Z}_{p} and has the form

$\tau$_{(1, $\lambda$)}^{*}( $\psi$)=$\sigma$^{n}($\theta$' $\psi$) .

Sketch of the proof (see [24, Proposition 4.2]). The fact that \mathcal{L} is continuous and injective
is shown in [24, Proposition 4.1]. We establish the formula for $\tau$_{(1, $\lambda$)}^{*} which immediately implies
the existence of the continuous extension to \mathbb{Z}_{p}.

Let  $\psi$=y-\displaystyle \frac{ $\theta$ x}{p^{n}}\in \mathcal{L}(\mathbb{Z}^{2})\subset \mathbb{Z}_{p} be given. Noting that \lfloor qy/p^{n}\rfloor=qy/p^{n}-c/p^{n} for some

c\equiv qy(\mathrm{m}\mathrm{o}\mathrm{d} p^{n}) and using (4. 11) we get

$\tau$_{(1, $\lambda$)}^{*}( $\psi$)=\displaystyle \mathcal{L}0$\tau$_{(1, $\lambda$)}((x, y)^{t})=\mathcal{L}((y, -x-\lfloor\frac{qy}{p^{n}}\rfloor)^{t})=-x-\lfloor\frac{qy}{p^{n}}\rfloor-\frac{ $\theta$ y}{p^{n}}
=\displaystyle \frac{1}{p^{n}}(-p^{n}x-(q+ $\theta$)y+c)=\frac{1}{p^{n}}(-\frac{$\theta$' $\theta$}{p^{n}}x+$\theta$'y+c)=\frac{1}{p^{n}}($\theta$' $\psi$+c) .

One can show that z\in \mathbb{Z} inplies  $\theta$ z\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} p^{2n}) ,
thus c\equiv qy\equiv q $\psi$\equiv-$\theta$' $\psi$(\mathrm{m}\mathrm{o}\mathrm{d} p^{n}) and the

result follows. \square 

Theorem 4.8 is used by Vivaldi and Vladimirov [80] to set up a probabilistic model for the

cumulative round off error caused by the floor function under iteration of $\tau$_{(1, $\lambda$)} . Furthermore,

they prove a central limit theorem for this model.
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Figure 9. Some examples of orbits of $\tau$_{(1,1/50)}.

§4.6. Newer developments

We conclude this section with two new results related to Conjecture 4.3. Very recently,

Akiyama and Pethó [13] proved the following very general result.

Theorem 4.9 ([13, Theorem 1 For each fixed  $\lambda$\in(-2,2) the mapping $\tau$_{(1, $\lambda$)} has in‐

finitely many periodic orbits.

The proof is tricky and uses the fact that (after proper rescaling of the lattice \mathbb{Z}^{2} ) each

unbounded orbit of $\tau$_{(1, $\lambda$)} has to hit a so called �trapping region� Trap (R) which is defined as

the symmetric difference of two circles of radius R whose centers have a certain distance (not
depending on R ) of each other. The proof is done by contradiction. If one assumes that there

are only finitely many periodic orbits, there exist more unbounded orbits hitting Trap (R) than

there are lattice points in Trap (R) if R is chosen large enough. This contradiction proves the

theorem.

Using lattice point counting techniques this result can be extended to variants of SRS (as
defined in Section 8), see [13, Theorem 2].

Reeve‐Black and Vivaldi [64] study the dynamics \mathrm{o}\mathrm{f}^{2}$\tau$_{(1, $\lambda$)} for  $\lambda$\rightarrow 0,  $\lambda$<0 . While the

dynamics of $\tau$_{(10)} is trivial, for each fixed small positive parameter  $\lambda$ one observes that the orbits

approximate polygons as visualized in Figure 9. Close to the origin the orbits approximate

squares, however, the number of edges of the polygons increases the farther away from the origin
the orbit is located. Eventually, the orbits approximate circles. Moreover, the closer to zero the

parameter  $\lambda$ is chosen, the better is the approximation of the respective polygons (after a proper

rescaling of the mappings  $\tau$_{(1, $\lambda$)} ). This behavior can be explained by using the fact that $\tau$_{(1, $\lambda$)}^{4}(\mathrm{z})
is very close to \mathrm{z} for small values of  $\lambda$.

The idea in [64] is now to construct a near integrable Hamiltonian function P:\mathbb{R}^{2}\rightarrow \mathbb{R} that

models this behavior. In particular, P is set up in a way that the orbits of the flow associated

2see Remark 4.4
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with the Hamiltonian vector field (\partial P/\partial y, -\partial P/\partial x) are polygons. Moreover, if such a polygon

passes through a lattice point of \mathbb{Z}^{2} it is equal to the corresponding polygon approximated by the

discrete systems. Polygonal orbits of the flow passing through a lattice point are called critical.

Critical polygons are used to separate the phase space into infinitely many classes.

There is a crucial difference between the orbits of the discrete systems and their Hamiltonian

model: the orbits of the Hamiltonian flow surround a polygon once and then close up. As can

be seen in Figure 9 this need not be the case for the orbits of $\tau$_{(1, $\lambda$)} . These may well �surround�

a polygon more often (as can be seen in the two outer orbits of Figure 9). This behavior leads

to long periods and makes the discrete case harder to understand. Discrete orbits that surround

a polygon only once are called simple. They are of particular interest because they shadow the

orbit of the Hamiltonian system and show some kind of structural stability.
The main result in [64] asserts that there are many simple orbits. In particular, there exist

infinitely many classes in the above sense, in which a positive portion of the orbits of $\tau$_{(1, $\lambda$)} are

simple for small values of  $\lambda$ . The numerical value for this portion can be calculated for  $\lambda$\rightarrow 0.

These classes can be described by divisibility properties of the coordinates of the lattice points
contained in a critical polygon (see [64, Theorems A and \mathrm{B}] ).

§5. The boundary of \mathcal{D}_{d} and periodic expansions w.r. \mathrm{t} . Salem numbers

In Section 4 we considered periodicity properties of the orbits of $\tau$_{\mathrm{r}} for \mathrm{r}\in\partial \mathcal{D}_{2} . While we

get complete results for the regions E_{2}^{(1)} and E_{2}^{(-1)} ,
the orbits of $\tau$_{\mathrm{r}} for $\tau$_{\mathrm{r}}\in E_{2}^{(\mathbb{C})} are hard to

study and their periodicity is known only for a very limited number of instances. In the present

section we want to discuss periodicity results for orbits of $\tau$_{\mathrm{r}} with \mathrm{r}\in\partial \mathcal{D}_{d} . Here, already the

�real� case is difficult. In Section 5.1 we review a result due to Kirschenhofer et al. [47] that

shows a relation of this problem to the structure of \mathcal{D}_{p}^{(0)} for p<d . The study of the �non‐real�

part E_{d}^{(\mathbb{C})} is treated in the remaining parts of this section. Since we saw in Section 4 that the

investigation of E_{2}^{(\mathbb{C})} is difficult already in the case d=2
,
it is no surprise that no complete result

exists in this direction. However, there are interesting relations to a conjecture of Bertrand [23]
and Schmidt [71] on periodic orbits of beta‐transformations w.r. \mathrm{t} . Salem numbers and partial

periodicity results starting with Boyd [25, 26, 27] that we want to survey.

§5.1. The case of real roots

In Kirschenhofer et al. [47] the authors could establish strong relations between the sets \mathcal{D}_{d}
on the one side and \mathcal{D}_{e}^{(0)} for e<d as well as some related sets on the other side. This leads to

a characterization of \mathcal{D}_{d} in the regions E_{d}^{(1)} and E_{d}^{(-1)} (and even in some small subsets of E_{d}^{(\mathbb{C})} )
in terms of these sets. The according result, which is stated below as Corollary 5.6 follows from

a more general theorem that will be established in this subsection.

Recall the definition of the operator \ovalbox{\tt\small REJECT} in (3.7). It was observed in [47] that the behavior of

$\tau$_{\mathrm{r}}, \mathrm{r}\in \mathbb{R}^{p} ,
can be described completely by the behavior of $\tau$_{\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}} if \mathrm{s}\in \mathbb{Z}^{q} . To be more specific,

for q\in \mathbb{N}\backslash \{0\} and \mathrm{s}= (s0, . . .

, s_{q-1} ) \in \mathbb{Z}^{q} let

V_{\mathrm{s}}:\displaystyle \mathbb{Z}^{\infty}\rightarrow \mathbb{Z}^{\infty}, (x_{n})_{n\in \mathbb{N}}\mapsto(\sum_{k=0}^{q-1}s_{k}x_{n+k}+x_{n+q})_{n\in \mathbb{N}}
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Then V_{\mathrm{s}} maps each periodic sequence to a periodic sequence and each sequence that is eventually
zero to a sequence that is eventually zero. Furthermore the following important fact holds

(cf. [47]).

Proposition 5.1. Let p, q\geq 1 be integers, \mathrm{r}\in \mathbb{R}^{p} and \mathrm{s}\in \mathbb{Z}^{q} . Then

V_{\mathrm{s}}\circ$\tau$_{\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}}^{*}(\mathbb{Z}^{p+q})=$\tau$_{\mathrm{r}}^{*}(\mathbb{Z}^{p}) .

Here we denote by $\tau$_{\mathrm{t}}^{*}(\mathrm{x}) the integer sequence that is derived by concatenating successively
the newly occurring entries of the iterates $\tau$_{\mathrm{t}}^{n}(\mathrm{x}) to the entries of the referring initial vector

\mathrm{x}=(x_{0}, \ldots, x_{d-1})^{t}.

Sketch of the proof (compare [47]). Let

U=(_{0\cdot \mathrm{o}}^{s_{0}.s_{1}}0s_{0}.\cdot\cdot.\cdot.\cdot. s_{q-1}.\cdot 1.\cdot.\cdot 0s_{0}\cdots.\cdot. s\cdots\cdot 1q.-1^{0)}0\in \mathbb{Z}^{p\times(p+q)}.
Then U has maximal rank p and U\mathbb{Z}^{p+q}=\mathbb{Z}^{p} . The result will be proved if we show that for all

\mathrm{x}\in \mathbb{Z}^{p+q}

(5.1) V_{\mathrm{s}}\circ$\tau$_{\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}}^{*}(\mathrm{x})=$\tau$_{\mathrm{r}}^{*}(U\mathrm{x}) .

holds. Supposing (x_{k})_{k\in \mathbb{N}}=$\tau$_{\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}}^{*}(\mathrm{x}) and (y_{k})_{k\in \mathbb{N}}=$\tau$_{\mathrm{r}}^{*}(U\mathrm{x}) it has to be shown that

y_{n}=s_{0}x_{n}+\cdots+s_{q-1}x_{n+q-1}+x_{n+q}

holds for all n\geq 0 . The latter fact is now proved by induction on n. \square 

Example 5.2 (see [47]). Let \displaystyle \mathrm{r}=(\frac{11}{12}, \frac{9}{5}) and \mathrm{s}=(1) . The theorem says that the behavior

of $\tau$_{\mathrm{r}} is completely described by the behavior of $\tau$_{\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}} . For instance, suppose \mathrm{y}:=(5, -3)^{t} . We

can choose \mathrm{x}:=(4,1, -4)^{t} such that U\mathrm{x}=\mathrm{y} with

U=\left(\begin{array}{l}
110\\
011
\end{array}\right)
Then \mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}= (\displaystyle \frac{11}{12}, \frac{163}{60}, \frac{14}{5}) and

$\tau$_{\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}}^{*}(\mathrm{x})=4, 1, -4, (5, -4,2,1, -4,7, -9,10, -9,7, -4,1,2, -4)^{\infty}

In our case the map V_{\mathrm{s}} performs the addition of each two consecutive entries of a sequence.

Therefore we find

$\tau$_{\mathrm{r}}^{*}(\mathrm{y})=V_{\mathrm{s}}\circ$\tau$_{\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}}^{*}(\mathrm{x})=5, -3, (1, 1, -2,3, -3,3, -2)^{\infty}

An important consequence of the last proposition is the following result.
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Corollary 5.3 (cf. [47]). Let \mathrm{r}\in \mathbb{R}^{d} and \mathrm{s}\in\overline{\mathcal{E}_{q}}\cap \mathbb{Z}^{q}.

\bullet If \mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}\in \mathcal{D}_{d+q} then \mathrm{r}\in \mathcal{D}_{d}.

\bullet If \mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}\in \mathcal{D}_{d+q}^{(0)} then \mathrm{r}\in \mathcal{D}_{d}^{(0)}.

Unfortunately the converse of the corollary does not hold in general; for instance, we have

(see Example 5.7 below) (1, \displaystyle \frac{1+\sqrt{5}}{2})\in \mathcal{D}_{2} ,
but (1, \displaystyle \frac{3+\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2})=(1)\ovalbox{\tt\small REJECT}(1, \frac{1+\sqrt{5}}{2})\in\partial \mathcal{E}_{3}\backslash \mathcal{D}_{3} . In

the following we turn to results from [47] that allow to �lift� information on some sets derived

from \mathcal{D}_{e} for e<d to the boundary of the sets \mathcal{D}_{d} . We will need the following notations. For

\mathrm{r}\in \mathcal{D}_{d} let C(\mathrm{r}) be the set of all equivalence classes of cycles of $\tau$_{\mathrm{r}}.

For p\in \mathbb{N}\backslash \{0\} and B\in C(\mathrm{r}) ,
define the function S_{p} by

B=\langle x_{0} ,
. . .

, x_{l(B)-1}\rangle\mapsto\left\{\begin{array}{l}
0 \mathrm{f}\mathrm{o}\mathrm{r} pfl() \mathrm{o}\mathrm{r} \sum_{j=0}^{l(B)-1}$\xi$_{p}^{j}x_{j}=0\\
1 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},
\end{array}\right.
where $\xi$_{p} denotes a primitive p‐th root of unity. Furthermore let

\mathcal{D}_{d}^{(p)} :=\{\mathrm{r}\in \mathcal{D}_{d} : \forall B\in C(\mathrm{r}) : S_{p}(B)=0\}.

Observe that for p=1 we have that \mathrm{r}\in \mathcal{D}_{d} lies in \mathcal{D}_{d}^{(1)} iff the sum of the entries of each

cycle of $\tau$_{\mathrm{r}} equals 0 . For p=2 the alternating sums  x_{0}-x_{1}+x_{2}-x_{3}\pm\ldots must vanish, and so

on.

Let $\Phi$_{j} denote the jth cyclotomic polynomial. Then the following result could be proved in

[47].

Theorem 5.4. Let d, q\geq 1, \mathrm{r}\in \mathbb{R}^{d} and \mathrm{s}= (s0, . . .

, s_{q-1} ) \in \mathbb{Z}^{q} such that s_{0}\neq 0 . Then

\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}\in \mathcal{D}_{d+q} if and only if the following conditions are satisfied:

(i) $\chi$_{\mathrm{s}}=$\Phi$_{$\alpha$_{1}}$\Phi$_{$\alpha$_{2}}\cdots$\Phi$_{ $\alpha$}b for pairwise disjoint non‐negative integers $\alpha$_{1} ,
. . .

, $\alpha$_{b} , and

(ii) \displaystyle \mathrm{r}\in\bigcap_{j=1}^{b}\mathcal{D}_{d}^{($\alpha$_{j})}.

Sketch of proof (compare [47]). In order to prove the sufficiency of the two conditions let us

assume that (i) and (ii) are satisfied. We have to show that for arbitrary \mathrm{x}\in \mathbb{Z}^{d+q} the sequence

(x_{n})_{n\in \mathbb{N}} :=$\tau$_{\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}}^{*}(\mathrm{x}) is ultimately periodic. Let s_{q}:=1 . Setting

\displaystyle \mathrm{y}:=(\sum_{i=0}^{q}s_{i}x_{i}, \sum_{i=0}^{q}s_{i}x_{i+1}, \ldots, \sum_{i=0}^{q}s_{i^{X}i+d-1)}
it follows from (5.1) that

(5.2) (y_{n})_{n\in \mathbb{N}}:=$\tau$_{\mathrm{r}}^{*}(\mathrm{y})=V_{\mathrm{s}}((x_{n})_{n\in \mathbb{N}}) .

Since \mathrm{r}\in \mathcal{D}_{d}^{($\alpha$_{1})} ,
we have \mathrm{r}\in \mathcal{D}_{d} . Therefore there must exist a cycle

\langle y_{n_{0}} ,
. . .

, y_{n_{0}+l-1}\rangle\in C(\mathrm{r}) ,
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from which we deduce the recurrence relation

(53) \displaystyle \sum_{h=0}^{q}s_{h^{X}n_{0}+k+h}=y_{n_{0}+k}=y_{n_{0}+k+l}=\sum_{h=0}^{q}s_{h^{X}n_{0}+k+l+h}
for k\geq 0 for the sequence (x_{n})_{n\geq n_{0}} . Its characteristic equation is

(t^{l}-1)$\chi$_{\mathrm{s}}(t)=0.

Let us now assume that $\lambda$_{1} ,
. . .

, $\lambda$_{w} are the roots of t^{l}-1 only, $\lambda$_{w+1} ,
. . .

, $\lambda$_{l} are the common

roots of t^{l}-1 and of $\chi$_{\mathrm{s}}(t) ,
and $\lambda$_{l+1} ,

. . .

, $\lambda$_{g} are the roots of $\chi$_{\mathrm{s}}(t) only. By Assertion (i) t^{l}-1

and $\chi$_{\mathrm{s}}(t) have only simple roots, so that $\lambda$_{w+1} ,
. . .

, $\lambda$_{l} have multiplicity two while all the other

roots are simple. Therefore the solution of recurrence (5.3) has the form

(5.4) x_{n_{0}+k}=\displaystyle \sum_{j=1}^{g}A_{j}^{(0)}$\lambda$_{j}^{k}+\sum_{j=w+1}^{l}A_{j}^{(1)}k$\lambda$_{j}^{k}
for l+q complex constants A_{j}^{( $\nu$)} ,

and the (ultimate) periodicity of (x_{n})_{n\geq n_{0}} is equivalent to

A_{j}^{(1)}=0 for all j\in\{w+1, . . . , l\} . For $\alpha$_{1}fl ,
. . .

, $\alpha$_{b}fl the polynomials x^{l}-1 and $\chi$_{\mathrm{s}} have

no common roots and the result is immediate. Let us now suppose x^{l}-1 and $\chi$_{\mathrm{s}} have common

roots, i.e., that w<l.

From (5.3), observing $\chi$_{\mathrm{s}}($\lambda$_{j})=0 for j>w ,
we get with k\in\{0, . . . , l-1\} the following

system of l linear equalities for the l constants A_{1}^{(0)} ,
. . .

, A_{w}^{(0)}, A_{w+1}^{(1)} ,
. . .

, A_{l}^{(1)}.

y_{n_{0}+k}=\displaystyle \sum_{j=1}^{g}A_{j}^{(0)}$\lambda$_{j}^{k}$\chi$_{\mathrm{s}}($\lambda$_{j})+\sum_{j=w+1}^{l}A_{j}^{(1)}(k$\lambda$_{j}^{k}$\chi$_{\mathrm{s}}($\lambda$_{j})+$\lambda$_{j}^{k+1}$\chi$_{\mathrm{s}}'($\lambda$_{j}))(5.5)

=\displaystyle \sum_{j=1}^{w}A_{j}^{(0)}$\lambda$_{j}^{k}$\chi$_{\mathrm{s}}($\lambda$_{j})+\sum_{j=w+1}^{l}A_{j}^{(1)}$\lambda$_{j}^{k+1}$\chi$_{\mathrm{s}}'($\lambda$_{j}) .

It remains to show that A_{j}^{(1)}=0 for w+1\leq j\leq l.

Rewriting the system as

(5.6) (y_{n_{0}}, \ldots, y_{n_{0}+l-1})^{t}=G(A_{1}^{(0)}, \ldots, A_{w}^{(0)}, A_{w+1}^{(1)}, \ldots, A_{l}^{(1)})^{t}
with

G=\left(\begin{array}{llllll}
$\chi$_{\mathrm{s}}($\lambda$_{1}) & \cdots & $\chi$_{\mathrm{s}}($\lambda$_{w}) & $\chi$_{\mathrm{s}}'($\lambda$_{w+1})$\lambda$_{w+1} & \cdots & $\chi$_{\mathrm{s}}'($\lambda$_{l})$\lambda$_{l}\\
$\chi$_{\mathrm{s}}($\lambda$_{1})$\lambda$_{1} & \cdots & $\chi$_{\mathrm{s}}($\lambda$_{w})$\lambda$_{w} & $\chi$_{\mathrm{s}}'($\lambda$_{w+1})$\lambda$_{w+1}^{2} & \cdots & $\chi$_{\mathrm{s}}'($\lambda$_{l})$\lambda$_{l}^{2}\\
\vdots &  & \vdots & \vdots &  & \vdots\\
$\chi$_{\mathrm{s}}($\lambda$_{1})$\lambda$_{1}^{l-1} & \cdots & $\chi$_{\mathrm{s}}($\lambda$_{w})$\lambda$_{w}^{l-1} & $\chi$_{\mathrm{s}}'($\lambda$_{w+1})$\lambda$_{w+1}^{l} & \cdots & $\chi$_{\mathrm{s}}'($\lambda$_{l})$\lambda$_{l}^{l}
\end{array}\right) .

we have by Cramer�s rule that

A_{j}^{(1)}=\displaystyle \frac{\det G_{j}}{\det G},
where G_{j} denotes the matrix that is obtained by exchanging the jth column of G by the vector

(y_{n_{0}}, \ldots, y_{n_{0}+l-1})^{t} . (\det G\neq 0 is easily detected using the Vandermonde determinant.)
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Now

(5.7) \displaystyle \det G_{j}=\prod_{=1}^{w}$\chi$_{\mathrm{s}}($\lambda$_{k})^{l}\prod_{k\neq j}^{l}($\lambda$_{k}$\chi$_{\mathrm{s}}'($\lambda$_{k}))^{l}D_{j}kk--w+1 �

where

D_{j}:=\det\left(\begin{array}{lllllll}
1 & \cdots & 1 & y_{n_{0}} & 1 & \cdots & 1\\
$\lambda$_{1} & \cdots & $\lambda$_{j-1} & y_{n_{0}+1} & $\lambda$_{j+1} & \cdots & $\lambda$_{l}\\
\vdots &  & \vdots & \vdots &  &  & \\
$\lambda$_{1}^{l-1} & \cdots & $\lambda$_{j-1}^{l-1} & y_{n_{0}+l-1} & $\lambda$_{j+1}^{l-1} & \cdots & $\lambda$_{l}^{l-1}
\end{array}\right) .

Adding the \overline{$\lambda$_{j}}^{k+1} ‐fold multiple of the kth row to the last row for each k\in\{1, . . . , l-1\} we

gain

D_{j}=\det\left(\begin{array}{lllllll}
1 & \cdots & 1 & y_{n_{0}} & 1 & \cdots & 1\\
$\lambda$_{1} & \cdots & $\lambda$_{j-1} & y_{n_{0}+1} & $\lambda$_{j+1} & \cdots & $\lambda$_{l}\\
\vdots &  & \vdots & \vdots &  &  & \\
$\lambda$_{1}^{l-2} & \cdots & $\lambda$_{j-1}^{l-2} & \vdots & $\lambda$_{j+1}^{l-2} & \cdots & $\lambda$_{l}^{l-2}\\
0 & \cdots & 0 & \sum_{k=0}^{l-1\frac{\mathrm{o}+}{$\lambda$_{j}}k+1}y_{n_{0}+k}y_{nk+l-2} & 0 & \cdots & 0
\end{array}\right) .

If we can establish \displaystyle \sum_{k=0}^{l-1}\overline{$\lambda$_{j}}^{k}y_{n_{0}+k}=0 ,
we are done. Now, since $\lambda$_{j} is a root of x^{l}-1 and $\chi$_{\mathrm{s}},

Condition (i) yields that there exists a p\in\{1, . . . , b\} with $\alpha$_{p}|l . Thus $\lambda$_{j} ,
and \overline{$\lambda$_{j}} , are primitive

$\alpha$_{p}\mathrm{t}\mathrm{h} roots of unity. It follows from Condition (ii) that

(5.8) S_{$\alpha$_{p}}(\displaystyle \langle y_{n_{0}}, \ldots, y_{n_{0}+l-1}\rangle)=\sum_{k=0}^{l-1}$\xi$_{$\alpha$_{p}}^{k}y_{n_{0}+k}=0
for each $\alpha$_{p}\mathrm{t}\mathrm{h} root of unity $\xi$_{$\alpha$_{p}} . In particular, \displaystyle \sum_{k=0}^{l-1}\overline{$\lambda$_{j}}^{k}y_{n_{0}+k}=0.

Let us turn to the necessity of Conditions (i) and (ii).
Since \mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}\in \mathcal{D}_{d+q} we have  $\rho$(R(\mathrm{s}))\leq $\rho$(R(\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}))\leq 1 . Since s_{0}\neq 0, $\chi$_{s} is a polynomial

over \mathbb{Z} each of whose roots are non‐zero and bounded by one in modulus. This implies that each

root of this polynomial is a root of unity.

Suppose now that $\chi$_{\mathrm{s}} has a root of multiplicity at least 2, say $\lambda$_{j_{0}} . Let \mathrm{x}\in \mathbb{Z}^{d+q} and

(x_{n})_{n\in \mathbb{N}} :=$\tau$_{\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}}^{*}(\mathrm{x}) . Since (x_{n})_{n\in \mathbb{N}} is a solution of recurrence (5.3) it must have the shape

x_{n_{0}+k}=\displaystyle \sum_{j=1}^{g}A_{j}(k)$\lambda$_{j}^{k}
with some polynomials A_{j}(1\leq j\leq g) . Inserting (5.3) yields

(5.9) y_{n_{0}+k}=\displaystyle \sum_{j=1}^{g}\sum_{h=0}^{q}s_{h}A_{j}(k+h)$\lambda$_{j}^{k+h}
Taking k\in\{1, . . . , l\} we get a system of l equations for the l+q coefficients A_{j}^{( $\nu$)} of the polynomials

A_{j} . In a similar way as in the treatment of (5.3) in the first part of this proof it can be shown
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that q of the l+q coefficients do not occur in (5.9) for k\in\{1, . . . , l\} ,
and the system can be

used to calculate the remaining l coefficients A_{j}^{( $\nu$)} . The coefficient of A_{j_{0}}^{(1)} in (5.9) equals

k$\lambda$_{j_{0}}^{k}$\chi$_{\mathrm{s}}($\lambda$_{j_{0}})+$\lambda$_{j_{0}}^{k+1}$\chi$_{\mathrm{s}}'($\lambda$_{j_{0}}) .

Since $\lambda$_{j_{0}} is a double zero of $\chi$_{\mathrm{s}} ,
the latter expression, and thus the coefficient of A_{j_{0}}^{(1)} in (5.9)

vanishes.

Let now z_{1} ,
. . .

, z_{q} be a q‐tuple of integers and consider the system of q equations

(5.10) z_{k}=\displaystyle \sum_{j=1}^{g}A_{j}(k)$\lambda$_{j}^{k} (1\leq k\leq q) .

This system can be used in order to calculate the remaining q coefficients A_{j}^{( $\nu$)} , among which we

have A_{j_{0}}^{(1)} . Choosing z_{1} ,
. . .

, z_{q} in a way that A_{j_{0}}^{(1)}\neq 0 allows to determine all coefficients A_{j}^{( $\nu$)}.
We use equation (5.10) now to define the integers z_{k} for k>q . Then by (5.3) the sequence

$\tau$_{\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}}^{*}((z_{0}, \ldots, z_{d+l-1})) satisfies the recurrence relation \displaystyle \sum_{i=0}^{q}s_{i}z_{n_{0}+k+i}=\sum_{i=0}^{q}s_{i}z_{n_{0}+k+l+i} . As

A_{j_{0}}^{(1)}\neq 0 this sequence does not end up periodically by the following auxiliary Lemma 5.5,
a contradiction to \mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}\in \mathcal{D}_{d+q} . Thus we have proved the necessity of Condition (i) of the

theorem.

Let us now turn to Condition (ii). Since \mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{s}\in \mathcal{D}_{d+q}, (x_{n})_{n\in \mathbb{N}} in (5.4) is ultimately periodic.

By Lemma 5.5 this implies that A_{j}^{(1)}=0 for each j\in\{w+1, . . . , l\} . Adopting the notation and

reasoning of the sufficiency part of the proof this is equivalent to D_{j}=0 ,
so that (5.8) holds for

$\alpha$_{1} ,
. . .

, $\alpha$_{b} , proving the necessity of (ii). \square 

In the last proof we make use of the following auxiliary result, which, in other terminology,
can be found in [47], too.

Lemma 5.5. Let the sequence (x_{n})_{n\geq 0} be the solution of a homogeneous linear recurrence

with constant coefficients in \mathbb{C} , whose eigenvalues are pairwise disjoint roots of unity. If at least

one of the eigenvalues has multiplicity greater than 1, then x_{n} is not bounded.

For the simple proof we also refer to [47].
Theorem 5.4 allows in particular to give information on the behavior of $\tau$_{\mathrm{r}} on several parts

of the boundary of \mathcal{E}_{d} . Remember that \partial \mathcal{E}_{3}=\partial \mathcal{D}_{3} consists of the two triangles E_{3}^{(-1)} and E_{3}^{(1)}
and of the surface E_{3}^{(\mathbb{C})} . Then we have the following result (see [47]).

Corollary 5.6. The following assertions hold.

\bullet For  d\geq 2 we have \mathcal{D}_{d}\cap E_{d}^{(-1)}=(-1)\ovalbox{\tt\small REJECT} \mathcal{D}_{d-1}^{(1)}.

\bullet For  d\geq 2 we have \mathcal{D}_{d}\cap E_{d}^{(1)}=(1)\ovalbox{\tt\small REJECT} \mathcal{D}_{d-1}^{(2)}.

\bullet For  d\geq 3 we have \mathcal{D}_{d}\cap(1,0)\ovalbox{\tt\small REJECT}\overline{\mathcal{E}_{d-2}}=(1,0)\ovalbox{\tt\small REJECT} \mathcal{D}_{d-2}^{(4)}.

\bullet For  d\geq 3 we have \mathcal{D}_{d}\cap(1,1)\ovalbox{\tt\small REJECT}\overline{\mathcal{E}_{d-2}}=(1,1)\ovalbox{\tt\small REJECT} \mathcal{D}_{d-2}^{(3)}.
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Figure 10. The triangles E_{3}^{(-1)} (left hand side) and E_{3}^{(1)} (right hand side). Dark grey: parameters

\mathrm{r} for which $\tau$_{\mathrm{r}} is ultimately periodic for each starting value \mathrm{z}\in \mathbb{Z}^{3} . Black: there exists a

starting value \mathrm{z}\in \mathbb{Z}^{3} such that the orbit ($\tau$_{\mathrm{r}}^{k}(\mathrm{z}))_{k\in \mathbb{N}} becomes unbounded. Light grey: not yet
characterized. See [47, Figure 3].

\bullet For  d\geq 3 we have \mathcal{D}_{d}\cap(1, -1)\ovalbox{\tt\small REJECT}\overline{\mathcal{E}_{d-2}}=(1, -1)\ovalbox{\tt\small REJECT} \mathcal{D}_{d-2}^{(6)}.

Combining the first two items of the last corollary and computing an approximation of \mathcal{D}_{2}^{(1)}
and \mathcal{D}_{2}^{(-1)} yields an approximation of \mathcal{D}_{3}\cap E_{3}^{(-1)} resp. \mathcal{D}_{3}\cap E_{3}^{(-1)} as depicted in Figure 10

(algorithms for \mathcal{D}_{d}^{(0)} are presented in Section 6.1; they can be adapted to \mathcal{D}_{d}^{(p)} in an obvious

way). The last three items of the corollary allow to characterize e.g. some lines of the surface

\mathcal{D}_{3}\cap E_{3}^{(\mathbb{C})}.
The study of concrete parameters \mathrm{r}\in E_{d}^{(1)}\cup E_{d}^{(-1)} shows interesting behavior as illustrated

in the following three dimensional example.

Example 5.7 (cf. [48]). Let  $\varphi$=\displaystyle \frac{1+\sqrt{5}}{2} . From our considerations above one can derive

that

(1, $\varphi$^{2}, $\varphi$^{2})\in\partial \mathcal{D}_{3}\backslash \mathcal{D}_{3}.
We want to study the orbits of the mapping $\tau$_{(1,$\varphi$^{2},$\varphi$^{2})} more closely for certain starting values

(z_{0}, z_{1}, z_{2}) . In particular, let z_{0}=z_{1}=0 . Interestingly, the behavior of the orbit depends on the

starting digits of the Zeckendorf representation of z_{2} :

z_{2}=\displaystyle \sum_{j\geq 2}z_{2},{}_{j}F_{j}
such that z_{2,j}\in\{0 ,

1 \}, z_{2,j}z_{2,j+1}=0, j\geq 2 (as in the proof of Theorem 4.5, (F_{n})_{n\in \mathbb{N}} is

the sequence of Fibonacci numbers). More precisely the following results hold (see [48, The‐

orems 4.1,5.1,5.2, and 5.3]).
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\bullet If  z_{2,2}=z_{2,3}=0 the sequence (Z) is divergent;

\bullet if  z_{2,2}=0, z_{2,3}=1 the sequence (z) has period 30;

\bullet if  z_{2,2}=1, z_{2,3}=z_{2,4}=0 the sequence (z) has period 30;

\bullet if  z_{2,2}=1, z_{2,3}=0, z_{2,4}=1 the sequence (z) has period 70.

§5.2. The conjecture of Klaus Schmidt on Salem numbers

Schmidt [71] (see also Bertrand [23]) proved the following result on beta‐expansions of Salem

numbers (recall that T_{ $\beta$} is the beta‐transformation defined in (2.3)).

Theorem 5.8 ([71, Theorems 2.5 and 3.1]). Let  $\beta$>1 be given.

\bullet If  T_{ $\beta$} has an ultimately periodic orbit for each element of \mathbb{Q}\cap[0 , 1), then  $\beta$ is either a Pisot

or a Salem number.

\bullet If  $\beta$ is a Pisot number, then  T_{ $\beta$} has an ultimately periodic orbit for each element of \mathbb{Q}( $\beta$)\cap
[0 ,

1 ) .

We do not reproduce the proof of this result here, however, if we replace the occurrences

of \mathbb{Q} as well as \mathbb{Q}( $\beta$) in the theorem by \mathbb{Z}[ $\beta$] and assume that  $\beta$ is an algebraic integer then

the according slightly modified result follows immediately from Propositions 2.4 and 3.1. Just

observe that the conjugacy between  T_{ $\beta$} and $\tau$_{\mathrm{r}} stated in Proposition 2.4 relates Pisot numbers

to SRS parameters \mathrm{r}\in \mathcal{E}_{d} and Salem numers to SRS parameters \mathrm{r}\in\partial \mathcal{E}_{d} . Therefore, this

modification of Theorem 5.8 is a special case of Proposition 3.1.

Note that Theorem 5.8 does not give information on whether beta‐expansions w.r. \mathrm{t} . Salem

numbers are periodic or not. Already Schmidt [71] formulated the following conjecture.

Conjecture 5.9. If  $\beta$ is a Salem number, then  T_{ $\beta$} has an ultimately periodic orbit for

each element of \mathbb{Q}( $\beta$)\cap[0 , 1).

So far, no example of a non‐periodic beta‐expansion w.r. \mathrm{t} . a Salem number  $\beta$ has been

found although Boyd [26] gives a heuristic argument that puts some doubt on this conjecture

(see Section 5.4). In view of Proposition 2.4 (apart from the difference between \mathbb{Z}[ $\beta$] and \mathbb{Q}( $\beta$) )
this conjecture is a special case of the following generalization of Conjecture 4.3 to arbitrary
dimensions (which, because of Boyd�s heuristics, we formulate as a question).

Question 5.10. Let \mathrm{r}\in E_{d}^{(\mathbb{C})} be given. Is it true that each orbit of $\tau$_{\mathrm{r}} is ultimately

periodic?

As Proposition 4.1 and Corollary 5.6 show, the corresponding question cannot be answered

affirmatively for all parameters contained in E_{d}^{(1)} as well as in E_{d}^{(-1)}.

§5.3. The expansion of 1

Since it seems to be very difficult to verify Conjecture 5.9 for a single Salem number  $\beta$,

Boyd [25] considered the simpler problem of studying the orbits of 1 under T_{ $\beta$} for Salem numbers
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of degree 4. In [25, Theorem 1] he shows that these orbits are always ultimately periodic and‐

although there is no uniform bound for the period—he is able to give the orbits explicitly. We

just state the result about the periods and omit the description of the concrete structure of the

orbits.

Theorem 5.11 (see [25, Lemma 1 and Theorem 1 Let X^{4}+b_{1}X^{3}+b_{2}X^{2}+b_{1}X+1 be

the minimal polynomial of a Salem number of degree 4. Then \lfloor $\beta$\rfloor\in\{-b_{1}-2, -b_{1}-1, -b_{1}, -b_{1}+

1\} . According to these values we have the following periods p for the orbits of T_{ $\beta$}(1) :

(i) If \lfloor $\beta$\rfloor=-b_{1}+1 then 2b_{1}-1\leq b_{2}\leq b_{1}-1 and

(a) if b_{2}=2b_{1}-1 then p=9 ,
and

(b) if b_{2}>2b_{1}-1 then p=5.

(ii) If \lfloor $\beta$\rfloor=-b_{1} then p=3.

(iii) If \lfloor $\beta$\rfloor=-b_{1}-1 then p=4.

(iv) If \lfloor $\beta$\rfloor=-b_{1}-2 then -b_{1}+1<b_{2}\leq-2b_{1}-3 . Let c_{k}=(-2b_{1}-2)-(-b_{1}-3)/k
for k\in\{1, 2, . . . , -b_{1}-3\} . Then -b_{1}+1=c_{1}<c_{2}< . . . <c_{-b_{1}-3}=-2b_{1}-3 and

c_{k-1}<b_{2}\leq c_{k} implies that p=2k+2.

According to Proposition 2.4 the dynamical systems ($\tau$_{\mathrm{r}}, \mathbb{Z}^{d}) and (T_{ $\beta$}, \mathbb{Z}[ $\beta$]\cap[0,1)) are con‐

jugate by the conjugacy $\Phi$_{\mathrm{r}}(\mathrm{z})= {rz} when \mathrm{r}=(r_{0}, \ldots, r_{d-1}) is chosen as in this proposition.
Thus a priori T(1) has no analogue in ($\tau$_{\mathrm{r}}, \mathbb{Z}^{d}) . However, note that

$\tau$_{\mathrm{r}}((1,0, \ldots, 0)^{t})=(0, \ldots, 0, -\lfloor r_{0}\rfloor)^{t}=(0, \ldots, 0, -\lfloor-1/ $\beta$\rfloor)^{t}=(0, \ldots, 0,1)^{t} and

T_{ $\beta$}(1)=\{ $\beta$\},

since, as a Salem number is a unit we have b_{0}=1 and, hence, r_{0}=-1/ $\beta$\in(-1,0) . Because

$\Phi$_{\mathrm{r}}((0, \ldots, 0,1)^{t})=\{ $\beta$\} we see that the orbit of (1, 0, \ldots, 0)^{t} under $\tau$_{\mathrm{r}} has the same behavior as

the orbit of 1 under T_{ $\beta$}.
Let us turn back to Salem numbers of degree 4. If  $\beta$ is such a Salem number then, since

 $\beta$ has non‐real conjugates on the unit circle, the minimal polynomial of  $\beta$ can be written as

(X- $\beta$)(X^{3}+r_{2}X^{2}+r_{1}X+r_{0}) with \mathrm{r}=(r_{0}, r_{1}, r_{2})\in E_{3}^{(\mathbb{C})} . Thus Theorem 5.11 answers the

following question for a special class of parameters.

Question 5.12. Given \mathrm{r}\in E_{3}^{(\mathbb{C})} ,
is the orbit of (1, 0,0)^{t} under $\tau$_{\mathrm{r}} ultimately periodic

and, if so, how long is its period?

As mentioned in Section 3.2, the set E_{3}^{(\mathbb{C})} is a surface in \mathbb{R}^{3} . Using the definition of E_{3}^{(\mathbb{C})}
one easily derives that (see equation (6.5) and [47])

(5.11) E_{3}^{(\mathbb{C})}=\{(t, st+1, s+t) : -2<s<2, -1\leq t\leq 1\}.

Figure 11 illustrates which values of the parameters (s, t) correspond to Salem numbers. By The‐
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Figure 11. The black dots mark the parameters corresponding to Salem numbers of degree 4 in

the parameterization of E_{3}^{(\mathbb{C})} given in (5.11). The marked region indicates a set of parameters

that share the same orbit of (1, 0,0)^{t}.

orem 5.11 and the above mentioned remark on the conjugacy of the dynamical systems ($\tau$_{\mathrm{r}}, \mathbb{Z}^{d})
and (T_{ $\beta$}, \mathbb{Z}[ $\beta$]\cap[0,1)) ,

for each of the indicated points we know that the orbit of $\tau$_{(t,st+1,s+t)} is

periodic with the period given in this theorem. How about the general answer to Question 5.12?

In Figure 12 we illustrate the periods of the orbit of (1, 0,0)^{t} for the values (s, t)\in(-2,2)\times[0 ,
1 ].

Although it is not hard to characterize the period of large subregions of this parameter range,

Figure 12. Lengths of the orbit of (1, 0,0)^{t} in the parameter region (s, t)\in(-2,2)\times[0 ,
1 ].

The lighter the point, the shorter the orbit. Comparing this with Figure 11 we see that for

�most� Salem numbers of degree 4 the orbit of 1 under T_{ $\beta$} has short period. This agrees with

Theorem 5.11.

we do not know whether (1, 0,0)^{t} has an ultimately periodic orbit for each parameter. In fact, it

looks like a �fortunate coincidence� that Salem parameters lie in regions that mostly correspond
to small periods. In particular, we have no explanation for the black �stain� southeast to the

point (-1,0) in Figure 12 that corresponds to a spot with very long periods.

Boyd [26] studies orbits of 1 under T_{ $\beta$} for Salem numbers of degree 6. There seems to be

no simple �formula� for the period as in the case of degree 4. Moreover, for some examples no
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periods have been found so far (see also [37] where orbits of 1 under T_{ $\beta$} are given for classes of

Salem numbers). We give two examples that illustrate the difficulty of the situation.

Example 5.13. Let  $\beta$>1 be the Salem number defined by the polynomial

x^{6}-3x^{5}-x^{4}-7x^{3}-x^{2}-3x+1.

Let m be the pre‐period of the orbit of 1 under T_{ $\beta$} ,
and p its period (if these values exist).

Boyd [26] showed with computer assistance that m+p>10^{9} . Hare and Tweedle [37] consider

the Salem number  $\beta$>1 defined by

x^{12}-3x^{11}+3x^{10}-4x^{9}+5x^{8}-5x^{7}+5x^{6}-5x^{5}+5x^{4}-4x^{3}+3x^{2}-3x+1.

They compute that, if it exists, the period of the orbit of 1 under T_{ $\beta$} is greater than 5\cdot 10^{5} in

this case. We emphasize that for both of these examples it is not known whether the orbit of 1

under T_{ $\beta$} is ultimately periodic or not.

§5.4. The heuristic model of Boyd for shift radix systems

Let  $\beta$ be a Salem number. In [26, Section 6] a heuristic probabilistic model for the orbits

of 1 under  T_{ $\beta$} is presented. This model suggests that for Salem numbers of degree 4 and 6

�almost all� orbits should be finite, and predicts the existence of �many� unbounded orbits

for Salem numbers of degree 8 and higher. This suggests that there exist counter examples to

Conjecture 5.9. Here we present an SRS version of Boyd�s model in order to give heuristics for

the behavior of the orbit of (1, 0, \ldots, 0)^{t} under $\tau$_{\mathrm{r}} for \mathrm{r}\in E_{d}^{(\mathbb{C})}.
Let \mathrm{r}\in E_{d}^{(\mathbb{C})} be given. To keep things simple we assume that the characteristic polynomial

$\chi$_{\mathrm{r}} of the matrix R(\mathrm{r}) defined in (1.3) is irreducible. Let $\beta$_{1} ,
. . .

, $\beta$_{d} be the roots of $\chi$_{\mathrm{r}} grouped in

a way that $\beta$_{1} ,
. . .

, $\beta$_{r} are real and $\beta$_{r+j}=\overline{ $\beta$}_{r+s+j}(1\leq j\leq s) are the non‐real roots (d=r+2s) .

Let D=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}($\beta$_{1}, \ldots, $\beta$_{d}) . Since R(\mathrm{r}) is a companion matrix we have R(\mathrm{r})=VDV^{-1} ,
where

V=(v_{ij}) with v_{ij}=$\beta$_{j}^{i-1} is the va ndermonde matrix formed with the roots of $\chi$_{\mathrm{r}} (cf. e.g. [28]).
Iterating (1.5) for k times we get

$\tau$_{\mathrm{r}}^{k}((1,0, \displaystyle \ldots, 0)^{t})=\sum_{j=0}^{k-1}R(\mathrm{r})^{j}\mathrm{d}_{j}+R(\mathrm{r})^{k}(1,0, \ldots, 0)^{t}
(5.12) =\displaystyle \sum_{j=0}^{k-1}VD^{j}V^{-1}\mathrm{d}_{j}+VD^{k}V^{-1}(1,0, \ldots, 0)^{t},
where \mathrm{d}_{j}=(0, \ldots, 0, $\epsilon$_{j})^{t} with $\epsilon$_{j}\in[0 , 1). Let V^{-1}=(w_{ij}) . From [74, Section 3] we easily

compute that w_{id}=\displaystyle \prod_{\ell\neq i}($\beta$_{i}-$\beta$_{\ell})^{-1} . Multiplying (5.12) by V^{-1} , using this fact we arrive at

(5.13) V^{-1}$\tau$_{\mathrm{r}}^{k}\left(\begin{array}{l}
1\\
0\\
0
\end{array}\right)=\left(\begin{array}{llll}
\prod_{\ell\neq 1}($\beta$_{1}-$\beta$_{\ell})^{-1} & \sum_{j=0}^{k-1} & $\epsilon$_{j} & $\beta$_{1}^{j}\\
\prod_{\ell\neq d}($\beta$_{d}-$\beta$_{\ell})^{-1} & \sum_{j=0}^{k-1} & $\epsilon$_{j} & $\beta$_{d}^{j}
\end{array}\right)+D^{k}V^{-1}\left(\begin{array}{l}
1\\
0\\
0
\end{array}\right)\in \mathbb{R}^{r}\times \mathbb{C}^{2s}
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Note that the (r+j) ‐th coordinate of (5.13) is just the complex conjugate of its (r+s+j)‐th

coordinate (1\leq j\leq s) . Thus two points in the orbit of (1, 0, \ldots, 0)^{t} under $\tau$_{\mathrm{r}} are equal if and

only if the first r+s coordinates under the image of V^{-1} are equal. So, using the fact that

|$\epsilon$_{j}|<1 and picking \mathrm{z}= (zl, . . .

, z_{d})^{t}\in\{V^{-1}$\tau$_{\mathrm{r}}^{k}((1,0, \ldots, 0)^{t}) : 0\leq k<n\} implies that

(i) \mathrm{z} is an element of the lattice V^{-1}\mathbb{Z}^{d}.

(ii) If i\in\{1, . . . , r\} then z_{i}\in \mathbb{R} with

|z_{i}|\displaystyle \leq\prod_{\ell\neq i}|$\beta$_{i}-$\beta$_{\ell}|^{-1}\sum_{j=0}^{k-1}|$\beta$_{i}|^{j}.
(iii) If i\in\{1, . . . , s\} then z_{r+i}=\overline{z}_{r+s+i}\in \mathbb{C} with

|z_{r+i}|\displaystyle \leq\prod_{\ell\neq r+i}|$\beta$_{r+i}-$\beta$_{\ell}|^{-1}\sum_{j=0}^{k-1}|$\beta$_{r+i}|^{j}
=\sqrt{\prod_{\ell\neq r+i}|$\beta$_{r+i}-$\beta$_{\ell}|^{-1}\prod_{\ell\neq r+S+i}|$\beta$_{r}+S+i-$\beta$_{\ell}|^{-1}\sum_{j--0}^{k-1}|$\beta$_{r+i}|^{j}\sum_{j--0}^{k-1}|$\beta$_{r+S+i}|^{j}}.

Let disc ($\chi$_{\mathrm{r}})=\displaystyle \prod_{i\neq j}($\beta$_{i}-$\beta$_{j}) be the discriminant of $\chi$_{\mathrm{r}} . Then the three items above imply that

a point in \{V^{-1}$\tau$_{\mathrm{r}}^{k}((1,0, \ldots, 0)^{t}) : 0\leq k<n\} is a point of the lattice V^{-1}\mathbb{Z}^{d} that is contained

in a product K_{n} of disks and intervals with volume

\displaystyle \mathrm{V}\mathrm{o}\mathrm{l}(K_{n})=\frac{c}{|\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}($\chi$_{\mathrm{r}})|}\prod_{i=1}^{d}\sum_{j=0}^{k-1}|$\beta$_{i}^{j}|,
where c is an absolute constant. As \det(V)=\sqrt{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}($\chi$_{\mathrm{r}})} is the mesh volume of the lattice V^{-1}\mathbb{Z}^{d}

we get that this box cannot contain more than approximately

N_{n}=\displaystyle \frac{c}{\sqrt{|\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}($\chi$_{\mathrm{r}})|}}\prod_{i=1}^{d}\sum_{j=0}^{k-1}|$\beta$_{i}^{j}|
elements. If |$\beta$_{i}|<1 then \displaystyle \sum_{j=0}^{k-1}|$\beta$_{i}^{j}|=O(1) . Since $\chi$_{\mathrm{r}} is irreducible |$\beta$_{i}|=1 implies that $\beta$_{i} is

non‐real. If |$\beta$_{i}|=1 then we have the estimate \displaystyle \sum_{j=0}^{k-1}|$\beta$_{i}^{j}|=O(n) for this sum as well for the

conjugate sum. Let m be the number of pairs of non‐real roots of $\chi$_{\mathrm{r}} that have modulus 1. Then

these considerations yield that

(5.14) N_{n}\displaystyle \leq\frac{c}{\sqrt{|\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}($\chi$_{\mathrm{r}})|}}n^{2m}
Unfortunately, this estimate doesn�t allow us to get any conclusion on the periodicity of the

orbit of (1, 0, \ldots, 0)^{t} . We thus make the following assumption: we assume that for each fixed $\beta$_{i}
with |$\beta$_{i}|=1 the quantities |$\epsilon$_{j}$\beta$_{i}^{j}|(0\leq j\leq k-1) in (5.13) behave like identically distributed
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independent random variables. Then, according to the central limit theorem, we have that the

sums in (5.13) can be estimated by

|\displaystyle \sum_{j=0}^{k-1}$\epsilon$_{j}$\beta$_{i}^{j}|=O(\sqrt{n}) .

Using this argument, we can replace (5.14) by the better estimate

N_{n}\displaystyle \leq\frac{c}{\sqrt{|\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}($\chi$_{\mathrm{r}})|}}n^{m}
Suppose that m=1 . If |\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}($\chi$_{\mathrm{r}})| is large enough, the set \{V^{-1}$\tau$_{\mathrm{r}}^{k}((1,0, \ldots, 0)^{t}) : 0\leq k<n\}
would be contained in K_{n} which contains less than n points of the lattice V^{-1}\mathbb{Z}^{d} in it. Thus

there have to be some repetitions in the orbit of (1, 0, \ldots, 0)^{t} . This implies that it is periodic.
For m=2 and a sufficiently large discriminant the set \{V^{-1}$\tau$_{\mathrm{r}}^{k}((1,0, \ldots, 0)^{t}) : 0\leq k<n\}

would contain considerably more than \sqrt{N_{n}} �randomly chosen� points taken from a box with

N_{n} elements. Thus, according to the �birthday paradox� (for  n\rightarrow\infty ) with probability 1 the

orbit �picks� twice the same point, which again implies periodicity.
For  m>3 this model suggests that there may well exist aperiodic orbits as there are �too

many� choices to pick points. Summing up we come to the following conjecture.

Conjecture 5.14. Let \mathrm{r}\in E_{d}^{(\mathbb{C})} be a parameter with irreducible polynomial $\chi$_{\mathrm{r}} . Let m

be the number of pairs of complex conjugate roots ( $\alpha$,\overline{ $\alpha$}) of $\chi$_{\mathrm{r}} with | $\alpha$|=1 . Then almost every

orbit of (1, 0, \ldots, 0)^{t} under $\tau$_{\mathrm{r}} is periodic if m=1 or m=2 and aperiodic if m\geq 3.

Note that the cases m=1 and m=2 contain the Salem numbers of degree 4 and 6,

respectively. Moreover, Salem numbers of degree 8 and higher are contained in the cases m\geq 3.

This is in accordance with [26, Section 6].

§6. Shift radix systems with finiteness property: the sets \mathcal{D}_{d}^{(0)}

As was already observed by Akiyama et al. [4] the set \mathcal{D}_{d}^{(0)} can be constructed from the set

\mathcal{D}_{d} by �cutting out� families of convex polyhedra. Moreover, it is known that for d\geq 2 infinitely

many such �cut out polyhedra� are needed to characterize \mathcal{D}_{d}^{(0)} in this way (see Figure 1 for an

illustration of \mathcal{D}_{2}^{(0)} ).
A list  $\pi$ of pairwise distinct vectors

(6.1) (aj ,
. . .

, a_{d-1+j})^{t} (0\leq j\leq L-1)

with a_{L}=a_{0} ,
. . .

, a_{L+d-1}=a_{d-1} is called a cycle of vectors. To the cycle  $\pi$ we associate the

(possibly degenerate or empty) polyhedron

 P( $\pi$)= { (r_{0}, \ldots, r_{d-1}) : 0\leq r_{0}a_{j}+\cdots+r_{d-1}a_{d-1+j}+a_{d+j}<1 holds for 0\leq j\leq L-1 }.

By definition the cycle in (6.1) forms a periodic orbit of $\tau$_{\mathrm{r}} if and only if \mathrm{r}\in P( $\pi$) . Since \mathrm{r}\in \mathcal{D}_{d}^{(0)}
if and only if $\tau$_{\mathrm{r}} has no non‐trivial periodic orbit it follows that

\displaystyle \mathcal{D}_{d}^{(0)}=\mathcal{D}_{d}\backslash \bigcup_{ $\pi$\neq 0}P( $\pi$) ,
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where the union is taken over all non‐zero cycles  $\pi$ of vectors. The family of all (non‐empty)
polyhedra corresponding to this choice is called the family of cut out polyhedra of \mathcal{D}_{d}^{(0)}.

Example 6.1 (see [4]). Let  $\pi$ be a cycle of period 5 in \mathbb{Z}^{2} given by

(-1, -1)^{t}\rightarrow(-1,1)^{t}\rightarrow(1,2)^{t}\rightarrow(2,1)^{t}\rightarrow(1, -1)^{t}\rightarrow(-1, -1)^{t}

Then P( $\pi$) gives the topmost cut out triangle in the approximation of \mathcal{D}_{2}^{(0)} in Figure 1.

For d=1
,

the set \mathcal{D}_{1}^{(0)} can easily be characterized.

Proposition 6.2 (cf. [4, Proposition 4.4]).

\mathcal{D}_{1}^{(0)}=[0, 1) .

The proof is an easy exercise.

§6.1. Algorithms to determine \mathcal{D}_{d}^{(0)}
To show that a given point \mathrm{r}\in \mathcal{D}_{d} does not belong to \mathcal{D}_{d}^{(0)} it is sufficient to show that $\tau$_{\mathrm{r}}

admits a non‐trivial periodic orbit, i.e., to show that there is a polyhedron  $\pi$ with \mathrm{r}\in P( $\pi$) .

To prove the other alternative is often more difficult. We provide an algorithm (going back to

Brunotte [30]) that decides whether a given \mathrm{r}\in \mathcal{E}_{d} is in \mathcal{D}_{d}^{(0)} or not.

As usual, denote the standard basis vectors of \mathbb{R}^{d} by \{\mathrm{e}_{1}, . . . , \mathrm{e}_{d}\}.

Definition 6.3 (Set of witnesses). A set of witnesses associated with a parameter \mathrm{r}\in \mathbb{R}^{d}

is a set \mathcal{V}_{\mathrm{r}} satisfying

(i) \{\pm \mathrm{e}_{1}, . . . , \pm \mathrm{e}_{d}\}\subset \mathcal{V}_{\mathrm{r}} and

(ii) \mathrm{z}\in \mathcal{V}_{\mathrm{r}} implies that \{$\tau$_{\mathrm{r}}(\mathrm{z}), -$\tau$_{\mathrm{r}}(-\mathrm{z})\}\subset \mathcal{V}_{\mathrm{r}},

The following theorem justifies the terminology �set of witnesses�

Theorem 6.4 (see e.g. [4, Theorem 5.1]). Choose \mathrm{r}\in \mathbb{R}^{d} and let \mathcal{V}_{\mathrm{r}} be a set of witnesses

for r. Then

\mathrm{r}\in \mathcal{D}_{d}^{(0)} \Leftrightarrow for each \mathrm{z}\in \mathcal{V}_{\mathrm{r}} there is k\in \mathbb{N} such that $\tau$_{\mathrm{r}}^{k}(\mathrm{z})=0.

Proof. It is obvious that the left hand side of the equivalence implies the right hand side.

Thus assume that the right hand side holds. Assume that \mathrm{a}\in \mathbb{Z}^{d} has finite SRS expansion, i.e.,
there exists \ell\in \mathbb{N} such that $\tau$_{\mathrm{r}}^{\ell}(\mathrm{a})=0 and choose \mathrm{b}\in\{\pm \mathrm{e}_{1}, . . . , \pm \mathrm{e}_{d}\} . We show now that also

\mathrm{a}+\mathrm{b} has finite SRS expansion. As \mathcal{V}_{\mathrm{r}} is a set of witnesses, using Definition 6.3 (ii) we derive

from the almost linearity condition stated in (1.6) that

$\tau$_{\mathrm{r}}(\mathrm{a}+\mathcal{V}_{\mathrm{r}})\subset$\tau$_{\mathrm{r}}(\mathrm{a})+\mathcal{V}_{\mathrm{r}}.

Iterating this for \ell times and observing that \mathrm{b}\in \mathcal{V}_{\mathrm{r}} holds in view of Definition 6.3 (i), we gain

$\tau$_{\mathrm{r}}^{\ell}(\mathrm{a}+\mathrm{b})\in$\tau$_{\mathrm{r}}^{\ell}(\mathrm{a})+\mathcal{V}_{\mathrm{r}}=\mathcal{V}_{\mathrm{r}}.
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Thus our assumption implies that \mathrm{a}+\mathrm{b} has finite SRS expansion. Since 0 clearly has finite SRS

expansion, the above argument inductively proves that \mathrm{r}\in \mathcal{D}_{d}^{(0)}. \square 

For each \mathrm{r}\in \mathcal{E}_{d} we can now check algorithmically whether \mathrm{r}\in \mathcal{D}_{d}^{(0)} or not. Indeed, if \mathrm{r}\in \mathcal{E}_{d}
the matrix R(\mathrm{r}) is contractive. In view of (1.5) this implies that Algorithm 1 yields a finite set

of witnesses \mathcal{V}_{\mathrm{r}} for \mathrm{r} after finitely many steps. Since Proposition 3.1 ensures that each orbit of

$\tau$_{\mathrm{r}} is ultimately periodic for \mathrm{r}\in \mathcal{E}_{d} ,
the criterion in Theorem 6.4 can be checked algorithmically

for each \mathrm{z}\in \mathcal{V}_{\mathrm{r}}.

Algorithm 1 An algorithm to calculate the set of witnesses of a parameter \mathrm{r}\in \mathcal{E}_{d} (see [4,
Section 5])
Require: \mathrm{r}\in \mathcal{E}_{d}
Ensure: A set of witnesses \mathcal{V}_{\mathrm{r}} for \mathrm{r}

W_{0}\leftarrow\{\pm \mathrm{e}_{1}, . . . , \pm \mathrm{e}_{d}\}
i\leftarrow 0

repeat

W_{i+1}\leftarrow W_{i}\cup$\tau$_{\mathrm{r}}(W_{i})\cup(-$\tau$_{\mathrm{r}}(-W_{i}))
i\leftarrow i+1

until W_{i}=W_{i-1}

\mathcal{V}_{\mathrm{r}}\leftarrow W_{i}

We can generalize these ideas and set up an algorithm that allows to determine small regions
of the set \mathcal{D}_{d}^{(0)} . To this matter we define a set of witnesses for a compact set.

Definition 6.5 (Set of witnesses for a set). Let H\subset \mathbb{R}^{d} be a non‐empty compact set

and for \mathrm{z}= (z0, . . . , z_{d-1})\in \mathbb{Z}^{d} define the functions

(6.2) M(\displaystyle \mathrm{z})=\max\{-\lfloor \mathrm{r}\mathrm{z}\rfloor : \mathrm{r}\in H\},

T(\mathrm{z})=\{(z_{1}, \ldots, z_{d-1}, j)^{t}:-M(-\mathrm{z})\leq j\leq M(\mathrm{z})\}.

A set \mathcal{V}_{H} is called a set of witnesses for the region H if it satisfies

(i) \{\pm \mathrm{e}_{1}, . . . , \pm \mathrm{e}_{d}\}\subset \mathcal{V}_{H} and

(ii) \mathrm{z}\in \mathcal{V}_{H} implies that T(\mathrm{z})\subset \mathcal{V}_{H}.

A graph \mathcal{G}_{H} of witnesses for H is a directed graph whose vertices are the elements of a set

of witnesses \mathcal{V}_{H} for H and with a directed edge from \mathrm{z} to \mathrm{z}' if and only if \mathrm{z}'\in T(\mathrm{z}) .

Each cycle of a graph of witnesses \mathcal{G}_{H} is formed by a cycle of vectors (note that cycles of

graphs are therefore considered to be simple in this paper). If 0 is a vertex of \mathcal{G}_{H} then \mathcal{G}_{H}
contains the cycle 0\rightarrow 0 . We call this cycle trivial. All the other cycles in \mathcal{G}_{H} will be called

non‐trivial.

Lemma 6.6 (see [4, Section 5 The following assertions are true.
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(i) A set of witnesses forr is a set of witnesses for the region H=\{\mathrm{r}\} and vice versa.

(ii) Choose \mathrm{r}\in \mathcal{D}_{d} and let \mathcal{G}_{H} be a graph of witnesses for H=\{\mathrm{r}\} . If \mathrm{r}\not\in \mathcal{D}_{d}^{(0)} then \mathcal{G}_{H} has a

non‐trivial cycle  $\pi$ with \mathrm{r}\in P( $\pi$) .

(iii) A graph of witnesses for a compact set H is a graph of witnesses for each non‐empty compact

subset of H.

Proof. All three assertions are immediate consequences of Definitions 6.3 and 6.5. \square 

We will use this lemma in the proof of the following result.

Theorem 6.7 (see e.g. [4, Theorem 5.2]). Let H be the convex hull of the finite set \{\mathrm{r}_{1}, . . . , \mathrm{r}_{k}\}\subset
\mathcal{D}_{d} . If \mathcal{G}_{H} is a graph of witnesses for H then

\displaystyle \mathcal{D}_{d}^{(0)}\cap H=H\backslash \bigcup_{ $\pi$\in \mathcal{G}_{H} , $\pi$\neq 0}P( $\pi$)
where the union is extended over all non‐zero cycles of \mathcal{G}_{H} . Thus the set \mathcal{D}_{d}^{(0)}\cap H is described

by the graph \mathcal{G}_{H}.

Proof. As obviously

\displaystyle \mathcal{D}_{d}^{(0)}\cap H=H\backslash \bigcup_{ $\pi$\neq 0}P( $\pi$)\subset H\backslash \bigcup_{ $\pi$\in \mathcal{G}_{H} , $\pi$\neq 0}P( $\pi$)
it suffices to prove the reverse inclusion. To this matter assume that \mathrm{r}\not\in \mathcal{D}_{d}^{(0)}\cap H . W.l.o.g. we

may also assume that \mathrm{r}\in H . Then by Lemma 6.6 (iii) the graph \mathcal{G}_{H} is a graph of witnesses for

\{\mathrm{r}\} . Thus Lemma 6.6 (ii) implies that \mathcal{G}_{H} has a non‐trivial cycle  $\pi$ with \mathrm{r}\in P( $\pi$) and, hence,

\displaystyle \mathrm{r}\not\in H\backslash \bigcup_{ $\pi$\in \mathcal{G}_{H}}P( $\pi$) . \square 

Theorem 6.7 is of special interest if there is an algorithmic way to construct the graph \mathcal{G}_{H}.
In this case it leads to an algorithm for the description of \mathcal{D}_{d}^{(0)} in the region H.

To be more precise, assume that H\subset \mathcal{E}_{d} is the convex hull of a finite set \mathrm{r}_{1} ,
. . .

, \mathrm{r}_{k} . Then

the maximum M(\mathrm{z}) in (6.2) is easily computable and analogously to Algorithm 1 we can set up

Algorithm 2 to calculate the set of vertices of a graph of witnesses \mathcal{G}_{H} for H . As soon as we have

this set of vertices the edges can be constructed from the definition of a graph of witnesses. The

cycles can then be determined by classical algorithms (cf. e.g. [41]).
We need to make sure that Algorithm 2 terminates. To this matter set I(z) = {sz : \mathrm{s}\in H}.

As H is convex, this set is an interval. Thus, given \mathrm{z}
,

for each \mathrm{z}'\in T(\mathrm{z}) we can find \mathrm{r}\in H such

that

\mathrm{z}'=$\tau$_{(\mathrm{r}}(\mathrm{z})=R(\mathrm{r})\mathrm{z}+\mathrm{v} (for some \mathrm{v} with ||\mathrm{v}||_{\infty}<1 ).

As \mathrm{r}\in \mathcal{E}_{d} we can choose a norm that makes R(\mathrm{r}) contractive for a particular \mathrm{r} . However, in

general it is not possible to find a norm that makes R(\mathrm{r}) contractive for each \mathrm{r}\in H unless H
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Algorithm 2 An algorithm to calculate the set of witnesses of H\subset \mathcal{E}_{d} (see [4, Section 5])
Require: H\subset \mathcal{E}_{d} which is the convex hull of \mathrm{r}_{1} ,

. . .

, \mathrm{r}_{k}

Ensure: The states \mathcal{V}_{H} of a graph of witnesses \mathcal{G}_{H} for H

W_{0}\leftarrow\{\pm \mathrm{e}_{1}, . . . , \pm \mathrm{e}_{d}\}
i\leftarrow 0

repeat

W_{i+1}\leftarrow W_{i}\cup T(W_{i})
i\leftarrow i+1

until W_{i}=W_{i-1}

\mathcal{V}_{H}\leftarrow W_{i}

is small enough in diameter. Thus, in order to ensure that Algorithm 2 terminates we have to

choose the set H sufficiently small.

There seems to exist no algorithmic way to determine sets H that are �small enough� to

make Algorithm 2 finite. In practice one starts with some set H . If the algorithm does not

terminate after a reasonable amount of time one has to subdivide H into smaller subsets until

the algorithm terminates for each piece. This strategy has been used so far to describe large

parts of \mathcal{D}_{2}^{(0)} (see e.g. [8, 76]). Very recently, Weitzer [82] was able to design a new algorithm
which describes \mathcal{D}_{d}^{(0)}\cap H for arbitrary compact sets H\subset \mathcal{E}_{d} . He does not need any further

assumptions on H . Moreover, he is able to show that the set \mathcal{D}_{2}^{(0)} is not connected and has

non‐trivial fundamental group.

Remark 6.8. These algorithms can easily be adapted to characterize the sets \mathcal{D}_{d}^{(p)} used in

Section 5.1 (see [47, Section 6.1]).

We conclude this section with rhe following fundamental problem.

Problem 6.9. Give a complete description for \mathcal{D}_{d} if d\geq 2.

§6.2. The finiteness property on the boundary of \mathcal{E}_{d}

Let us now focus on the relation between the sets \mathcal{D}_{d}^{(0)} and \mathcal{E}_{d} . We already observed that

the application of $\tau$_{\mathrm{r}} performs a multiplication by the matrix R(\mathrm{r}) followed by a round‐off. If

\mathrm{r}\in\partial \mathcal{D}_{d} ,
then R(\mathrm{r}) has at least one eigenvalue of modulus 1. Thus multiplication by R(\mathrm{r}) will

not contract along the direction of the corresponding eigenvector \mathrm{v} . If we consider a typical

(large) orbit of $\tau$_{\mathrm{r}} ,
it is reasonable to assume that the successive �round‐off errors� will — even

though they may not cancel out by the heuristics given in Section 5.4 — not always draw the

orbit towards 0 . This would imply that such an orbit will sometimes not end up at 0 if it starts

far enough away from the origin in the direction of \mathrm{v} . More precisely, the following conjecture
was stated by Akiyama et al. [5].

Conjecture 6.10. For d\in \mathbb{N} we have

\mathcal{D}_{d}^{(0)}\subset \mathcal{E}_{d}.
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Figure 13. The subdivision of the parameter region used in the proof of Theorem 6.11

In other words: Let \mathrm{r}\in \mathbb{R}^{d} . If $\tau$_{\mathrm{r}} has the finiteness property then, according to the conjecture,
each of the eigenvalues of R(\mathrm{r}) has modulus strictly less than one. Since by Proposition 3.1

we have \mathcal{D}_{d}^{(0)}\subset \mathcal{D}_{d}\subset\overline{\mathcal{E}_{d}} it remains to check all parameters \mathrm{r} giving rise to a matrix R(\mathrm{r})
whose eigenvalues have modulus at most one with equality in at least one case. Therefore

Conjecture 6.10 is equivalent to

\mathcal{D}_{d}^{(0)}\cap\partial \mathcal{D}_{d}=\emptyset.
This is of course trivially true for d=1 (see Proposition 6.2). It has been proved for d=2 by

Akiyama et al. [8] (see Corollary 4.2). In the proofs for the cases d=1 and d=2 for all \mathrm{r}\in \mathcal{E}_{d},

explicit orbits that do not end up at 0 are constructed. For d=3 this seems no longer possible
for all parameters \mathrm{r}\in\partial \mathcal{E}_{d} . Nevertheless Brunotte and the authors could settle the instance

d=3.

Theorem 6.11 (cf. [32]).
\mathcal{D}_{3}^{(0)}\subset \mathcal{E}_{3}.

In the following we give a very rough outline of the idea of the proof. In Figure 2 we see the

set \mathcal{E}_{3} . The boundary of this set can be decomposed according to (3.6). Moreover, the following

parameterizations hold (see [47])

(6.3) E_{3}^{(1)}=\{(s, s+t+st, st+t+1) : -1\leq s, t\leq 1\},
(6.4) E_{3}^{(-1)}=\{(-s, s-t-st, st+t-1):-1\leq s, t\leq 1\} ,

and

(6.5) E_{3}^{(\mathbb{C})}=\{(t, st+1, s+t) : -2<s<2, -1\leq t\leq 1\}.

The sets E_{3}^{(1)} and E_{3}^{(-1)} can be treated easily, see Proposition 6.12 (i) and (ii). The more delicate

instance is constituted by the elements of E_{3}^{(\mathbb{C})} . Here the decomposition of the parameter region

depicted in Figure 13 is helpful.
Whereas for several subregions it is again possible to explicitly construct non‐trivial cycles

as in the instances mentioned above, this seems no longer the case e.g. for the regions labelled 1,

2, 3 or 5 in Figure 13. Here the following idea can be applied. For the parameters in the regions
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in question it can be proved that for large n the set $\tau$_{\mathrm{r}}^{-n}(0) ,
where $\tau$_{\mathrm{r}}^{-1} denotes the preimage of

$\tau$_{\mathrm{r}} ,
has finite intersection with a subspace that is bounded by two hyperplanes. Thereby it can

be concluded that some elements of this subspace belong to periodic orbits of $\tau$_{\mathrm{r}} that do not end

up at 0 without constructing these orbits explicitly.

Pethó [62] has studied the instance of the latter problem where some eigenvalues of R(\mathrm{r})
are roots of unity. In the following proposition we give a summary of the partial results known

for arbitrary dimensions.

Proposition 6.12. Assume that \mathrm{r}=(r_{0}, \ldots, r_{d-1})\in\partial \mathcal{D}_{d} . Then \mathrm{r}\not\in \mathcal{D}_{d}^{(0)} holds if one

of the following conditions is true.

(i) \mathrm{r}\in E_{d}^{(1)}.

(ii) \mathrm{r}\in E_{d}^{(-1)}.

(iii) r_{0}<0.

(iv) Each root of $\chi$_{\mathrm{r}} has modulus 1.

(v) There is a Salem number  $\beta$ such that (X- $\beta$)$\chi$_{\mathrm{r}}(X) ,
with $\chi$_{\mathrm{r}} as in (1.4), is the minimal

polynomial of  $\beta$ over \mathbb{Z}.

(vi) \mathrm{r}= (\displaystyle \frac{\pm 1}{p0},\frac{p_{d-1}}{p0}, \ldots,\frac{p_{1}}{p0}) with p_{0} ,
. . .

, p_{d-1}\in \mathbb{Z}.

Remark 6.13. Item (iii) is a special case of [9, Theorem 2.1]. Item (v) is a restatement

of the fact that beta expansions w.r. \mathrm{t} . Salem numbers never satisfy property (F), see e.g. [25,
Section 2] or [35, Lemma 1( \mathrm{b}) ]. Item (vi) is equivalent to the fact that CNS polynomials satisfying
the finiteness property need to be expanding (cf. [61, Theorem 6.1]; see also [52]).

Proof. In Item (i) we have that r_{0}+\cdots+r_{d-1}=-1 . Thus, choosing \mathrm{z}=(n, \ldots, n)^{t}\in \mathbb{Z}^{d}
we get that

$\tau$_{\mathrm{r}}(\mathrm{z})=(n, \ldots, n, -\lfloor \mathrm{r}\mathrm{z}\rfloor)^{t}=(n, \ldots, n, -\lfloor n(r_{0}+\cdots+r_{d-1})\rfloor)^{t}=(n, \ldots, n)^{t}

which exhibits a non‐trivial cycle for each n\neq 0 . Similarly, in Item (ii), we use the fact

that r_{0}-r_{1}+r_{2}-+\cdots+(-1)^{d-1}r_{d-1}=(-1)^{d-1} in order to derive $\tau$_{\mathrm{r}}^{2}(\mathrm{z})=\mathrm{z} for each

\mathrm{z}=(n, -n, \ldots, (-1)^{d-1}n)^{t}\in \mathbb{Z}^{d}.
To prove Item (iii) one shows that for r_{0}<0 there is a half‐space whose elements cannot

have orbits ending up in 0.

To show that the result holds when (iv) is in force, observe that this condition implies that

r_{0}\in\{-1, 1\} . This immediately yields $\tau$_{\mathrm{r}}^{-1}(0)=\{0\} and, hence, no orbit apart from the trivial

one can end up in 0.

In the proof of (v) one uses that a Salem number  $\beta$ has the positive conjugate  $\beta$^{-1} . As in

(iii) this fact allows to conclude that there is a half‐space whose elements cannot have orbits

ending up in 0.
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Item (vi) is proved using the fact that under this condition the polynomial $\chi$_{\mathrm{r}} has a root of

unity among its roots. \square 

§7. The geometry of shift radix systems

§7.1. SRS tiles

Let us assume that the matrix R(\mathrm{r}) is contractive and \mathrm{r} is reduced in the sense that \mathrm{r} does

not include leading zeros. Then, as it was observed by Berthé et al. [21] the mapping $\tau$_{\mathrm{r}} can

be used to define so‐called SRS tiles in analogy with the definition of tiles for other dynamical

systems related to numeration (cf. e.g. [3, 19, 20, 40, 43, 63, 69, 78]). As it will turn out some

of these tiles are related to CNS tiles and beta‐tiles in a way corresponding to the conjugacies
established already in Section 2. Formally we have the following objects.

Definition 7.1 (SRS tile). Let \mathrm{r}=(r_{0}, \ldots, r_{d-1})\in \mathcal{E}_{d} with r_{0}\neq 0 and \mathrm{x}\in \mathbb{Z}^{d} be given.
The set

\mathcal{T}_{\mathrm{r}}(\mathrm{x})=n\rightarrow\infty \mathrm{L}\mathrm{i}\mathrm{m}R(\mathrm{r})^{n}$\tau$_{\mathrm{r}}^{-n}(\mathrm{x})
(where the limit is taken with respect to the Hausdorff metric) is called the SRS tile associated

with \mathrm{r}. \mathcal{T}_{\mathrm{r}}(0) is called the central SRS tile associated with \mathrm{r} located at \mathrm{x}.

In other words in order to build \mathcal{T}_{\mathrm{r}}(\mathrm{x}) ,
the vectors are considered whose SRS expansion

coincides with the expansion of \mathrm{x} up to an added finite prefix and afterwards the expansion is

renormalized. We mention that the existence of this limit is not trivially true but can be assured

by using the contractivity of the operator R(\mathrm{r}) .

Example 7.2. Let \mathrm{r}= (\displaystyle \frac{4}{5}, -\frac{49}{50}) . Approximations of the tile \mathcal{T}_{\mathrm{r}}(0) are illustrated in

Figure 14.

The following Proposition summarizes some of the basic properties of SRS tiles.

Proposition 7.3 (cf. [21, Section 3 For each \mathrm{r}=(r_{0}, \ldots, r_{d-1})\in \mathcal{E}_{d} with r_{0}\neq 0 we

have the following results.

\bullet \mathcal{T}_{\mathrm{r}}(\mathrm{x}) is compact for all \mathrm{x}\in \mathbb{Z}^{d}.

\bullet The family \{\mathcal{T}_{\mathrm{r}}(\mathrm{x}) : \mathrm{x}\in \mathbb{Z}^{d}\} is locally finite.

\bullet \mathcal{T}_{\mathrm{r}}(\mathrm{x}) satisfies the set equation

\mathcal{T}_{\mathrm{r}}(\mathrm{x})= \cup R(\mathrm{r})\mathcal{T}_{\mathrm{r}}(\mathrm{y}) .

\mathrm{y}\in$\tau$_{\mathrm{r}}^{-1}(\mathrm{x})

\bullet The collection \{\mathcal{T}_{\mathrm{r}}(\mathrm{x}) : \mathrm{x}\in \mathbb{Z}^{d}\} covers \mathbb{R}^{d}
, i.e.,

(7.1) \displaystyle \bigcup_{\mathrm{x}\in \mathbb{Z}^{d}}\mathcal{T}_{\mathrm{r}}(\mathrm{x})=\mathbb{R}^{d}
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parameter \mathrm{r}= (\displaystyle \frac{4}{5}, -\frac{49}{50}) : the images show

Sketch of the proof. With respect to compactness observe first that Hausdorff limits are

closed by definition. Using inequality (3.1) it follows that every \mathcal{T}_{\mathrm{r}}(\mathrm{x}) , \mathrm{x}\in \mathbb{Z}^{d} ,
is contained in

the closed ball of radius R with center \mathrm{x} where

(7.2) R:=\displaystyle \sum_{n=0}^{\infty}\Vert R(\mathrm{r})^{n}(0, \ldots, 0,1)^{t}\Vert\leq\frac{\Vert(0,\ldots,0,1)^{t}\Vert}{1-\tilde{ $\rho$}}
which establishes boundedness.

Since \mathcal{T}_{\mathrm{r}}(\mathrm{x}) is uniformly bounded in \mathrm{x} and the set of �base points� \mathbb{Z}^{d} is a lattice, we also

get that the family of SRS tiles \{\mathcal{T}_{\mathrm{r}}(\mathrm{x}) : \mathrm{x}\in \mathbb{Z}^{d}\} is locally finite, that is, any open ball intersects

only a finite number of tiles of the family.

In order to establish the set equation observe that

\mathcal{T}_{\mathrm{r}}(\mathrm{x})=n\rightarrow\infty \mathrm{L}\mathrm{i}\mathrm{m}R(\mathrm{r})^{n}$\tau$_{\mathrm{r}}^{-n}(\mathrm{x})=R(\mathrm{r})_{n\rightarrow\infty}\mathrm{L}\mathrm{i}\mathrm{m} \cup R(\mathrm{r})^{n-1}$\tau$_{\mathrm{r}}^{-n+1}(\mathrm{y})
\mathrm{y}\in$\tau$_{\mathrm{r}}^{-1}(\mathrm{x})

=R(\mathrm{r}) \cup n\rightarrow\infty \mathrm{L}\mathrm{i}\mathrm{m}R(\mathrm{r})^{n-1}$\tau$_{\mathrm{r}}^{-n+1}(\mathrm{y})=R(\mathrm{r}) \cup \mathcal{T}_{\mathrm{r}}(\mathrm{y}) .

\mathrm{y}\in$\tau$_{\mathrm{r}}^{-1}(\mathrm{x}) \mathrm{y}\in$\tau$_{\mathrm{r}}^{-1}(\mathrm{x})

It remains to prove the covering property. The lattice \mathbb{Z}^{d} is obviously contained in the

union in (7.1). Thus, by the set equation, the same is true for R(\mathrm{r})^{k}\mathbb{Z}^{d} for each k\in \mathbb{N} . By the
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contractivity of R(\mathrm{r}) , compactness of \mathcal{T}_{\mathrm{r}}(\mathrm{x}) ,
and local finiteness of \{\mathcal{T}_{\mathrm{r}}(\mathrm{x}) : \mathrm{x}\in \mathbb{Z}^{d}\} the result

follows. \square 

In the following we analyze the specific role of the central tile (cf. [21]). Since 0\in$\tau$_{\mathrm{r}}^{-1}(0)
holds for each \mathrm{r}\in \mathcal{E}_{d} ,

the origin is always an element of the central tile. However, the question
whether or not 0 is contained exclusively in the central tile plays an important role in numer‐

ation. In the case of beta‐numeration, 0 is contained exclusively in the central beta‐tile (see
Definition 7.16 below) if and only if property (F) (compare (2.4)) is satisfied ([3, 35]), and a sim‐

ilar criterion holds for CNS (cf. [16]). It turns out that there is a corresponding characterization

for SRS with finiteness property (see [21]).

Definition 7.4 (Purely periodic point). Let \mathrm{r}\in \mathbb{R}^{d} . An element \mathrm{z}\in \mathbb{Z}^{d} is called purely

periodic point if $\tau$_{\mathrm{r}}^{p}(\mathrm{z})=\mathrm{z} for some p\geq 1.

Then we have the announced characterization.

Theorem 7.5 (see [21, Theorem 3.10]). Let \mathrm{r}=(r_{0}, \ldots, r_{d-1})\in \mathcal{E}_{d} with r_{0}\neq 0 and

\mathrm{x}\in \mathbb{Z}^{d} . Then 0\in \mathcal{T}_{\mathrm{r}}(\mathrm{x}) if and only if \mathrm{x} is purely periodic. There are only finitely many purely

periodic points.

Sketch of the proof. In order to establish that pure periodicity of \mathrm{x} implies that 0\in \mathcal{T}_{\mathrm{r}}(\mathrm{x})
observe first that by assumption we have \mathrm{x}=$\tau$_{\mathrm{r}}^{kp}(\mathrm{x}) . By the contractivity of the operator R(\mathrm{r})
it follows that 0=\displaystyle \lim_{p\rightarrow\infty}R(\mathrm{r})^{kp}\mathrm{x}\in \mathcal{T}_{\mathrm{r}}(\mathrm{x}) .

With respect to the other direction observe that by the set equation there is a sequence

(\mathrm{z}_{n})_{n\geq 1} with \mathrm{z}_{n}=$\tau$_{\mathrm{r}}^{-n}(\mathrm{x}) and 0\in R(\mathrm{r})^{n}\mathcal{T}_{\mathrm{r}}(\mathrm{z}_{n}) . Thus 0\in \mathcal{T}_{\mathrm{r}}(\mathrm{z}_{n}) . Therefore by the local

finiteness of \{\mathcal{T}_{\mathrm{r}}(\mathrm{x}) : \mathrm{x}\in \mathbb{Z}^{d}\} there are n, k\in \mathbb{N} such that \mathrm{z}_{n}=\mathrm{z}_{n+k} ,
hence \mathrm{x}=$\tau$_{\mathrm{r}}^{k}(\mathrm{x}) .

Observing the proof of the last proposition it follows that only points \mathrm{x}\in \mathbb{Z}^{d} with \Vert \mathrm{x}\Vert\leq R
with R as it (7.2), can be purely periodic. Note that the latter property was already proved
in [4]. \square 

There is an immediate consequence of the last theorem for SRS with finiteness property

(see [21]).

Corollary 7.6. Let \mathrm{r}=(r_{0}, \ldots, r_{d-1})\in \mathcal{E}_{d} with r_{0}\neq 0 be given. Then \mathrm{r}\in \mathcal{D}_{d}^{(0)} if and

only if 0\displaystyle \in \mathcal{T}_{\mathrm{r}}(0)\backslash \bigcup_{\mathrm{y}\neq 0}\mathcal{T}_{\mathrm{r}}(\mathrm{y}) .

In particular, for \mathrm{r}\in \mathcal{D}_{d}^{(0)} the central tile \mathcal{T}_{\mathrm{r}}(0) has non‐empty interior. Nevertheless the

following example demonstrates that the interior of \mathcal{T}_{\mathrm{r}}(\mathrm{x}) may be empty for certain choices of \mathrm{r}

and \mathrm{x}.

Example 7.7 (see [21]). Let \mathrm{r}= (\displaystyle \frac{9}{10}, -\frac{11}{20}) . Then, with the points

\mathrm{z}_{1}=(-1, -1)^{t}, \mathrm{z}_{2}=(-1,1)^{t} ,
\mathrm{Z} 3 =(1,2)^{t} ,

\mathrm{Z} 4 =(2,1)^{t} ,
\mathrm{Z} 5 =(1, -1)^{t},

we have the cycle

$\tau$_{\mathrm{r}}:\mathrm{z}_{1}\mapsto \mathrm{z}_{2}\mapsto \mathrm{z}_{3}\mapsto \mathrm{z}_{4}\mapsto \mathrm{z}_{5}\mapsto \mathrm{z}_{1}.
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Thus, each of these points is purely periodic. By direct calculation we see that

$\tau$_{\mathrm{r}}^{-1}(\mathrm{z}_{1})=\{(1, -1)^{t}\}=\{\mathrm{z}_{5}\},

and similarly $\tau$_{\mathrm{r}}^{-1}(\mathrm{z}_{i})=\{\mathrm{z}_{i-1}\} for i\in\{2 , 3, 4, 5 \} . Therefore, every tile \mathcal{T}_{\mathrm{r}}(\mathrm{z}) with  i\in

\{1 , 2, 3, 4, 5 \} ,
consists of the single point 0.

§7.2. Tiling properties of SRS tiles

We saw in Proposition 7.3 that the collection \{\mathcal{T}_{\mathrm{r}}(\mathrm{x}) : \mathrm{x}\in \mathbb{Z}^{d}\} is a covering of \mathbb{R}^{d} . In

[21] and [75] tiling properties of SRS tiles are proved. In the present section we review these

results. As their proofs are involved we refrain from reproducing them here and confine ourselves

to mention some main ideas.

We start with a basic definition (cf. [21, Definition 4.1]).

Definition 7.8 (Weak m‐tiling). Let \mathcal{K} be a locally finite collection of subsets of \mathbb{R}^{d} that

cover \mathbb{R}^{d} . The covering degree of \mathcal{K} is given by the number

\displaystyle \min\{\#\{K\in \mathcal{K} : \mathrm{t}\in K\} : \mathrm{t}\in \mathbb{R}^{d}\}.

The collection \mathcal{K} is called a weak m ‐tiling if its covering degree is m
,

and \displaystyle \bigcap_{j=1}^{m+1} int(K) =\emptyset for

each choice of pairwise disjoint elements  K_{1} ,
. . .

, K_{m+1} of \mathcal{K} . A weak 1‐tiling is called a weak

tiling.

There are several reasons why we emphasize on weak tilings. For a collection \mathcal{K} of subsets

of \mathbb{R}^{d} to be a tiling one commonly assumes that

\bullet each  K\in \mathcal{K} is the closure of its interior,

\bullet \mathcal{K} contains only finitely many different elements up to translation, and

\bullet the  d‐dimensional Lebesgue measure of \partial K is zero for each K\in \mathcal{K}.

In our setting, namely for the collection \{\mathcal{T}_{\mathrm{r}}(\mathrm{x}) : \mathrm{x}\in \mathbb{Z}^{d}\} ,
we already saw in Example 7.7 that

there exist elements having no inner points. Moreover, for some parameters we get infinitely

many different shapes of the tiles \mathcal{T}_{\mathrm{r}}(\mathrm{x}) ,
so that we do not have finiteness up to translation (this

is the case for instance for the SRS parameter r=-\displaystyle \frac{2}{3} associated with the \displaystyle \frac{3}{2} ‐number system,
see Example 7.24). Finally, in general, there seems to exist no known proof for the fact that the

boundary of \mathcal{T}_{\mathrm{r}}(\mathrm{x}) has measure zero (although we conjecture this to be true).
We start with a tiling result that is contained in [21, Theorem 4.6].

Theorem 7.9. Let \mathrm{r}= (r0, . . . , r_{d-1})\in \mathcal{E}_{d} with r_{0}\neq 0 be given and assume that \mathrm{r}

satisfies one of the following conditions.

\bullet \mathrm{r}\in \mathbb{Q}^{d} , or

\bullet (X- $\beta$)(X^{d}+r_{d-1}X^{d-1}+\cdots+r_{0})\in \mathbb{Z}[X] for some  $\beta$>1 ,
or
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\bullet  r_{0} ,
. . .

, r_{d-1} are algebraically independent over \mathbb{Q}.

Then the collection \{\mathcal{T}_{\mathrm{r}}(\mathrm{x}) : \mathrm{x}\in \mathbb{Z}^{d}\} is a weak m ‐tiling for some m\in \mathbb{N}.

If \mathcal{K} is a covering of degree m
,
then an m ‐exclusive point is a point that has a neighborhood

U such that each \mathrm{x}\in U is covered by exactly m elements of \mathcal{K} . The proof of Theorem 7.9 is

technical and deals with the construction of a dense set of m‐exclusive points. To prove that

a given parameter satisfying the conditions of Theorem 7.9 actually induces a weak tiling it is

obviously sufficient to exhibit a single 1‐exclusive point. For a given example this can often

be done algorithmically. If \mathrm{r}\in \mathcal{D}_{d}^{(0)} , Corollary 7.6 and Theorem 7.9 can be combined to the

following tiling result.

Corollary 7.10 (see [21, Corollary 4.7]). Let \mathrm{r}=(r_{0}, \ldots, r_{d-1})\in \mathcal{D}_{d}^{(0)}\cap \mathcal{E}_{d} with r_{0}\neq 0.

If \mathrm{r} satisfies one of the three items listed in the statement of Theorem 7.9, then the collection

\{\mathcal{T}_{\mathrm{r}}(\mathrm{x}) : \mathrm{x}\in \mathbb{Z}^{d}\} is a weak tiling.

In [75], for rational vectors \mathrm{r} a tiling result without restrictions was established.

Theorem 7.11. Let \mathrm{r}= (r0, . . . , r_{d-1})\in \mathcal{E}_{d} have rational coordinates and assume that

r_{0}\neq 0 . Then \{\mathcal{T}_{\mathrm{r}}(\mathrm{x}) : \mathrm{x}\in \mathbb{Z}^{d}\} is a weak tiling of \mathbb{R}^{d}.

The proof of this theorem is quite elaborate. Extending a theorem of Lagarias and Wang [54],
in [75] a tiling theorem for so‐called rational self‐ affine tiles is proved. These tiles are defined as

subsets of \displaystyle \mathbb{R}^{d}\times\prod_{\mathfrak{p}}K_{\mathfrak{p}} ,
where K_{\mathfrak{p}} are completions of a number field K that is defined in terms

of the roots of the characteristic polynomial of R(\mathrm{r}) . As the intersection of these tiles with the

�Euclidean part� \displaystyle \mathbb{R}^{d}\times\prod_{\mathfrak{p}}\{0\} of the representation space turn out to be SRS tiles corresponding
to rational parameters, this tiling theorem can be used to prove Theorem 7.11.

In the one‐dimensional case the situation becomes much easier and we get the following
result (here we identify the vector (r) with the scalar r ; see [21, Theorem 4.9 and its proof]).

Theorem 7.12. Let r\in \mathcal{E}_{1}\backslash \{0\} . Then \{\mathcal{T}_{r}(x) : x\in \mathbb{Z}\} is a tiling whose elements are

intervals. In particular,

\displaystyle \bigcup_{x\in \mathbb{Z}}\mathcal{T}_{r}(x)=\mathbb{R} with \#(\mathcal{T}_{r}(x)\cap \mathcal{T}_{r}(x'))\in\{0 ,
1 \} for distinct x, x'\in \mathbb{Z}.

Proof. We confine ourselves to r>0 (the case r<0 can be treated similar). Choose

x, y\in \mathbb{Z} with x_{0}<y_{0} . By the definition of $\tau$_{r} we get that -x_{1}<-y_{1} for all x_{1}\in$\tau$_{r}^{-1}(X) and

all y_{1}\in$\tau$_{r}^{-1}(y_{0}) . Iterating this for k times and multiplying by R(r)^{k}=(-r)^{k} we obtain that

x\in R(r)^{k}$\tau$_{r}^{-k} (x0), y\in R(r)^{k}$\tau$_{r}^{-k}(y_{0}) implies that x<y.

Taking the Hausdorff limit for  k\rightarrow\infty
,
the result follows by the definition of SRS tiles and taking

into account the fact that \{\mathcal{T}_{r}(x) : x\in \mathbb{Z}\} is a covering of \mathbb{R} by Proposition 7.3. \square 

There are natural questions related to the results of this subsection. Although it seems to

be unknown whether the collection \{\mathcal{T}_{\mathrm{r}}(\mathrm{x}) : \mathrm{x}\in \mathbb{Z}^{d}\} forms a weak m‐tiling for some m for each

\mathrm{r}\in \mathcal{E}_{d} we conjecture the following stronger result (which also contains the Pisot conjecture for

beta‐tiles, see e.g. [18, Section 7]).
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Conjecture 7.13. Let \mathrm{r}=(r_{0}, \ldots, r_{d-1})\in \mathcal{E}_{d} with r_{0}\neq 0 . Then \{\mathcal{T}_{\mathrm{r}}(\mathrm{x}) : \mathrm{x}\in \mathbb{Z}^{d}\} is a

weak tiling of \mathbb{R}^{d}.

Moreover, we state the following conjecture on the boundary of SRS tiles.

Conjecture 7.14. Let \mathrm{r}= (r0, . . . , r_{d-1})\in \mathcal{E}_{d} with r_{0}\neq 0 . Then the d‐dimensional

Lebesgue measure of \partial \mathcal{T}_{\mathrm{r}}(\mathrm{x}) is zero for each \mathrm{x}\in \mathbb{Z}^{d}.

Finally, we state a problem related to the connectivity of central SRS tiles (see also [21,
Section 7]). For d\in \mathbb{N} define the Mandelbrot set

\mathcal{M}_{d}=\{\mathrm{r}\in \mathcal{E}_{d} : \mathcal{T}_{\mathrm{r}}(0) is connected.

It is an easy consequence of Theorem 7.12 that \mathcal{M}_{1}=(-1,1) . However, we do not know anything
about \mathcal{M}_{d} in higher dimensions.

Problem 7.15. Describe the Mandelbrot sets \mathcal{M}_{d} for d\geq 2.

§7.3. SRS tiles and their relations to beta‐tiles and self‐affine tiles

Let  $\beta$ be a Pisot number and write the minimal polynomial of  $\beta$ as

(X - $\beta$)(X^{d}+r_{d-1}X^{d-1}+\cdots+r_{0})\in \mathbb{Z}[X].

Let \mathrm{r}=(r_{0}, \ldots, r_{d-1}) . Then, for every \mathrm{x}\in \mathbb{Z}^{d} ,
the SRS tile associated with  $\beta$ is the set

\displaystyle \mathcal{T}_{\mathrm{r}}(\mathrm{x})=\lim_{n\rightarrow\infty}R(\mathrm{r})^{n}$\tau$_{\mathrm{r}}^{-n}(\mathrm{x}) ,

with R(\mathrm{r}) as in (1.3),
The conjugacy between T_{ $\beta$} and $\tau$_{\mathrm{r}} proved in Proposition 2.4 suggests that there is some

relation between the SRS tiles \mathcal{T}_{\mathrm{r}}(\mathrm{x}) , \mathrm{x}\in \mathbb{Z}^{d} ,
and the tiles associated with beta‐numeration

(which have been studied extensively in the literature, see e.g. [3, 63 We recall the definition

of these �beta‐tiles�

Let $\beta$_{1} ,
. . .

, $\beta$_{d} be the Galois conjugates of  $\beta$ ,
numbered in a way that  $\beta$_{1} ,

. . .

, $\beta$_{r}\in \mathbb{R},

$\beta$_{r+1}=\overline{$\beta$_{r+s+1}} ,
. . .

, $\beta$_{r+s}=\overline{$\beta$_{r+2s}}\in \mathbb{C}, d=r+2s . Let further x^{(j)} be the corresponding

conjugate of x\in \mathbb{Q}( $\beta$) , 1\leq j\leq d ,
and $\Xi$_{ $\beta$} : \mathbb{Q}( $\beta$)\rightarrow \mathbb{R}^{d} ,

be the map

x\mapsto (x^{(1)}, . . . , x^{(r)}, \Re(x^{(r+1)}), \Im(x^{(r+1)}), . . . , \Re(x^{(r+s)}), \Im(x^{(r+s)})) .

Then we have the following definition.

Definition 7.16 (Beta‐tile, see [3, 21, 78 For x\in \mathbb{Z}[ $\beta$]\cap[0,1 ), the beta‐tile is the (com‐
pact) set

\displaystyle \mathcal{R}_{ $\beta$}(x)=\lim_{n\rightarrow\infty}$\Xi$_{ $\beta$}($\beta$^{n}T_{ $\beta$}^{-n}(x)) .

The integral beta‐tile is the (compact) set

S_{ $\beta$}(x)=\displaystyle \lim_{n\rightarrow\infty}$\Xi$_{ $\beta$}($\beta$^{n}(T_{ $\beta$}^{-n}(x)\cap \mathbb{Z}[ $\beta$])) .



Shift Radix Systems 51

With these definitions it holds that \mathrm{t}\in \mathcal{R}_{ $\beta$}(x) if and only if there exist c_{k}\in \mathbb{Z} with

\displaystyle \mathrm{t}=$\Xi$_{ $\beta$}(x)+\sum_{k=1}^{\infty}$\Xi$_{ $\beta$}($\beta$^{k-1}c_{k}) , \frac{c_{n}}{ $\beta$}+\cdots+\frac{c_{1}}{$\beta$^{n}}+\frac{x}{$\beta$^{n}}\in[0, 1) \forall n\geq 1,
and \mathrm{t}\in S_{ $\beta$}(x) if and only if there exist c_{k}\in \mathbb{Z} with

\displaystyle \mathrm{t}=$\Xi$_{ $\beta$}(x)+\sum_{k=1}^{\infty}$\Xi$_{ $\beta$}($\beta$^{k-1}c_{k}) , \frac{c_{n}}{ $\beta$}+\cdots+\frac{c_{1}}{$\beta$^{n}}+\frac{x}{$\beta$^{n}}\in[0, 1)\cap \mathbb{Z}[ $\beta$]\forall n\geq 1.
Observe that the �digits� c_{k} fulfill the greedy condition, compare (2.2). The following result

shows how SRS‐tiles are related to integral beta‐tiles by a linear transformation.

Theorem 7.17 (cf. [21, Theorem 6.7]). Let  $\beta$ be a Pisot number with minimal polyno‐
mial (X- $\beta$)(X^{d}+r_{d-1}X^{d-1}+\cdots+r_{0}) and d=r+2s Galois conjugates $\beta$_{1} ,

. . .

, $\beta$_{r}\in \mathbb{R},

$\beta$_{r+1} ,
. . .

, $\beta$_{r+2s}\in \mathbb{C}\backslash \mathbb{R} , ordered such that $\beta$_{r+1}=\overline{$\beta$_{r+s+1}} ,
. . .

, $\beta$_{r+s}=\overline{$\beta$_{r+2s}} . Let

X^{d}+r_{d-1}X^{d-1}+\cdots+r_{0}=(X-$\beta$_{j})(X^{d-1}+q_{d-2}^{(j)}X^{d-2}+\cdots+q_{0}^{(j)})

for 1\leq j\leq d and

U=[
Then we have

S_{ $\beta$} (rx) =U(R(\mathrm{r})- $\beta$ \mathrm{I})(\mathrm{x})

for every \mathrm{x}\in \mathbb{Z}^{d} , where \mathrm{r}=(r_{0}, \ldots, r_{d-1}) and I_{d} is the d‐dimensional identity matrix.

We omit the technical proof that, obviously, makes use of the conjugacy in Proposition 2.4

and refer the reader to [21]. One reason for the technical difficulties come from the fact that

although the integral beta‐tile associated with \mathcal{T}_{\mathrm{r}}(\mathrm{x}) is given by S_{ $\beta$}(\{\mathrm{r}\mathrm{x}\})=U(R(\mathrm{r})- $\beta$ I_{d})\mathcal{T}_{\mathrm{r}}(\mathrm{x}) ,

its �center� is $\Xi$_{ $\beta$}(\{\mathrm{r}\mathrm{x}\})=U($\tau$_{\mathrm{r}}(\mathrm{x})- $\beta$ \mathrm{x})=U(R(\mathrm{r})- $\beta$ I_{d})\mathrm{x}+U(0, \ldots, 0, \{\mathrm{r}\mathrm{x}\})^{t}.

Example 7.18. Let $\beta$_{1} be the Pisot unit given by the dominant root of X^{3}-X^{2}-X-1.

According to Proposition 2.4 the associated SRS parameter is \mathrm{r}=(1/$\beta$_{1}, $\beta$_{1}-1) . Using the

algorithm based on Theorem 6.4 one can easily show that \mathrm{r}\in \mathcal{D}_{2}^{(0)} . Thus Corollary 7.10 implies
that the collection \{\mathcal{T}_{\mathrm{r}}(\mathrm{x}) : \mathrm{x}\in \mathbb{Z}^{d}\} induces a tiling of \mathbb{R}^{2} . On the right hand side of Figure 15

a patch of this tiling is depicted. In view of Theorem 7.17 the beta‐tiles associated with $\beta$_{1} also

form a tiling which can be obtained from the SRS tiling just by an affine transformation.
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Figure 15. Two patches of tilings induced by SRS tiles: the left figure shows the tiling associated

with the parameter \mathrm{r}=(1/$\beta$_{1}, $\beta$_{1}-1) where $\beta$_{1} is the Pisot unit given by $\beta$_{1}^{3}=$\beta$_{1}^{2}+$\beta$_{1}+1 . It

is an affine image of the tiling induced by the (integral) beta‐tiles associated with the Pisot unit

$\beta$_{1} . The central tile is the classical Rauzy fr actal. The right patch corresponds to the parameter

\mathrm{r}=(2/$\beta$_{2}, $\beta$_{2}-2) where $\beta$_{2} is the (non‐unit) Pisot number given by $\beta$_{2}^{3}=2$\beta$_{2}^{2}+2$\beta$_{2}+2 . It

can also be regarded as (an affine transformation of) the tiling induced by the integral beta‐tiles

associated with $\beta$_{2}
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Similarly, let $\beta$_{2} be the (non‐unit) Pisot root of X^{3}-2X^{2}-2X-2 . Proposition 2.4 yields
the associated SRS parameter \mathrm{r}=(2/$\beta$_{2}, $\beta$_{2}-2) . Again, one can check that \mathrm{r}\in \mathcal{D}_{2}^{(0)} ,

and the

resulting tiling is depicted on the right hand side of Figure 15. As $\beta$_{2} is not a unit, the structure

of this tiling turns out to be more involved.

Proposition 7.19 (compare [3, 73 If  $\beta$ is a Pisot unit ($\beta$^{-1}\in \mathbb{Z}[ $\beta$]) , then

(i) \mathcal{R}_{ $\beta$}(x)=S_{ $\beta$}(x) for every x\in \mathbb{Z}[ $\beta$]\cap[0 , 1),

(ii) we have only finitely many tiles up to translation,

(iii) the boundary of each tile has zero Lebesgue measure,

(iv) each tile is the closure of its interior,

(v) \{S_{ $\beta$}(x) : x\in \mathbb{Z}[ $\beta$]\cap[0, 1)\} forms a multiple tiling of \mathbb{R}^{d},

(vi) \{S_{ $\beta$}(x) : x\in \mathbb{Z}[ $\beta$]\cap[0, 1)\} forms a tiling if (F) holds,

(vii) \{S_{ $\beta$}(x) : x\in \mathbb{Z}[ $\beta$]\cap[0, 1)\} forms a tiling iff (W) holds:

for every x\in \mathbb{Z}[ $\beta$]\cap[0 , 1) and every  $\epsilon$>0 ,
there exists some  y\in[0,  $\epsilon$ ) with finite beta‐

expansion such that  x+y has finite beta‐expansion.

Proof. Since T_{ $\beta$}^{-1}(\mathbb{Z}[ $\beta$])\subset \mathbb{Z}[1/ $\beta$]=\mathbb{Z}[ $\beta$] holds for a Pisot unit  $\beta$ ,
Assertion (i) is an imme‐

diate consequence of the definition. Assertion (ii) is contained in [3, Lemma 5], Assertion (iii)
is proved in [22, Theorem 5.3.12], and Assertion (iv) is contained in [73, Theorem 4.1] (both
of these results are stated in terms of substitutions rather than beta‐expansions). The tiling

properties are proved in [3]; property (W) has been further studied e.g. in [14]. \square 

In the following we turn our attention to tiles associated with expanding polynomials. Here

Proposition 2.10 suggests a relation between certain SRS tiles and the self‐affine tiles associated

with expanding monic polynomials defined as follows.

Definition 7.20 (Self‐affine tile, cf. [43]). Let A(X)=X^{d}+a_{d-1}X^{d-1}+\cdots+a_{0}\in \mathbb{Z}[X]
be an expanding polynomial and B the transposed companion matrix with characteristic poly‐
nomial A.

\displaystyle \mathcal{F}:=\{\mathrm{t}\in \mathbb{R}^{d}:\mathrm{t}=\sum_{i=0}^{\infty}B^{-i}(c_{i}, 0, \ldots, 0)^{t}, c_{i}\in \mathcal{N}\}
(\mathcal{N}=\{0, \ldots, |a_{0}|-1\}) is called the self‐ affine tile associated with A.

For this class of tiles the following properties hold.

Proposition 7.21 ([43, 54, 81

(i) \mathcal{F} is compact and self‐ affine.

(ii) \mathcal{F} is the closure of its interior.



54 P. Kirschenhofer and J. M. Thuswaldner

(iii) \{\mathrm{x}+\mathcal{F} : \mathrm{x}\in \mathbb{Z}^{d}\} induces a (multiple) tiling of \mathbb{R}^{d} . If A is irreducible \{\mathrm{x}+\mathcal{F} : \mathrm{x}\in \mathbb{Z}^{d}\}
forms a tiling of \mathbb{R}^{d}.

Proof. Assertion (i) is an immediate consequence of the definition of \mathcal{F} , see for instance [43].
In particular, note that \displaystyle \mathcal{F}=\bigcup_{\mathcal{C}\in \mathcal{N}}B^{-1}(\mathcal{F}+(c, 0, \ldots, 0)^{t}) where B=VR(\mathrm{r})^{-1}V^{-1} with

(7.3) \displaystyle \mathrm{r}=(\frac{1}{a_{0}}, \frac{a_{d-1}}{a_{0}}, \ldots, \frac{a_{1}}{a_{0}}) and V=(_{0\cdot\cdot 0}^{1a_{d.-1}}0\cdots\cdot.\cdot.\cdot.\cdot a_{d-1}^{a_{1}}1) .

To prove Assertion (ii) one first shows that \mathcal{F}+\mathbb{Z}^{d} forms a covering of \mathbb{R}^{d} . From this fact a

Baire type argument yields that int() \neq\emptyset . Using this fact the self‐affinity of \mathcal{F} yields (ii), see

[81, Theorem 2.1]. In assertion (iii) the multiple tiling property is fairly easy to prove, the tiling

property is hard to establish and was shown in [54] in a more general context. \square 

There is a close relation between the tile \mathcal{F} and the central SRS‐tile studied above.

Theorem 7.22. Let A(X)=X^{d}+a_{d-1}X^{d-1}+\cdots+a_{0}\in \mathbb{Z}[X] be an expanding polyno‐
mial. For all \mathrm{x}\in \mathbb{Z}^{d} we have

\mathcal{F}=V\mathcal{T}_{\mathrm{r}}(0) ,

\mathrm{x}+\mathcal{F}=V\mathcal{T}_{\mathrm{r}}(V^{-1}(\mathrm{x}))

where V is given in (7.3).

The result follows immediately from [21, Corollary 5.14].

Example 7.23. Continuing Example 2.12, let X^{2}+2X+2 be given. The self‐affine tile

associated with this polynomial is Knuth�s famous twin dragon. In view of Proposition 2.10,
the associated SRS parameter is \mathrm{r}= (\displaystyle \frac{1}{2},1) . Using Theorem 6.4 we see that \mathrm{r}\in \mathcal{D}_{2}^{(0)} ,

and

Corollary 7.10 can be invoked to show that the associated SRS tiles induce a tiling (see the left

side of Figure 16). According to Theorem 7.22 this tiling is an affine transformation of the tiling
\mathcal{F}+\mathbb{Z}^{d}.

Starting with the non‐monic polynomial 2X^{2}+3X+3 we get \mathrm{r}= (\displaystyle \frac{2}{3},1) and the tiling

depicted on the right side of Figure 16. We mention that also in the case of non‐monic polynomials
we have a tiling theory. These so‐called Brunotte tiles are defined and discussed in [21, Section 5].

We conclude this section with a continuation of Example 2.11.

Example 7.24 (The \displaystyle \frac{3}{2} ‐number system, continued). As shown in Example 2.11 the \displaystyle \frac{3}{2}-
number system defined in [10] is conjugate to the SRS $\tau$_{-2/3} . It has been shown in [21, Section 5.4]
that the tiling (see Theorem 7.12) induced by the associated SRS tiles

(7.4) \{\mathcal{T}_{-2/3}(x):x\in \mathbb{Z}\}
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Figure 16. Two patches of tiles induced by SRS tiles: the left figure shows the tiling associated

with the parameter \mathrm{r}=(1/2,1) . It is an affine image of the tiling induced by the CNS defined

by X^{2}+2X+2 . The central tile is Knuth�s twin dragon. The right patch corresponds to

the parameter \mathrm{r}=(2/3,1) . It can also be regarded as the Brunotte tiling associated with the

non‐monic expanding polynomial 2X^{2}+3X+3.

consists of (possibly degenerate) intervals with infinitely many different lengths. Essentially, this

is due to the fact that for each k\in \mathbb{N} we can find N_{k}\in \mathbb{Z} such that \#$\tau$_{-2/3}^{-k}(N_{k})=2 (see [21,
Lemma 5.18]). This can be used to show that the length \ell_{k} of the interval \mathcal{T}_{-2/3}(N_{k}) satisfies

\displaystyle \ell_{k}\in[(\frac{2}{3})^{k}, 3(\frac{2}{3})^{k}] ,
which immediately yields the existence of intervals of infinitely many different

lengths in (7.4).
It was observed in [75, Example 2.1] that the length \ell of the interval \mathcal{T}_{-2/3}(0) which is equal

to \ell=1.6227\cdots is related to a solution of some case of the Josephus problem presented in [58].

§8. Variants of shift radix systems

In the recent years some variants of SRS have been studied. Akiyama and Scheicher [15]
investigated ((symmetric� SRS. They differ from the ordinary ones just by replacing -\lfloor \mathrm{r}\mathrm{z}\rfloor by

-\displaystyle \lfloor \mathrm{r}\mathrm{z}+\frac{1}{2}\rfloor , i.e., the symmetric  SRS\hat{ $\tau$}_{\mathrm{r}} : \mathbb{Z}^{d}\rightarrow \mathbb{Z}^{d} is defined by

\displaystyle \hat{ $\tau$}_{\mathrm{r}}(\mathrm{z})=(z_{1}, \ldots, z_{d-1-}\lfloor \mathrm{r}\mathrm{z}+\frac{1}{2}\rfloor)^{t} (\mathrm{z}=(z_{0}, \ldots, z_{d-1})^{t}) .

It turns out that the characterization of the (accordingly defined) finiteness property is easier

in this case and complete results have been achieved for dimension two (see [15]) and three

(see [39]). As mentioned above, for SRS it is conjectured that SRS tiles always induce weak tilings.

Interestingly, this is not true for tiles associated with symmetric SRS. Kalle and Steiner [42] found

a parameter \mathrm{r} (related to a Pisot unit) where the associated symmetric SRS tiles form a double
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tiling (in this paper this is studied in the world of symmetric beta‐expansions; these are known

to be a special case of symmetric SRS, see [15]). Further generalizations of SRS are studied by
Surer [77]. Analogs for finite fields have been introduced by Scheicher [67]. Brunotte et al. [31]
define SRS for Gaussian integers. In this case the characterization problem for the finiteness

property is non‐trivial already in dimension one.

Acknowledgements. The authors wish to express their thanks to the scientific committees

of the international conferences �Numération 2011� in Liège, Belgium and �Numeration and

substitution: 2012� in Kyoto, Japan for inviting them to give expository lectures on shift radix

systems at these conferences. Moreover they are grateful to Shigeki Akiyama for inviting them

to write this survey for the present RIMS conference series volume. They also thank Wolfgang
Steiner for his help; he generated Figures 8, 15, and 16.

References

[1] R. Adler, B. Kitchens, and C. Tresser, Dynamics of non‐ergodic piecewise affine maps of the

torus, Ergodic Theory Dynam. Systems, 21 (2001), pp. 959999.

[2] S. Akiyama, Cubic Pisot units with finite beta expansions, in Algebraic number theory and Dio‐

phantine analysis (Graz, 1998), de Gruyter, Berlin, 2000, pp. 1126.

[3] —, On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc. Japan, 54

(2002), pp. 283308.

[4] S. Akiyama, T. Borbély, H. Brunotte, A. PethÓ, and J. M. Thuswaldner, Generalized

radix representations and dynamical systems. I, Acta Math. Hungar., 108 (2005), pp. 207238.

[5] —, Basic properties of shift radix systems, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 22

(2006), pp. 1925 (electronic).
[6] S. Akiyama, H. Brunotte, A. PethÓ, AND W. Steiner, Remarks on a conjecture on certain

integer sequences, Period. Math. Hungar., 52 (2006), pp. 117.

[7] —, Periodicity of certain piecewise affine planar maps, Tsukuba J. Math., 32 (2008), pp. 197‐

251.

[8] S. Akiyama, H. Brunotte, A. Pethó, and J. M. Thuswaldner, Generalized radix representa‐
tions and dynamical systems. II, Acta Arith., 121 (2006), pp. 2161.

[9] —, Generalized radix representations and dynamical systems. III, Osaka J. Math., 45 (2008),
pp. 347374.

[10] S. Akiyama, C. Frougny, and J. Sakarovitch, Powers of rationals modulo 1 and rational base

number systems, Israel J. Math., 168 (2008), pp. 5391.

[11] S. Akiyama and E. Harriss, Pentagonal domain exchange, submitted.

[12] S. Akiyama and A. PethÓ, On canonical number systems, Theor. Comput. Sci., 270 (2002),
pp. 921933.

[13] S. Akiyama and A. PethÓ, Discretized rotation has infinitely many periodic orbits, Nonlinearity,
26 (2013), pp. 871880.

[14] S. Akiyama, H. Rao, and W. Steiner, A certain finiteness property of Pisot number systems, J.

Number Theory, 107 (2004), pp. 135160.

[15] S. Akiyama and K. Scheicher, Symmetric shift radix systems and finite expansions, Math. Pan‐

non., 18 (2007), pp. 101124.

[16] S. Akiyama and J. M. Thuswaldner, Topological properties of two‐dimensional number systems,
J. Theor. Nomb. Bordx., 12 (2000), pp. 6979.

[17] P. Arnoux AND S. Ito, Pisot substitutions and Rauzy fr actals, Bull. Belg. Math. Soc. Simon Stevin,
8 (2001), pp. 181207. Journées Montoises d�Informatique Théorique (Marne‐la‐Vallée, 2000).



Shift Radix Systems 57

[18] V. Baker, M. Barge, and J. Kwapisz, Geometric realization and coincidence for reducible non‐

unimodular Pisot tiling spaces with an application to  $\beta$ ‐shiftts, Ann. Inst. Fourier (Grenoble), 56

(2006), pp. 22132248. Numération, pavages, substitutions.

[19] G. Barat, V. Berthé, P. Liardet, and J. Thuswaldner, Dynamical directions in numeration,
Ann. Inst. Fourier (Grenoble), 56 (2006), pp. 19872092. Numération, pavages, substitutions.

[20] V. Berthé and A. Siegel, Tilings associated with beta‐numeration and substitutions, Integers, 5

(2005), pp. A2, 46 pp. (electronic).
[21] V. Berthé, A. Siegel, W. Steiner, P. Surer, and J. M. Thuswaldner, Fractal tiles associated

with shift radix systems, Adv. Math., 226 (2011), pp. 139175.

[22] V. Berthé, A. Siegel, AND J. Thuswaldner, Substitutions, Rauzy fractals and tilings, in Com‐

binatorics, automata and number theory, vol. 135 of Encyclopedia Math. Appl., Cambridge Univ.

Press, Cambridge, 2010, pp. 248323.

[23] A. Bertrand, Développements en base de Pisot et répartition modulo 1, C. R. Acad. Sci. Paris Sér.

A‐B, 285 (1977), pp. A419−A421.

[24] D. Bosio and F. Vivaldi, Round‐off errors and  p ‐adic numbers, Nonlinearity, 13 (2000), pp. 309‐

322.

[25] D. W. Boyd, Salem numbers of degree fo ur have periodic expansions, in Théorie des nombres

(Quebec, PQ, 1987), de Gruyter, Berlin, 1989, pp. 5764.

[26] —, On the beta expansion for Salem numbers of degree 6, Math. Comp., 65 (1996), pp. 861875,
S29−S31.

[27] —, The beta expansion for Salem numbers, in Organic mathematics (Burnaby, BC, 1995), vol. 20

of CMS Conf. Proc., Amer. Math. Soc., Providence, RI, 1997, pp. 117131.

[28] L. Brand, The companion matrix and its properties, Amer. Math. Monthly, 71 (1964), pp. 629634.

[29] H. Bruin, A. Lambert, G. Poggiaspalla, and S. Vaienti, Numerical analysis for a discontin‐

uous rotation of the torus, Chaos, 13 (2003), pp. 558571.

[30] H. Brunotte, On trinomial bases of radix representations of algebraic integers, Acta Sci. Math.

(Szeged), 67 (2001), pp. 521527.

[31] H. Brunotte, P. Kirschenhofer, and J. M. Thuswaldner, Shift radix systems for Gaussian

integers and Pethó/�s loudspeaker, Publ. Math. Debrecen, 79 (2011), pp. 341356.

[32] —, Contractivity of three dimensional shift radix systems with finiteness property, J. Differ.

Equations Appl., 18 (2012), pp. 10771099.

[33] P. Burcsi and A. Kovács, Exhaustive search methods for CNS polynomials, Monatsh. Math., 155

(2008), pp. 421430.

[34] A. T. FAM and J. S. Meditch, A canonical parameter space for linear systems design, IEEE Trans.

Autom. Control, 23 (1978), pp. 454458.

[35] C. Frougny and B. Solomyak, Finite beta‐expansions, Ergodic Theory Dynam. Systems, 12

(1992), pp. 713723.

[36] W. J. Gilbert, Radix representations of quadratic fields, J. Math. Anal. Appl., 83 (1981), pp. 264‐

274.

[37] K. G. Hare and D. Tweedle, Beta‐expansions for infinite families of Pisot and Salem numbers,
J. Number Theory, 128 (2008), pp. 27562765.

[38] M. Hollander, Linear Numeration Systems, Finite Beta Expansions, and Discrete Spectrum of
Substitution Dynamical Systems, PhD. thesis, Washington University, Seattle, 1996.

[39] A. Huszti, K. Scheicher, P. Surer, and J. M. Thuswaldner, Three‐dimensional symmetric

shift radix systems, Acta Arith., 129 (2007), pp. 147166.

[40] S. Ito AND H. Rao, Atomic surfa ces, tilings and coincidence. I. Irreducible case, Israel J. Math.,
153 (2006), pp. 129155.

[41] D. B. Johnson, Finding all the elementary circuits of a directed graph, SIAM J. Comput., 4 (1975),
pp. 7784.

[42] C. Kalle and W. Steiner, Beta‐expansions, natural extensions and multiple tilings associated

with Pisot units, Trans. Amer. Math. Soc., 364 (2012), pp. 22812318.



58 P. Kirschenhofer and J. M. Thuswaldner

[43] I. Kátai and I. KÓRNYEI, On number systems in algebraic number fields, Publ. Math. Debrecen,
41 (1992), pp. 289294.

[44] I. Kátai and B. Kovács, Kanonische Zahlensysteme in der Theorie der Quadratischen Zahlen,
Acta Sci. Math. (Szeged), 42 (1980), pp. 99107.

[45] —, Canonical number systems in imaginary quadratic fields, Acta Math. Hungar., 37 (1981),
pp. 159164.

[46] I. Kátai and J. Szabó, Canonical number systems for complex integers, Acta Sci. Math. (Szeged),
37 (1975), pp. 255260.

[47] P. Kirschenhofer, A. Pethó, P. Surer, and J. M. Thuswaldner, Finite and periodic orbits

of shift radix systems, J. Théor. Nombres Bordeaux, 22 (2010), pp. 421448.

[48] P. Kirschenhofer, A. Pethó, and J. M. Thuswaldner, On a fa mily of three term nonlinear

integer recurrences, Int. J. Number Theory, 4 (2008), pp. 135146.

[49] D. E. Knuth, An imaginary number system, Comm. ACM, 3 (1960), pp. 245247.

[50] K. L. Kouptsov, J. H. Lowenstein, and F. Vivaldi, Quadratic rational rotations of the torus

and dual lattice maps, Nonlinearity, 15 (2002), pp. 17951842.

[51] B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Hungar., 37 (1981),
pp. 405407.

[52] B. Kovács and A. PethÓ, Number systems in integral domains, especially in orders of algebraic
number fields, Acta Sci. Math. (Szeged), 55 (1991), pp. 286299.

[53] J. Lagarias AND Y. Wang, Self‐ affine tiles in \mathbb{R}^{n}
,

Adv. Math., 121 (1996), pp. 2149.

[54] —, Integral self‐ affine tiles in \mathbb{R}^{n} II. lattice tilings, J. Fourier Anal. Appl., 3 (1997), pp. 83102.

[55] J. Lowenstein, S. Hatjispyros, and F. Vivaldi, Quasi‐periodicity, global stability and scaling
in a model of Hamiltonian round‐off� Chaos, 7 (1997), pp. 4966.

[56] J. H. Lowenstein AND F. Vivaldi, Anomalous transport in a model of Hamiltonian round‐off�
Nonlinearity, 11 (1998), pp. 13211350.

[57] K. Mahler, An unsolved problem on the powers of 3/2, J. Austral. Math. Soc., 8 (1968), pp. 313‐

321.

[58] A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math.

J., 33 (1991), pp. 235240.

[59] W. Parry, On the  $\beta$ ‐expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), pp. 401‐

416.

[60] W. Penney, A�binary� system for complex numbers, J. ACM, 12 (1965), pp. 247248.

[61] A. PethÓ, On a polynomial transfo rmation and its application to the construction of a public key
cryptosystem, in Computational number theory (Debrecen, 1989), de Gruyter, Berlin, 1991, pp. 31‐

43.

[62] —, On the boundary of the closure of the set of contractive polynomials, Integers, 9 (2009),
pp. 311—325.

[63] G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France, 110 (1982), pp. 147178.

[64] H. REEVE‐BLACK and F. Vivaldi, Near‐integrable behaviour in a fa mily of discretized rotations,

Nonlinearity, 26 (2013), pp. 12271270.

[65] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci.

Hungar, 8 (1957), pp. 477493.

[66] A. M. Rockett AND P. Szüsz, Continued fr actions, World Scientific Publishing Co. Inc., River

Edge, NJ, 1992.

[67] K. Scheicher,  $\beta$ ‐expansions in algebraic function fields over finite fields, Finite Fields Appl., 13

(2007), pp. 394410.

[68] K. Scheicher, P. Surer, J. M. Thuswaldner, and C. VAN DE Woestijne, Generalised canonical

number systems and digit systems, preprint.

[69] K. Scheicher and J. M. Thuswaldner, Canonical number systems, counting automata and

fractals, Math. Proc. Cambridge Philos. Soc., 133 (2002), pp. 163182.

[70] K. Scheicher and J. M. Thuswaldner, On the characterization of canonical number systems,



Shift Radix Systems 59

Osaka J. Math., 41 (2004), pp. 327351.

[71] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math.

Soc., 12 (1980), pp. 269278.

[72] I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. II, J. reine und

angew. Math, 148 (1918), pp. 122145.

[73] V. F. Sirvent AND Y. Wang, Self‐ affine tiling via substitution dynamical systems and Rauzy
fractals, Pacific J. Math., 206 (2002), pp. 465485.

[74] F. \mathrm{S}\mathrm{o}\mathrm{T}\mathrm{O} ‐EGUIBAR and H. MOYA‐CESSA, Inverse of the Vandermonde and Vandermonde confluent
matrices, Appl. Math. Inf. Sci., 5 (2011), pp. 361366.

[75] W. Steiner and J. M. Thuswaldner, Rational self‐ affine tiles, Trans. Amer. Math. Soc., to

appear.

[76] P. Surer, Characterisation results foor shift radix systems, Math. Pannon., 18 (2007), pp. 265297.

[77] —,  $\epsilon$ ‐shift radix systems and radix representations with shift ed digit sets, Publ. Math. (Debrecen),
74 (2009), pp. 1943.

[78] W. Thurston, Groups, tilings and finite state automata. AMS Colloquium Lecture Notes, 1989.

[79] F. Vivaldi, Periodicity and transport fr om round‐off errors, Experiment. Math., 3 (1994), pp. 303‐

315.

[80] F. Vivaldi and I. Vladimirov, Pseudo‐randomness of round‐off errors in discretized linear maps

on the plane, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), pp. 33733393.

[81] Y. Wang, Self‐ affine tiles, in Advances in Wavelet, K. S. Lau, ed., Springer, 1998, pp. 261285.

[82] M. Weitzer, Characterization algorithms foor shift radix systems with finiteness property, submit‐

ted.


