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Abstract

Algebraic GIFS is a class of graph‐directed iterated function systems (IFS) on \mathbb{R} with algebraic
parameters. A dual IFS of an algebraic GIFS can be constructed, and the duality between the two

systems and has been investigated from various points of view. We review the results of dual IFS

concerning the open set condition, purely periodic codings and the Rauzy‐Thurston tilings, and their

relation with previous studies.

Either a substitution or a numeration system can define an algebraic IFS in a natural way, and both

Rauzy fractals and  $\beta$‐tilings can be obtained as dual IFS. The dual IFS provides a unified and simple
framework for the theory of Rauzy fractals,  $\beta$‐tilings and related studies.

§1. Introduction

Let (V,  $\Gamma$) be a directed graph with vertex set V=\{1, \cdots, N\} and edge set  $\Gamma$ . Let

(1.1) \mathcal{F}=(f_{ $\gamma$} : \mathbb{R}^{n}\mapsto \mathbb{R}^{n})_{ $\gamma$\in $\Gamma$}

be a sequence of contraction maps. We call (V,  $\Gamma$, \mathcal{F}) a graph‐directed iterated function system

([35]), or an GIFS in short. Denote $\Gamma$_{i,j} the set of edges from vertex i to j . There exists a unique

family (E_{j})_{j\in V} of non‐empty compact sets in \mathbb{R}^{n} satisfying

(1.2) E_{i}=\displaystyle \bigcup_{j\in V}\bigcup_{ $\gamma$\in$\Gamma$_{i,j}}f_{ $\gamma$}(E_{j}) , i\in V ;

the family (E_{j})_{j\in V} is called the invariant sets of GIFS (1.1).
In this paper, we are interested in GIFS with algebraic parameters. Let  $\beta$ be an algebraic

number with minimal polynomial  P(x)=a_{d}x^{d}+\cdots+a_{1}x+a_{0} . Then  $\beta$ is called an algebraic

integer if  a_{n}=\pm 1 ,
is called an algebraic unit if a_{0}=\pm 1 in addition. Let \mathbb{Q}( $\beta$) denote the field

generated by  $\beta$ and the rational field \mathbb{Q}.
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Figure 1. Left: Graph of IFS (2.4) in Example 2.3. Right: Reverse graph.

Definition 1.1. A GIFS (f_{ $\gamma$} : \mathbb{R}\mapsto \mathbb{R})_{ $\gamma$\in $\Gamma$} is called an algebraic GIFS if there exists an

algebraic number  $\beta$>1 ,
such that for each  $\gamma$\in $\Gamma$,

(1.3) f_{ $\gamma$}(x)=\displaystyle \frac{x+b_{ $\gamma$}}{ $\beta$}
with b_{ $\gamma$}\in \mathbb{Q}( $\beta$) . We call  $\beta$ the expanding factor of the GIFS.

The construction of the dual IFS is motivated by the studies of Rauzy fractals and  $\beta$‐tilings.

Tiling systems arising from Pisot substitutions and  $\beta$‐numeration systems are introduced by

Rauzy [38] (1982) and Thurston [43] (1989), respectively. Since then, many people work on

this field since it is related to different areas such as tiling theory ([6,1,7,25,41]) ,
substitution

dynamical system([6,7,10,13, 36, 39]), number theory([1,3,10,26 spectral theory etc([3,8,
10, 25, 39]). The idea of constructing a dual IFS of an algebraic IFS has appeared implicitly or

explicitly in many papers ([38, 43, 21, 17, 9]). We shall see that dual IFS provides a unified and

simple framework for the theory of Rauzy fractals,  $\beta$‐tilings and related topics.
Let  s be the number of algebraic conjugates of  $\beta$ with modulus less than 1; we assume that

 s\geq 1 . Then the dual IFS of (1.3) is defined as (V, $\Gamma$', (F_{$\gamma$'} : \mathbb{R}^{S}\rightarrow \mathbb{R}^{S})_{ $\gamma$\in $\Gamma$}, ) ) where:

(1) (V, $\Gamma$') is the reverse graph of (V,  $\Gamma$) ,
that is, there is an edge $\gamma$'\in$\Gamma$' from j to i if and

only if there is an edge  $\gamma$\in $\Gamma$ from  i to j . (See Figure 1.)
(2) For each edge $\gamma$'\in$\Gamma$', F_{$\gamma$'} is the dual map of f_{ $\gamma$}(x)=\displaystyle \frac{x+b_{ $\gamma$}}{ $\beta$} ,

which is defined as

(1.4) F_{$\gamma$'}(y)=By+(b_{ $\gamma$})^{*},

where B is an s\times s matrix which can be regarded as the dual of  $\beta$ ,
and (b_{ $\gamma$})^{*} is a certain dual

of b_{ $\gamma$} . For precise definition, see Section 2.

The first part of the paper (Sec. 2‐4) is devoted to the definition and examples of dual

systems. The dual system is defined in Section 2. In Section 3 and 4, we study algebraic GIFS

and dual systems produced by substitutions and by numeration systems, respectively. Either a

substitution or a numeration system define a one‐dimensional algebraic IFS in a natural way,

which we call the induced IFS.

In Section 3, we define Rauzy fractals to be the invariant sets of the dual IFS of the induced

IFS of a substitution  $\sigma$
,

no matter the substitution is irreducible Pisot [6, 10, 25, 39], reducible

Pisot [7, 14], non‐Pisot [20] or non‐unimodular [11]. Indeed, using dual IFS, Rauzy fractals can

be defined for substitutions which are primitive and that the expanding factor  $\beta$ has at least one

conjugate less than 1 in modulus. (See Figure 2.)
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Figure 2. Rauzy fractals of irreducible type, reducible type and non‐Pisot type. Left: Rauzy
substitution (Example 3.1). Middle: Hokkaido substitution (Example 3.2). Right: A non‐Pisot

substitution (Example 3.3).

1

 $\beta$/( $\beta$+1)

-\mathrm{R}_{\ovalbox{\tt\small REJECT}}^{\ovalbox{\tt\small REJECT}}\ddot{ $\Delta$}

-1
-\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} \mathrm{t}1

.\underline{\mathrm{R}} 1

-\text{・\ovalbox{\tt\small REJECT}}*\sim $\tau$

- $\beta$/( $\beta$+1) -1

Figure 3. Left: Minimal weight transformation M_{ $\beta$} (Example 4.6). Right: The invariant sets of

the dual system of M_{ $\beta$}.

Recently, Kalle and Steiner [28] studied tiling systems arising from numeration systems. In

Section 4, we reformulate the discussion of Kalle and Steiner [28] in terms of dual system. This

new formulation avoids the discussion on admissibility of various expansions. In particular, when

 $\beta$ is a Pisot unit, we have the following interesting link (see Figure 3):
Piecewise‐linear  transf0ormation \rightarrow Induced algebraic  IFS\rightarrow Dual tiling system.

The second part of the paper (Sec. 5‐6) deals with the open set condition of the dual

systems. In section 5, we introduce the notions of containing ideal K and containing lattice  $\Sigma$

which are important tools.

The open set condition (OSC) is the most important separation condition in the theory of

GIFS. Rao, Wen and Yang [37] characterizes when a dual system satisfies the open set condition.

In particular, it is shown that the OSC of the original system implies the OSC of the dual system,
and the converse is also true if  $\beta$ is a Pisot unit. (See Section 6.)

The dual IFS is a useful way to construct higher dimensional self‐similar tiling system. \mathrm{A}

GIFS is called a self‐ similar tiling system (SST system) if the IFS satisfies the open set condition
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and its invariant sets have non‐empty interiors.

Theorem 1.2. ([37]) If an algebraic GIFS (f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} is an SST system, and its expanding

factor  $\beta$ is a Pisot unit, then its dual IFS is also an  SST system.

The third part of the paper (Sec. 7‐8) concentrates on a special class of algebraic IFS, called

feasible Pisot IFS.

Definition 1.3. An algebraic GIFS \mathcal{F} is called a feasible Pisot system if \mathcal{F} is a SST, the

expanding factor  $\beta$ is a Pisot unit, and the invariant sets of \mathcal{F} are intervals.

For a feasible Pisot system, we shall review results concerning periodic coding and the

Rauzy‐Thurston tilings, and their relation with previous studies.

The periodic  $\beta$‐expansion has been studied by K. Schmidt [40], Ito and Sano [27], S. Akiyama

[3], Ito and Rao [26]. The studies showed that if  $\beta$ is a Pisot unit, then the periodic  $\beta$‐expanions
are characterized by the Rauzy box of the associated algebraic GIFS. Kalle and Steiner general‐
ized this result to so‐called (generalized  $\beta$‐transformations�. Then [42] generalizes this result to

algebraic GIFS whose expanding factor is a Pisot unit. The Pisot non‐unit case has been studied

in Akiyama, Berthé and Siegel [11, 4].
For an algebraic IFS, we call \displaystyle \mathcal{R}=\bigcup_{j\in V}(I_{j}\times X_{j}) the Rauzy box, where (I_{j})_{j\in V} and (X_{j})_{j\in V}

are invariant sets of the original IFS and the dual IFS, respectively.

Theorem 1.4. ([42]) Let (f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} be a fe asible Pisot system. Then x\displaystyle \in\bigcup_{j\in V}I_{j} possesses

a periodic coding if and only if x\in \mathbb{Q}( $\beta$) and (x, -x^{*})\in \mathcal{R}.

The Rauzy‐Thurston tilings of general algebraic GIFS were constructed in [37]. It is shown

that actually there are two tilings of this type, which we denote by \mathcal{J}^{l} and \mathcal{J}^{r} ,
and call them

the left and right Rauzy‐Thurston (multiple) tiling, respectively. The collection \mathcal{J}^{l} is related to

the lower codings and \mathcal{J}^{r} is related to upper codings of \mathcal{F}.

Following the arguments in [25, 12, 28], it is not hard to show that Rauzy‐Thurston tilings
are self‐replicating and quasi‐periodic, and there is an integer m\geq 1 such that almost every

point of \mathbb{R}^{d-1} is covered by exactly m tiles. We call m the multiplicity of the multiple tiling, or

of \mathcal{F} . The following theorem illustrates some new properties of the Rauzy‐Thurston tiling.

Theorem 1.5. ([37]) Let \mathcal{J} be the left or the right Rauzy‐Thurston tiling of a fe asible

Pisot system. Then

(i) \mathcal{J} has a decomposition \displaystyle \mathcal{J}=\bigcup_{j=1}^{m}\mathcal{J}_{j} ,
where \mathcal{J}_{j} are tilings of \mathbb{R}^{d-1}.

(ii) \mathcal{L}^{d}(\mathcal{R})=m\mathcal{N}(K) ,
where \mathcal{L}^{d} denote the d‐dimensional Lebesgue measure, \mathcal{R} is the Rauzy

box, and \mathcal{N}(K) is the norm of the containing ideal K (see Section 5).

We say a feasible Pisot system is tight if the multiplicity m equals 1, or equivalently, \mathcal{L}^{d}(\mathcal{R})=
\mathcal{N}(K) . It is natural to ask that: under what condition, an algebraic GIFS is tight /? (A weaker

question is: when \displaystyle \mathcal{R}=\bigcup_{j\in V}(I_{j}\times X_{j}) is a disjoint union in measure?)
In the theory of substitution dynamical systems, one major problem is the Pisot Spectrum

Conjecture: Let  $\sigma$ be a unimodular Pisot substitution of irreducible type, then the correspond‐

ing substitution dynamical system has purely discrete spectrum. (See for instance [16].) This
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Figure 4. The Rauzy‐Thurston tiling of symmetric  $\beta$‐transform has two pages for  $\beta$ :  $\beta$^{3}=
$\beta$^{2}+ $\beta$+1 . ([28]). See also Example 4.5 and Section 8.2.

conjecture is confirmed in two letters case ([8,23]), but it is widely open in other cases. It is

well‐known that the Pisot specturum conjecture holds if and only if the induced GIFS of  $\sigma$ is

tight ([10, 25]).

Example 1.6. Consider the Fibonacci substitution:  1\mapsto 12, 2\mapsto 1 . Let  $\beta$ be the golden
number (\sqrt{5}+1)/2 and $\beta$' its conjugate. The induced GIFS and its dual IFS are

\left\{\begin{array}{l}
 $\beta$ I_{1}=I_{1}\cup(I_{2}+1)\\
 $\beta$ I_{2}=I_{1}
\end{array}\right. and \left\{\begin{array}{l}
X_{1}=$\beta$'X_{1}\cup$\beta$'X_{2}\\
X_{2}=$\beta$'X_{1}+1.
\end{array}\right.
It is easy to verify that I_{1}=[0 ,

1 ], I_{2}=[0, 1/ $\beta$], X_{1}=[-1, 1/ $\beta$], X_{2}=[1/ $\beta$,  $\beta$] . Hence

\mathcal{L}^{2}(\mathcal{R})=1\cdot $\beta$+1/ $\beta$\cdot 1= $\beta-\beta$',

which equals the norm of K=\mathbb{Z}[ $\beta$] . Hence m=1 and the spectral type is purely discrete.

In the previous studies, the main method to show the tightness is to confirm a super‐

coincidence condition ([25, 10]). (It is also called geometrical coincidence, and is called weakly

(F)‐property for  $\beta$‐tiling [3]). [37] gave a new criterion by using a notion of minimal regular

algebraic solution (Theorem 8.5).
Finally, we observe that if \mathcal{J}^{l}\neq \mathcal{J}^{r} ,

then a domain‐exchange transfO rmation can be defined

(Theorem 8.8). This generalizes the construction of Arnoux and Ito [6] for unimodular Pisot

substitutions.

The paper is organized as follows. In Section 2, we construct the dual system of an algebraic
IFS. Algebraic IFS induced by substitutions and numeration systems are discussed in Section 3

and Section 4, respectively. In Section 5, we introduce the notions containing ideal and containing
lattice. Section 6 is devoted to the open set condition of dual systems, and Theorem 6.2 is proved
there. Section 7 studies the periodic codings and Theorem 7.2 is proved there. Section 8, the

last section, is devoted to the Rauzy‐Thurston tilings.
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§2. Construction of dual IFS

Recall that an algebraic IFS (f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} with expanding factor  $\beta$ has the form  f_{ $\gamma$}(x)=\displaystyle \frac{x+b_{ $\gamma$}}{ $\beta$}
with b_{ $\gamma$}\in \mathbb{Q}( $\beta$) . Assume that at least one conjugate of  $\beta$ has modulus <1 . To define the dual

IFS, the crucial step is to define the dual map of f_{ $\gamma$}.
Denote the conjugates of  $\beta$ by  $\beta$_{2} ,

. . .

, $\beta$_{d} ,
which are ordered in the manner that

(2.1) |$\beta$_{2}|\geq\cdots\geq|$\beta$_{d-s}|\geq 1>|$\beta$_{d-s+1}|\geq\cdots\geq|$\beta$_{d}|,

and each pair of complex conjugates are put next to each other.

Since 1,  $\beta$ ,
. . .

,  $\beta$^{d-1} is a basis of \mathbb{Q}( $\beta$) , any x\in \mathbb{Q}( $\beta$) possesses a unique representation

x=\displaystyle \sum_{j=0}^{d-1}x_{j}$\beta$^{j} with x_{j}\in \mathbb{Q} . The Galois dual of x in the field \mathbb{Q}( $\beta$) is

x'=\displaystyle \sum_{j=0}^{d-1}x_{j}($\beta$_{2}^{j}, \cdots, $\beta$_{d}^{j})^{t}\in \mathbb{C}^{d-1},
where A^{t} denotes the transpose of A . To confine our discussion in real space, we replace each

pair of complex conjugate components (w,\overline{w})^{t} in x' by ({\rm Re} w, {\rm Im} w)^{t} ; we denote the resulted

vector in \mathbb{R}^{d-1} by \hat{x}
,

and call it the real version of x' . We define the contractive Galois dual of

x as

\displaystyle \sum_{j=0}^{d-1}x_{j}($\beta$_{d-s+1}^{j}, \cdots, $\beta$_{d}^{j})^{t}\in \mathbb{C}^{S},
and denote its real version by x^{*} . Next, define a contractive matrix

\mathrm{B}'= diag ($\beta$_{d-s+1}, \ldots, $\beta$_{d}) ,

then by replacing each block \left(w & \mathrm{W}\right) by C(w)=\left(\begin{array}{llll}
\mathrm{R}\mathrm{e} & w & -\mathrm{I}\mathrm{m} & w\\
\mathrm{I}\mathrm{m} & w & \mathrm{R}\mathrm{e} & w
\end{array}\right) ,
we obtain a real matrix and

denote it by B. (We call \mathrm{B} the real version of B

The dual map of f(x)=$\beta$^{-1}(x+b) with b\in \mathbb{Q}( $\beta$) is defined to be F:\mathbb{R}^{S}\rightarrow \mathbb{R}^{s},

F(y)=\mathrm{B}y+b^{*}

Definition 2.1. Let (V,  $\Gamma$, (f_{ $\gamma$})_{ $\gamma$\in $\Gamma$}) be an algebraic GIFS, we call (V, $\Gamma$', (F_{$\gamma$'})_{$\gamma$'\in$\Gamma$'}) its

dual GIFS, where $\Gamma$' is the reverse graph of  $\Gamma$
,

and  F_{$\gamma$'} is the dual map of f_{ $\gamma$}.

The following simple properties of the star operator * : \mathbb{Q}( $\beta$)\rightarrow \mathbb{R}^{S} will be used frequently.

Lemma 2.2. ([37])(i) Linearity: (a+b)^{*}=a^{*}+b^{*}.
(ii) Scaling property: ( $\beta$ a)^{*}=\mathrm{B}a^{*} . (This property determines the choice of C(w). )

§2.1. Associated set equations of dual GIFS

Let \displaystyle \mathcal{F}=(f_{ $\gamma$}(x)=\frac{x+b_{ $\gamma$}}{ $\beta$})_{ $\gamma$\in $\Gamma$} be an algebraic IFS. Recall that $\Gamma$_{i,j} is the set of edges from

vertex i to j ; set

\mathcal{D}_{i,j}:=\{b_{ $\gamma$}; $\gamma$\in$\Gamma$_{i,j}\}, i, j\in V.
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Let (I_{j})_{j\in V} be the invariant sets of \mathcal{F} , then according to (1.2), we have

(2.2)  $\beta$ I_{i}=\displaystyle \bigcup_{j\in V}(I_{j}+\mathcal{D}_{i,j}) , i\in V.
We call (2.2) the set equation form of \mathcal{F} , and call \displaystyle \mathcal{D}=\bigcup_{i,j}\mathcal{D}_{i,j}=\{b_{ $\gamma$}; $\gamma$\in $\Gamma$\} the digit set of

\mathcal{F} . Denote \mathcal{D}_{i,j}^{*}=\{b^{*};b\in \mathcal{D}_{i,j}\} ,
then the dual system of \mathcal{F} is given by ([17, 37])

(2.3) X_{i}=\displaystyle \bigcup_{j\in V}(\mathrm{B}X_{j}+\mathcal{D}_{j,i}^{*})
Example 2.3. Rauzy fractals of Rauzy substitution ([38]). Let  $\beta$ be the Pisot

number satisfying  $\beta$^{3}=$\beta$^{2}+ $\beta$+1 . Consider the GIFS

(2.4) \left\{\begin{array}{l}
 $\beta$ I_{1}=I_{1}\cup(I_{2}+1)\\
 $\beta$ I_{2}=I_{1}\cup(I_{3}+1)\\
 $\beta$ I_{3}=I_{1}.
\end{array}\right.
The invariant sets are I_{1}=[0 ,

1 ], I_{2}=[0, 1/ $\beta$+1/$\beta$^{2}], I3=[0, 1/ $\beta$] . The graph  $\Gamma$ of (2.4) and

its reverse graph are depicted in Figure 1, where the edges of  $\Gamma$ are labeled by letters  a, b, c, d, e,

and the corresponding edges in the reverse graph by a', b', c', d', e' . Then

f_{a}(x)=\displaystyle \frac{x}{ $\beta$}, f_{b}(x)=\frac{x+1}{ $\beta$}, f_{c}(x)=\frac{x}{ $\beta$}, f_{d}(x)=\frac{x+1}{ $\beta$}, f_{e}(x)=\frac{x}{ $\beta$}.
The algebraic conjugates of  $\beta$ are  $\beta$_{2}, $\beta$_{3}\approx 0.419\pm 0.606i . Hence

B\approx\left(\begin{array}{l}
0419-0606\\
0.4190.606
\end{array}\right)
The dual of 1 is 1^{*}=\mathrm{e}_{1}=(1,0)^{t} . Therefore, the dual IFS is:

F_{a'}(y)=By, F_{b'}(y)=By+\mathrm{e}_{1}, F_{c'}(y)=By, F_{d'}(y)=By+\mathrm{e}_{1}, F_{e'}(y)=By.

The set equation form of the dual IFS is:

(2.5) \left\{\begin{array}{l}
X_{1}=BX_{1}\cup BX_{2}\cup BX_{3}\\
X_{2}=BX_{1}+\mathrm{e}_{1}\\
X_{3}=BX_{2}+\mathrm{e}_{1}.
\end{array}\right.
The invariant sets of (2.5) are the famous Rauzy fractals of the Rauzy Rauzy substitution  1\mapsto

 12, 2\mapsto 13, 3\mapsto 1 . (See Figure 2 left.)

§3. Algebraic IFS arising from substitutions

Let  $\sigma$ be a primitive substitution over the alphabet  V=\{1, 2, . . . , N\} . Let M_{ $\sigma$}=(m_{i,j}) be

the incidence matrix of  $\sigma$
, i.e.,  m_{i,j} counts the number of letter i contained in the word  $\sigma$(j) . ( $\sigma$

is said to be primitive if  M_{ $\sigma$} is primitive.) Let  $\beta$ be the maximal eigenvalue of  M_{ $\sigma$}.  $\sigma$ is a Pisot
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substitution if  $\beta$ is a Pisot number; is unimodular if \det M_{ $\sigma$}=\pm 1 . Let (vl, . . .

, v_{N} ) be the left

eigenvector of M_{ $\sigma$} w.r.t.  $\beta$ with  v_{1}=1 ,
then it is a positive vector by Perron‐Frobenius Theorem.

Let $\Phi$_{ $\sigma$} be the characteristic polynomial of  M_{ $\sigma$}; $\sigma$ is of irreducible type if  $\Phi$_{ $\sigma$} is irreducible over

\mathbb{Q}.
Write  $\sigma$(j)=w_{j,1}\ldots w_{j,\ell_{j}} ,

then (I_{j}=[0, v_{j}])_{j\in V} are invariant sets of the IFS

(3.1)  $\beta$ I_{j}=I_{w_{j,1}}\cup(v_{w_{j,1}}+I_{w_{j,2}})\cup\cdots\cup(v_{w_{j,1}}+\cdots+v_{w_{j,\ell_{j}-1}}+I_{w_{j,\ell_{j}}}) , j\in V.
We call GIFS (3.1) the induced GIFS of  $\sigma$ . Clearly  v_{j}\in \mathbb{Q}( $\beta$) for j\in V ,

and the induced GIFS

is an algebraic IFS. Clearly the invariant sets of the dual system of (3.1) are Rauzy fractals of  $\sigma$.

Example 3.1. Rauzy substitution [38].

 $\sigma$:132\mapsto\mapsto\mapsto 11312 M_{ $\sigma$}=\left(\begin{array}{l}
111\\
100\\
010
\end{array}\right),
$\Phi$_{ $\sigma$}=x^{3}-x^{2}-x-1,

(v_{1}, v_{2}, v_{3})=(1, \displaystyle \frac{1}{ $\beta$}+\frac{1}{$\beta$^{2}}, \frac{1}{ $\beta$}) .

This substitution is a unimodular Pisot substitution of irreducible type. The induced IFS and

its dual IFS are given by (2.4) and (2.5) in Example 2.3, respectively.

Example 3.2. Hokkaido substitution [3].

 $\sigma$:14352\mapsto 1\mapsto 5\mapsto 4\mapsto 3\mapsto 12 M_{ $\sigma$}=(_{00100}^{10001^{\backslash }}00010/0100010000432\mapsto 5\mapsto 4\mapsto 3 M_{ $\sigma$}= 001000100010000
$\Phi$_{ $\sigma$}=(x^{3}-x-1)(x^{2}-x+1) ,

, $\beta$^{3}- $\beta$-1=0,

(v_{1}, v_{2}, V3, v_{4}, v_{5})=(1, \displaystyle \frac{1}{$\beta$^{4}}, \frac{1}{$\beta$^{3}}, \frac{1}{$\beta$^{2}}, \frac{1}{ $\beta$}) .

This substitution is a unimodular substitution of reducible type. The conjugates of  $\beta$ are ap‐

proximately -0.6624\pm 0.5623i and

B\approx\left(\begin{array}{l}
-0.66240.5623\\
-0.5623-0.6624
\end{array}\right)
The induced IFS of  $\sigma$ and its dual IFS are given by

\left\{\begin{array}{l}
 $\beta$ I_{1}=I_{1}\cup(I_{2}+1)\\
 $\beta$ I_{2}=I_{3}\\
 $\beta$ I_{3}=I_{4}\\
 $\beta$ I_{4}=I_{5}\\
 $\beta$ I_{5}=I_{1}.
\end{array}\right. and \left\{\begin{array}{l}
X_{1}=BX_{1}\cup BX_{5}\\
X_{2}=BX_{1}+\mathrm{e}_{1}\\
X_{3}=BX_{2}\\
X_{4}=BX_{3}\\
X_{5}=BX_{4}.
\end{array}\right.
The Rauzy fractals are depicted by Figure 2 (middle).

Example 3.3. A non‐Pisot substitution [20].

 $\sigma$:4321\mapsto\mapsto\mapsto\mapsto 423314214, M_{ $\sigma$}= \left(\begin{array}{l}
1001\\
0011\\
0110\\
1011
\end{array}\right), $\Phi$_{ $\sigma$}=x^{4}-3x^{3}+x^{2}+(v_{1},v_{2}, v_{3}, v_{4})=(1, $\beta$^{2}x+1=0-2 $\beta,\beta$^{3}-2$\beta$^{2},  $\beta$-1)
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This substitution is non‐Pisot and unimodular. The conjugates of  $\beta$ are approximately 1.3894, -0.3391\pm

 0.4466i . Hence

(3.2) B=\left(\begin{array}{ll}
a & b\\
-b & a
\end{array}\right)\approx\left(\begin{array}{l}
-0.33910.4466\\
-0.4466-0.3391
\end{array}\right)
The induced system is

\left\{\begin{array}{l}
 $\beta$ I_{1}=I_{1}\cup(I_{4}+v_{1})\\
 $\beta$ I_{2}=I3\\
 $\beta$ I_{3}=I_{4}\cup(I_{2}+v_{4})\cup(I_{3}+v_{4}+v_{2})\\
 $\beta$ I_{4}=I_{1}\cup(I_{4}+v_{1})\cup(I_{2}+v_{1}+v_{4}) .
\end{array}\right.
The dual system is (a, b are given by (3.2))

\left\{\begin{array}{l}
X_{1}=BX_{1}\cup BX_{4}\\
X_{2}=(BX_{3}+u_{1})\cup(BX_{4}+u_{2})\\
X_{3}=BX_{2}\cup(BX_{3}+u_{3})\\
X_{4}=(BX_{1}+\mathrm{e}_{1})\cup BX_{3}\cup(BX_{4}+\mathrm{e}_{1}) .
\end{array}\right.
where u_{1}=(a-1, b)^{t}, u_{2}=(a, b)^{t}, u_{3}=(a^{2}-b^{2}-a-1,2ab-b)^{t} . The Rauzy fractals, which

are �true� fractals, are depicted in Figure 2 (right).

§4. Algebraic IFS arising from numeration systems

A numeration system is typically determined by a piecewise linear map T on an interval I

with constant slope. The union of orbits of discontinuous points of T determines a finite partition

I=I_{1}\cup I_{2}\cup\cdots\cup I_{N}, . Each T(I_{j}) is a union of elements in the partition, hence an algebraic IFS

is obtained and its dual system can be defined. This section can be regarded as a reformulation

of the study of Kalle and Steiner [28], but our approach avoids the discussion on admissibility of

various expansions.
Let T : I=[a, b]\rightarrow I be a piecewise linear map with constant slope  $\beta$>1 . Denote by $\Omega$_{0}

the set of discontinuous points of T together with the end points a and b . Denote

T^{+}(x)=\displaystyle \lim_{y\rightarrow x+}T(y) and T^{-}(x)=\displaystyle \lim_{y\rightarrow x-}T(y)
where we set T^{+}(b)=T^{-}(b) and T^{-}(a)=T^{+}(a) . Let  $\Omega$ be the smallest set such that  $\Omega$_{0}\subset $\Omega$
and

 T^{+}( $\Omega$)\subset $\Omega$, T^{-}( $\Omega$)\subset $\Omega$.

In some sense,  $\Omega$ is the union of  T^{\pm} ‐orbits of discontinuous points of T . We assume that:

 $\beta$ is an algebraic number,  $\Omega$\subset \mathbb{Q}( $\beta$) and  $\Omega$ is a finite set. Then  $\Omega$ determines a partition

 I=I_{1}\cup I_{2}\cup\cdots\cup I_{N} (the intervals are from left to right). We call I_{j} basic intervals. Let

V=\{1, . . . , N\} . For j\in V ,
since T is continuous on I_{j}^{\mathrm{o}} ,

the interior of I_{j} ,
there exist d_{j} such

that

T(x)= $\beta$ x-d_{j}, x\in I_{j}^{\mathrm{o}}.
Since  $\beta$ I_{j}-d_{j} is an interval with end points in  $\Omega$

,
we have
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Theorem 4.1.  $\beta$(I_{j})-d_{j} is a union of consecutive basic intervals for each j\in V . That

is
,

there exists 1\leq l_{j}\leq r_{j}\leq N such that

(4.1)  $\beta$ I_{j}=(I_{l_{j}}\cup\cdots\cup I_{r_{j}})+d_{j}, j\in V.

We call GIFS (4 \cdot 1) the induced GIFS of  T.

In the following, as examples, we discuss three numeration systems: the classical  $\beta$‐expansion,
the symmetric  $\beta$‐expansion and the minimal weight expansion.

§4.1.  $\beta$‐numeration systems

For  $\beta$>1 ,
the  $\beta$‐transformation is  T_{ $\beta$} : [0, 1]\rightarrow[0 ,

1 ],

T_{ $\beta$}(x)= $\beta$ x-\lfloor $\beta$ x\rfloor.

Let T_{ $\beta$}^{+}=T_{ $\beta$}(x+) ,
set x_{n}=(T_{ $\beta$}^{+})^{n-1}(1) ,

and c_{n}= $\beta$ x_{n}-x_{n+1} for n\geq 1 . Then 1=

 0.c_{1}c_{2}\ldots is called the characteristic expansion of  $\beta$ (it is called carry sequence in [43]), where

 x_{-n}\ldots x_{-1}x_{0}.x_{1}x_{2}\ldots means \displaystyle \sum_{k=-n}^{\infty}x_{j}$\beta$^{-k} . Denote \mathrm{c}=c_{1}\mathrm{c}_{2}\ldots and \mathrm{c}_{k}=c_{k}c_{k+1}\ldots for

 k\geq 1 . A sequence (x_{k})_{k\geq 1}=x_{1}x_{2}\ldots over \{0, 1, . . . , \lfloor $\beta$\rfloor\} is weakly admissible (w.adm.) if

x_{n}x_{n+1}\cdots\preceq \mathrm{c} for all n\geq 1 ; is called admissible if x_{n}x_{n+1}\cdots\prec \mathrm{c} for all n\geq 1 ,
where \prec is the

lexicographic order.

Let  $\beta$ be a Parry number, that is, the characteristic expansion of  $\beta$

(4.2)  1=0.c_{1}c_{2}\cdots=0 .cl. . . c_{m}(c_{m+1}\ldots c_{m+p})^{\infty}

is eventually periodic [43].
The first IFS: The discontinuous points of T_{ $\beta$} are $\Omega$_{0}=\{0, 1, . . . , \lfloor $\beta$\rfloor\}/ $\beta$\cup\{1\} ,

and

 $\Omega$=$\Omega$_{0}\cup\{0.\mathrm{c}_{n};n\geq 1\}.

Let I=I_{1}\cup\cdots\cup I_{N'} be the partition determined by  $\Omega$ . Then an algebraic IFS can be

obtained by (4.1). However, this is not the  $\beta$‐tiling system introduced by Thurston [43].
The second IFS: To obtain the  $\beta$‐tiling system, we make a slightly modification by setting

 $\Omega$'=\{0\}\cup\{0.\mathrm{c}_{n};n\geq 1\} . ( $\Omega$' is the T_{ $\beta$} ‐orbit of 1 together with 0. ) Let

(4.3) [0, 1]=J_{1}\cup\cdots\cup J_{N}

be the partition determined by $\Omega$'
,

where N=m+p . Extending (4.3) periodically, we obtain a

tiling \mathcal{J} of \mathbb{R} with periodic 1. Clearly  $\beta$ J_{k} is a union of consecutive tiles in the tiling, and hence

a union of translations of the prototiles J_{1} ,
. . .

, J_{N} . Therefore

(4.4)  $\beta$ J_{k}=\cup\{T\in \mathcal{J};T\subset $\beta$ J_{k}\}, k\in V

give us an algebraic IFS, where V=\{1, . . . , N\}.
We recall the definition of the  $\beta$‐tiling system. Set \mathrm{s}_{0}=0^{\infty} and let \mathrm{s}_{1}\prec \mathrm{s}_{2}\prec\cdots\prec \mathrm{s}_{N} be

the ascendant list of the set \{\mathrm{c}_{n};n\geq 1\} . Denote

\mathrm{F}[ $\beta$]= {xn. . . x_{1}x_{0}.0 ; xn. . . x_{1}x_{0}0^{\infty} is admissible}
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to be the set of admissible  $\beta$‐expansions with  0 fractional part. For x=x_{n}\ldots x_{1}x_{0}.0\in \mathrm{F}[ $\beta$] ,
we

shall use \overline{x} to denote the word xn. . . x_{0} . Define

(4.5) Y_{k}= closure { x^{*};x\in \mathrm{F}[ $\beta$] and \overline{x}.\mathrm{s}_{k} is w.adm.}, k\in V.

If  $\beta$ is a Pisot unit, then (Y_{k})_{k\in V} are the tiles in the  $\beta$‐tiling system (Thurston [43]).

Theorem 4.2. If  $\beta$ is a Parry number, then (Y_{k})_{k\in V} in (4\cdot 5) are invariant sets of the

dual IFS of (4\cdot 4) .

Proof. We deduce the graph‐directed structure of (Y_{k})_{k\in V} first.

Y_{k}= closure \displaystyle \bigcup_{0\leq h\leq\lfloor $\beta$\rfloor} { (yh)^{*};y\in \mathrm{F}[ $\beta$] and \overline{y}\overline{h}.\mathrm{s}_{k} is w.adm.}
= closure \displaystyle \bigcup_{0\leq h\leq\lfloor $\beta$\rfloor} { By^{*}+h^{*};y\in \mathrm{F}[ $\beta$] and \overline{y}.\overline{h}\mathrm{s}_{k} is w.adm.}

If \overline{y}.\overline{h}\mathrm{s}_{k} is weakly admissible, then \mathrm{s}_{\ell-1}\prec\overline{h}\mathrm{s}_{k}\preceq \mathrm{s}_{\ell} for some 1\leq\ell\leq N ; in this case, \overline{y}.\overline{h}\mathrm{s}_{k}
is weakly admissible if and only if \overline{y}.\mathrm{s}_{\ell} is. Therefore (Y_{k})_{1\leq k\leq N} are the invariant sets of the

following IFS: V=\{1, . . . , N\},

$\Gamma$'=\{(k, \ell, h)\in V\times V\times\{0, 1, . . . , \lfloor $\beta$\rfloor\};\mathrm{s}_{\ell-1}\prec\overline{h}\mathrm{s}_{k}\preceq \mathrm{s}_{\ell}\},

and F_{$\gamma$'}(z)=Bz+h^{*} for $\gamma$'=(k, \ell, h) . (Here (k, \ell, h) means the h‐th edge from k to \ell. )
Pick  0\leq h\leq\lfloor $\beta$\rfloor ,

since  J_{k}=[0.\mathrm{s}_{k-1}, 0.\mathrm{s}_{k}], J_{k}+h\subset $\beta$ J_{\ell} if and only if \mathrm{s}_{\ell-1}\prec\overline{h}\mathrm{s}_{k}\preceq \mathrm{s}\ell ; on

the other hand,  J_{k}+h is apparently a tile in \mathcal{J} . Hence (J_{k})_{k\in V} are the invariant sets of the IFS

(f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} where  $\Gamma$ is the reverse graph of  $\Gamma$'
,

and  f_{ $\gamma$}(x)=(x+h)/ $\beta$ for  $\gamma$'=(k, \ell, h) . Therefore,

(F_{$\gamma$'})_{$\gamma$'\in$\Gamma$'} is the dual IFS of (f_{ $\gamma$})_{ $\gamma$\in $\Gamma$}. \square 

The third IFS: According to the characteristic expansion (4.2), we define a substitution

 $\sigma$=$\sigma$_{ $\beta$} over V=\{1, 2, . . . , N\} (where N=m+p ) by

(4.6) k\mapsto 1^{c_{k}}(k+1) , j\in V,

where we identify the symbols m+p+1 to the symbol m+1 . The IFS induced by  $\sigma$ is

(4.7)  $\beta$ I_{j}=\displaystyle \bigcup_{h=0}^{c_{j}-1}(I_{1}+h)\cup(I_{j+1}+c_{j}) , j\in V,
where we identify I_{m+p+1} to I_{m+1} . Clearly I_{j}=[0, 0.\mathrm{c}_{j}], j\in V.

Using a result (Theorem 7.1) on periodic codings which we list in Section 7, we provide a

very simple proof of Theorem 4.3. If  $\beta$ be a Pisot unit, this gives the relation between  $\beta$‐tiling
and Rauzy fractal tiling.

Theorem 4.3. Let (X_{j})_{j\in V} be the Rauzy fr actals of $\sigma$_{ $\beta$} ,
and (Y_{j})_{j\in V} be the invariant

sets of the dual IFS of (4\cdot 4) . Then

Y_{j}=\displaystyle \bigcup_{J_{j}\subset I_{k}}X_{k}, j\in V,
where (I_{j})_{j\in V} and (J_{j})_{j\in V} are invariants of the original systems, respectively.
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Figure 5. Left:  $\beta$‐transformation system with  $\beta$^{3}= $\beta$+1 . Right: Symmetric  $\beta$‐transformation

with  $\beta$^{3}=$\beta$^{2}+ $\beta$+1.

Proof. First, using a result we shall prove in Section 8, we show the two systems have the

same Rauzy box, i.e., \displaystyle \bigcup_{j\in V}J_{j}\times Y_{j}=\bigcup_{k\in V}I_{k}\times X_{k}.
Let \mathcal{P}_{1} be the set of x\displaystyle \in\bigcup_{j\in V}I_{j} having a periodic coding w.r. \mathrm{t} . the induced IFS of $\sigma$_{ $\beta$} . It

is easy to show that Per (T_{ $\beta$})\subset \mathcal{P}_{1}\subset \mathrm{P}\mathrm{e}\mathrm{r}(T_{ $\beta$})\mathrm{U} $\Omega$ . The same conclusion holds for the induced

IFS (4.4). Moreover, the graphs of the two systems are strongly connected. Hence the Rauzy
boxes of the two systems coincide by Theorem 7.1.

For any  j\in V ,
the intersections of the Rauzy boxes with J_{j}^{\mathrm{o}}\times \mathbb{R}^{S} coincides, that is,

J_{j}^{\mathrm{o}}\displaystyle \times Y_{j}=\bigcup_{J_{j}\subset I_{k}}J_{j}^{\mathrm{o}}\times X_{k}.
The theorem follows. \square 

Example 4.4. Let  $\beta$ be the Pisot number satisfying  $\beta$^{3}= $\beta$+1 ,
which has appeared in

Hokkaido substitution. The characteristic sequence of  $\beta$ is

 1=0.(10000)^{\infty}

Hence $\Omega$'= $\Omega$=\{0 , 0.0001, 0.001, 0.01, 0.1, 1 \} and the corresponding partition is [0, 1]=J_{1}\cup
. . . \cup J_{5} where

J_{1}=[0 , 0.0001 ], J_{2}= [0.0001, 0.001], J_{3}= [0.001, 0.01], J_{4}=[0.01, 0.1], J_{5}=[0.1, 1].

(See Figure 5 (left).) The induced IFS and its dual IFS are given by

\left\{\begin{array}{l}
 $\beta$ J_{1}=J_{1}\cup J_{2}\\
 $\beta$ J_{2}=J_{3}\\
 $\beta$ J_{3}=J_{4}\\
 $\beta$ J_{4}=J_{5}\\
 $\beta$ J_{5}=J_{1}+1
\end{array}\right. and \left\{\begin{array}{l}
Y_{1}=BY_{1}\cup(BY_{5}+\mathrm{e}_{1})\\
Y_{2}=BY_{1}\\
Y_{3}=BY_{2}\\
Y_{4}=BY_{3}\\
Y_{5}=BY_{4}.
\end{array}\right.
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The invariant sets are given by

 Y_{1}=X_{1}\cup X_{5}\cup X_{4}\cup X_{3}\cup X_{2}

Y_{2}=X_{1}\cup X_{5}\cup X_{4}\cup X_{3}

Y_{3}=X_{1}\cup X_{5}\cup X_{4}

Y_{4}=X_{1}\cup X_{5}

Y_{5}=X_{1},

where X_{j} �s are Rauzy fractals in Example 3.2 (see also Figure 2 (right)). The order is determined

by \mathrm{c}_{1}>\mathrm{c}_{5}>\mathrm{c}_{4}>\mathrm{c}_{3}>\mathrm{c}_{2} since I_{k}=[0, 0.\mathrm{c}_{k}].

§4.2. Symmetric  $\beta$‐expansions

Akiyama and Scheicher [5] introduced symmetric  $\beta$‐expansion. The symmetric  $\beta$ ‐transfO rmation

is defined as (see Figure 5 (right))

(4.8)  S_{ $\beta$}(x)= $\beta$ x-\displaystyle \lfloor $\beta$ x+\frac{1}{2}\rfloor, x\in[-1/2, 1/2].
Example 4.5. [28] Let  $\beta$ be the Pisot number satisfying  $\beta$^{3}=$\beta$^{2}+ $\beta$+1 ,

which has

appeared in Rauzy substitution. The union of orbits of discontinuous points of S_{ $\beta$} is

 $\Omega$=\displaystyle \{-\frac{1}{2}, -\frac{1}{2 $\beta$}, -\frac{1}{2$\beta$^{2}}, -\frac{1}{2$\beta$^{3}}, \frac{1}{2$\beta$^{3}}, \frac{1}{2$\beta$^{2}}, \frac{1}{2 $\beta$}, \frac{1}{2}\},
which determines a partition [-1/2, 1/2] =I_{1}\cup I_{2}\cup I_{3}\cup I_{0}\cup J_{3}\cup J_{2}\cup J_{1} (from left to right). It

is easy to verify that the induced IFS of S_{ $\beta$} and its dual IFS are

(4.9) \left\{\begin{array}{l}
 $\beta$ I_{0}=I_{3}\cup I_{0}\cup J_{3}\\
 $\beta$ I_{1}=(J_{3}\cup J_{2}\cup J_{1})-1\\
 $\beta$ I_{2}=I_{1}\\
 $\beta$ I_{3}=I_{2}\\
 $\beta$ J_{1}=(I_{1}\cup I_{2}\cup I_{3})+1\\
 $\beta$ J_{2}=J_{1}\\
 $\beta$ J_{3}=J_{2}.
\end{array}\right. and \left\{\begin{array}{l}
X_{0}=BX_{0}\\
X_{1}=(BY_{1}+\mathrm{e}_{1})\cup BX_{2}\\
X_{2}=(BY_{1}+\mathrm{e}_{1})\cup BX_{3}\\
X_{3}=(BY_{1}+\mathrm{e}_{1})\cup BX_{0}\\
Y_{1}=(BX_{1}-\mathrm{e}_{1})\cup BY_{2}\\
Y_{2}=(BX_{1}-\mathrm{e}_{1})\cup BY_{3}\\
Y_{3}=(BX_{1}-\mathrm{e}_{1})\cup BX_{0},
\end{array}\right.
where B is the same as that in Example 2.3. (Notice that the graph  $\Gamma$ is not strongly connnected.)

From (4.9) (right), it is seen that  X_{3}\subset X_{2}\subset X_{1}, Y_{3}\subset Y_{2}\subset Y_{1} ,
and X_{j}=-Y_{j} for

j=1 , 2, 3. The invariant sets are depicted by Figure 6 where X_{1}=A_{1}\cup A_{2}\cup A_{3}, X_{2}=A_{1}\cup A_{2},

X_{3}=A_{1}.

§4.3. Minimal weight expansion

The minimal weight expansion is introduced by Frougny and Steiner [19]. Let  $\beta$>1 be

a real number, the minimal weight transfO rmation is defined on I= [- \displaystyle \frac{ $\beta$}{ $\beta$+1}, \frac{ $\beta$}{ $\beta$+1}] as: W_{ $\beta$}(x)=

\left\{\begin{array}{ll}
 $\beta$ x+1, & \mathrm{i}\mathrm{f} x\in[-\frac{ $\beta$}{ $\beta$+1}, -\frac{1}{ $\beta$+1}]\\
 $\beta$ x, & \mathrm{i}\mathrm{f} x\in]-\frac{1}{ $\beta$+1}, \frac{1}{ $\beta$+1}]\\
 $\beta$ x-1, & \mathrm{i}\mathrm{f} x\in]\frac{1}{ $\beta$+1}, \frac{ $\beta$}{ $\beta$+1}].
\end{array}\right.
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Figure 6. Invariant sets of dual system of symmetric  $\beta$‐transformation.

Example 4.6. [28] Let  $\beta$ be the Pisot number satisfying  $\beta$^{3}=$\beta$^{2}+ $\beta$+1 ,
which is the

same as Example 4.5. The union of orbits of the discontinuous points of W_{ $\beta$} is

 $\Omega$=\displaystyle \{-\frac{ $\beta$}{ $\beta$+1}, -\frac{1}{ $\beta$+1}, -\frac{1/ $\beta$}{ $\beta$+1}, \frac{1/ $\beta$}{ $\beta$+1}, \frac{1}{ $\beta$+1}, \frac{ $\beta$}{ $\beta$+1}\},
which determines a partition I=I_{1}\cup I_{2}\cup I_{0}\cup J_{2}\cup J_{1} . The induced IFS is

\left\{\begin{array}{l}
W_{ $\beta$}(I_{1})=I_{0}\cup J_{2}\\
W_{ $\beta$}(I_{2})=I_{1}\\
W_{ $\beta$}(I_{0})=I_{2}\cup I_{0}\cup J_{2}\\
W_{ $\beta$}(J_{2})=J_{1}\\
W_{ $\beta$}(J_{1})=I_{2}\cup I_{0}.
\end{array}\right. or \left\{\begin{array}{l}
 $\beta$ I_{1}=(I_{0}\cup J_{2})-1\\
 $\beta$ I_{2}=I_{1}\\
 $\beta$ I_{0}=I_{2}\cup I_{0}\cup J_{2}\\
 $\beta$ J_{2}=J_{1}\\
 $\beta$ J_{1}=(I_{2}\cup I_{0})+1.
\end{array}\right.
The dual IFS is (the matrix B is the same as Example 4.5)

\left\{\begin{array}{l}
X_{1}=BX_{2}\\
X_{2}=BX_{0}\cup(BY_{1}+\mathrm{e}_{1})\\
X_{0}=(BX_{1}-\mathrm{e}_{1})\cup BX_{0}\cup(BY_{1}+\mathrm{e}_{1})\\
Y_{2}=BX_{0}\cup(BX_{1}-\mathrm{e}_{1})\\
Y_{1}=BY_{2}.
\end{array}\right.
Similar to Example 4.5, we have X_{j}=-Y_{j}, X_{1}\subset X_{2}\subset X_{0} ,

and Y_{1}\subset Y_{2}\subset X_{0} . The

invariant sets are depicted by Figure 3 where X_{0}=A_{1}\cup A_{2}\cup A_{3}, X_{2}=A_{1}\cup A_{2}, X_{1}=A_{1}.

§5. Containing lattice and quasi‐periodicity

In this section, we provide the tools needed later: the containing ideal and containing lattice.

See Meyer [33] or Moody [34].
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Let  $\beta$>1 be an algebraic integer of degree d\geq 2 . Define

\displaystyle \mathbb{Z}[ $\beta$]=\{\sum_{j=0}^{d-1}a_{j}$\beta$^{j};a_{j}\in \mathbb{Z}\}
Then \mathbb{Z}[ $\beta$] is a ring. Let \mathcal{D} be a non‐empty subset of \mathbb{Z}[ $\beta$] and \mathcal{D}\neq\{0\} . We denote

K=K( $\beta$, \mathcal{D})

the ideal of \mathbb{Z}[ $\beta$] generated by \mathcal{D}
,

and call it the containing ideal. Indeed, K is the smallest

module containing \mathcal{D} and satisfying  $\beta$ K\subset K.
Recall that $\beta$_{2} ,

. . .

, $\beta$_{d} are conjugates of  $\beta$ ordered by (2.1),  a' is the Galois dual of a in the

field \mathbb{Q}( $\beta$) ,
\ovalbox{\tt\small REJECT} is the �real version� of a'

,
and a^{*} is the real version of the contractive Galois dual

of a . Define  $\Sigma$= $\Sigma$( $\beta$, \mathcal{D}) as

(5.1)  $\Sigma$= \{(a, \^{a}); a\in K\}

and we call it the containing lattice determined by  $\beta$ and \mathcal{D}.

The following lemma is easy (see [37]).

Lemma 5.1. (i) K is dense in \mathbb{R} . (ii)  $\Sigma$ is a full‐rank lattice in \mathbb{R}^{d} . (iii) If  $\beta$ is an

algebraic unit, then  $\beta$ K=K.

Let $\omega$_{1} ,
. . .

, $\omega$_{d} be a basis of the lattice  $\Sigma$( $\beta$, K) . The norm of K is defined as \mathcal{N}(K)=
|\det($\omega$_{1}, \ldots, $\omega$_{d})|.

Remark 1. For an algebraic GIFS with expanding factor  $\beta$ and digit set \mathcal{D}
,
we may assume

without loss of generality that \mathcal{D}\subset \mathbb{Z}[ $\beta$] ; otherwise, we can replace \mathcal{D} by n\mathcal{D} with n\mathcal{D}\subset \mathbb{Z}[ $\beta$].
We call  $\Sigma$( $\beta$, \mathcal{D}) the containing lattice of the GIFS. This terminology is borrowed from Lagarias
and Wang [30].

Let us denote by  $\pi$ and  $\pi$^{*} the two natural projections defined on  $\Sigma$ :

 $\pi$(a, \^{a})=a, $\pi$^{*}(a, \ovalbox{\tt\small REJECT})=a^{*}

Clearly  $\pi$ and  $\pi$^{*} are injective.
We shall use B_{n}(x, R) to denote the ball in \mathbb{R}^{n} with center x and radius R ; sometimes we

use B(x, R) if the dimension is implicit.
A set L is said to be a Delone set in \mathbb{R}^{S}

,
if L is relatively dense and uniformly discrete. L

is relatively dense means that there exists R>0 such that  B(x, R)\cap L\neq\emptyset for all  x\in \mathbb{R}^{S};L is

uniformly discrete means that there exists r>0 such that |h_{1}-h_{2}|>r for any h_{1}, h_{2}\in L.

X\subset \mathbb{R}^{n} is quasi‐periodic, if for any ball B(c, r)\subset \mathbb{R}^{n} ,
there exists a R>0 such that a

translation of B(c, r)\cap X appears in the ball B(y, R)\cap X for every y\in \mathbb{R}^{n}.
For A\subset \mathbb{R}^{d-s} ,

we denote $\Sigma$_{A}= $\Sigma$\cap(A\times \mathbb{R}^{s}) the points of  $\Sigma$ in the �window�  A . Notice that

if  $\beta$ is a Pisot number, then  s=d-1, \ovalbox{\tt\small REJECT}=a^{*} and $\pi$^{*}($\Sigma$_{A})=(K\cap A)^{*}.
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Theorem 5.2. ([33, 34, 37]) Let A be a bounded subset of \mathbb{R}^{d-s}
,

then

(i) $\pi$^{*}($\Sigma$_{A}) is uniformly discrete.

(ii) If  $\beta$ is a Pisot number and  A\subset \mathbb{R} has non‐empty interior, then $\pi$^{*}($\Sigma$_{A})=(K\cap A)^{*} is

a Delone set.

(iii) If  $\beta$ be a Pisot number and  A=[u , v) is an interval, then (K\cap[u, v))^{*} is quasi‐periodic
in \mathbb{R}^{d-1}.

§6. Open set condition of dual systems

A GIFS (f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} is said to satisfy the OSC, if there exist open sets (U_{j})_{j\in V} such that

\displaystyle \bigcup_{j\in V}\bigcup_{ $\gamma$\in$\Gamma$_{i,j}}f_{ $\gamma$}(U_{j})\subset U_{i}, i\in V,
and the left‐hand sides are disjoint unions. See [35, 15].

§6.1. Criterion of the OSC

In general, it is very hard to verify the OSC. But for a special class of GIFS, called single‐
matrix GIFS, efficient criteria of OSC do exist. A GIFS (f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} is called a single‐matrix GIFS

if f_{ $\gamma$} have the form

(6.1) f_{ $\gamma$}(x)=A^{-1}(x+b_{ $\gamma$}) ,  $\gamma$\in $\Gamma$,

where A is a d\times d expanding matrix and b_{ $\gamma$}\in \mathbb{R}^{d} . (A matrix is expanding if all its eigenvalues
have modulus larger than 1.)

Recall that $\Gamma$_{i,j}^{n} is the set of paths from vertex i to j with length n . Denote f_{$\gamma$_{1}\ldots$\gamma$_{n}}=
f_{$\gamma$_{1}}\circ\cdots\circ f_{$\gamma$_{n}} . Define

(6.2) \mathcal{D}_{i,j}^{n}:=A^{n}\{f_{$\gamma$_{1}\ldots$\gamma$_{n}}(0);$\gamma$_{1}\ldots$\gamma$_{n}\in$\Gamma$_{i,j}^{n}\}.

We note that A^{n}f_{$\gamma$_{1}\ldots$\gamma$_{n}}(0)=A^{n-1}b_{$\gamma$_{1}}+A^{n-2}b_{$\gamma$_{2}}+\cdots+Ab_{$\gamma$_{n-1}}+b_{$\gamma$_{n}}.

Theorem 6.1. (He‐Lau [22], Luo‐Ya ng [32]) GIFS (6.1) satisfies the OSC if and only if
the following two conditions hold:

(i) \#\mathcal{D}_{i,j}^{n}=\#$\Gamma$_{i,j}^{n} for all i, j\in V, n\geq 1 ;

(ii) there exists r>0 such that \mathcal{D}_{i,j}^{n} is r ‐uniformly discrete for all i, j\in V, n\geq 1.

§6.2. OSC of dual IFS

Let (f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} be an algebraic GIFS with expanding factor  $\beta$ . Recall that \mathcal{D}=\{b_{ $\gamma$}; $\gamma$\in $\Gamma$\} is

the digit set, K=K( $\beta$, \mathcal{D}) is the containing ideal, and  $\Sigma$= $\Sigma$( $\beta$, \mathcal{D}) is the containing lattice. In

the rest of this section, we assume that:  $\beta$ is an algebraic unit, and |$\beta$_{k}|\neq 1 for2\leq k\leq d . We

also assume that K\subset \mathbb{Z}[ $\beta$] without loss of generality. Let (F_{$\gamma$'})_{$\gamma$'\in$\Gamma$'} be the dual IFS.
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Theorem 6.2. ([37]) Let (f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} be an algebraic GIFS such that its expanding fa ctor  $\beta$
is an algebraic unit and the conjugates of  $\beta$ do not equal 1 in modulus. Then its dual system

satisfies the OSC if and only if

(6.3) \#\{f_{$\gamma$_{1}\ldots$\gamma$_{n}}(0);$\gamma$_{1}\ldots$\gamma$_{n}\in$\Gamma$_{i,j}^{n}\}=\#$\Gamma$_{i,j}^{n}, \forall i, j\in V, n\geq 1.

In particular, the dual system satisfies the OSC provided the original system does.

Corollary 6.3. ([37])Let(f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} be an algebraic GIFS with expanding fa ctor  $\beta$ . If  $\beta$ is

a Pisot unit, then the dual system satisfies the OSC if and only if the original IFS does.

Example 6.4. The dual IFS may satisfies the OSC even if the original GIFS does not.

Consider the IFS

 $\beta$ E=E\cup(E+1)

where  $\beta$\approx 1.8794 is a zero point of P(x)=x^{3}-3x-1 . The above IFS does not satisfy the

OSC since 1/ $\beta$>1/2 . The conjugates of  $\beta$ are  $\beta$_{2}=-1.5321, $\beta$_{3}-0.3473 . The dual IFS is

X=$\beta$_{3}X\cup($\beta$_{3}X+1) and it satisfies the OSC since |$\beta$_{3}|<1/2.

If  $\beta$ is not an algebraic unit, then typically the dual IFS does not satisfy the OSC ([11, 4]).

§6.3. Self‐similar tiling system

Let \mathcal{F}=(f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} be a single‐matrix GIFS on \mathbb{R}^{d} with expanding matrix A . We say \mathcal{F} is a

self‐ similar tiling system if the system satisfies the OSC and its invariant sets have non‐empty
interiors. It is well‐known that a self‐similar tiling system provides dilation and subdivision rules

and hence self‐similar tilings can be constructed. Theorem 1.2 can be proved by using Theorem

6.2 and a criterion of Lagarias and Wang [30], see [37].

§7. Periodic codings

Let (f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} be an algebraic IFS, let (F_{$\gamma$'})_{$\gamma$'\in$\Gamma$'} be the dual IFS, and \displaystyle \mathcal{R}=\bigcup_{j\in V}I_{j}\times X_{j} be

the Rauzy box.

For x\in I_{j} ,
an infinite path ($\gamma$_{n})_{n\geq 1} on  $\Gamma$ starting from  j is called a coding of x if

\displaystyle \{x\}=\bigcap_{n\geq 1}f_{$\gamma$_{1}\ldots$\gamma$_{n}}(I_{k_{n}})
where k_{n} is the ending vertex of $\gamma$_{n}.

Let \mathcal{P} be the set of x with periodic coding w.r. \mathrm{t}. (f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} . Clearly \mathcal{P}\subset \mathbb{Q}( $\beta$) . The set \mathcal{P} is

closely related to the Rauzy box \mathcal{R} . A graph is strongly connected if for any i, j\in V ,
there is a

path from i to j.

Theorem 7.1. ([42]) \{(x, -x^{*});x\in \mathcal{P}\} is a subset of \mathcal{R} ; it is dense in \mathcal{R} if the graph  $\Gamma$

is strongly connected.
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From now on, let (f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} be an feasible Pisot system, that is, it is an SST system,  $\beta$ is a

Pisot unit, the invariant sets are intervals. Let us denote  I_{j}=[a_{j}, b_{j}] ,
and set

(7.1) I_{j}^{l}=[a_{j}, b_{j}) , I_{j}^{r}=(a_{j}, b_{j}], j\in V.
Then both (I_{j}^{l})_{j\in V} and (I_{j}^{r})_{j\in V} satisfy the equations

(7.2)  $\beta$\displaystyle \tilde{I}_{j}=\bigcup_{i\in V} (ĩi+\mathcal{D}j , i) , j\in V,

and the right hand side unions are disjoint.
It is well‐known that for x\in I_{j}, x may has more than one codings. Set \~{i}_{j}=I_{j}^{l} in (7.2),

we obtain a unique coding of x\in I_{j}^{l} w.r.t. system (7.2), and we call it the lower coding of x.

Similarly, we can define the upper coding of x\in I_{j}^{r}.

Remark 2. If the algebraic IFS is induced by a  $\beta$‐transformation, then the lower coding
of  x\in[0 ,

1 ) is related to the  $\beta$‐expansion of  x
,

and the upper coding of x is related to the weakly
admissible  $\beta$‐expansion.

In [42], it is shown that a coding of  x\in[a_{j}, b_{j}] is either a lower coding, or an upper coding;

x\in[a_{j}, b_{j}) has a periodic lower coding starting from j if and only if (x, -x^{*})\in[a_{j}, b_{j} ) \times X_{j} ;

similarly, x\in(a_{j}, b_{j} ] has a periodic upper coding starting from j if and only if (x, -x^{*})\in
(a_{j}, b_{j}]\times X_{j}.

Theorem 7.2. [42] Let (f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} be a fe asible Pisot system. Then x\displaystyle \in\bigcup_{j\in V}I_{j} possesses

a periodic coding if and only if x\in \mathbb{Q}( $\beta$) and (x, -x^{*})\in \mathcal{R}.

Proof. x\in[a_{j}, b_{j}] has a periodic coding if and only if (x, -x^{*})\in[a_{j}, b_{j} ) \times X_{j} or (x, -x^{*})\in
(a_{j}, b_{j}]\times X_{j} ,

that is, (x, -x^{*})\in I_{j}\times X_{j}. \square 

The following result characterizes the periodic points of generalized  $\beta$‐transformations  T

when  $\beta$ is a Pisot unit. Denote Per (S) the set of periodic points of a transformation  S.

Corollary 7.3. ([28, 42]) Let T be a generalized  $\beta$ ‐transfO rmation where  $\beta$ is a Pisot

unit, then  x\in Per(T^{+})\cup Per(T^{-}) if and only if x\in \mathbb{Q}( $\beta$) and (x, -x^{*})\in \mathcal{R} ,
where \mathcal{R} is the

Rauzy box of the induced IFS of T.

§8. Rauzy‐Thurston Tiling

Recall that an algebraic IFS and its dual system can be written as

(8.1)  $\beta$ I_{j}=\displaystyle \bigcup_{i\in V}(I_{i}+\mathcal{D}_{j,i}) , j\in V.
(8.2) X_{j}=\displaystyle \bigcup_{i\in V}(BX_{i}+\mathcal{D}_{i,j}^{*}) j\in V.

§8.1. Rauzy‐Thurston Tiling

Let K=K( $\beta$, \mathcal{D}) is the containing ideal defined in Section 5.
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Lemma 8.1. The fa mily ([a_{j}, b_{j}[\cap K)_{j\in V} (and also (]a_{j}, b_{j}]\cap K)_{j\in V}) is a solution of the

set equation (8.1).

Proof. Let I=[a, b[ be an interval, let c\in K . Then it is easy to see that

(8.3)  $\beta$ I\cap K= $\beta$(I\cap K) , (I+a)\cap K=(I\cap K)+a.

Replacing I_{j} by I_{j}^{l} , equation (8.1) still holds; taking an intersection with K on both sides

and using (8.3), we obtain the lemma. \square 

Definition 8.2. Let \mathcal{F}=(f_{ $\gamma$})_{ $\gamma$\in $\Gamma$} be a feasible Pisot system. Set

\displaystyle \mathcal{J}^{l}=\bigcup_{j\in V}\{X_{j}+a^{*};a\in[a_{j}, b_{j}[\cap K\}, \mathcal{J}^{r}=\bigcup_{j\in V}\{X_{j}+a^{*};a\in]a_{j}, b_{j}]\cap K\}.
We call \mathcal{J}^{l} and \mathcal{J}^{r} the left and right Rauzy‐Thurston tiling of \mathcal{F} , respectively.

We shall only discuss the left Rauzy‐Thurston tiling \mathcal{J}^{l} ,
but all the discussions work for \mathcal{J}^{r}.

Set

(8.4) \mathcal{Z}^{l}=\{T\in \mathcal{J}^{l};0\in T\},

and we call the elements in \mathcal{Z}^{l} central tiles. Clearly \mathcal{Z}^{l} is a finite set.

Lemma 8.3. ([37]) Let X_{j}+a^{*} be a tile in \mathcal{J}^{l} and denote the lower coding of a by

($\gamma$_{n})_{n\geq 1} . Then

(i) X_{j}+a^{*} is a central tile if and only if ($\gamma$_{n})_{n\geq 1} is periodic.

(ii) A tile X_{i}+b^{*} belongs to the subdivision of B^{-1}(X_{j}+a^{*}) according to (8.2), if and only

if there exists  $\gamma$\in$\Gamma$_{ij} such that the lower coding of b is  $\gamma \gamma$_{1}$\gamma$_{2}\ldots.

Using Lemma 8.1 and Lemma 8.3, it is easy to show that that \mathcal{J}^{l} (also \mathcal{J}^{r} ) is quasi‐periodic
and self‐replicating ([37]). \mathcal{J}^{l} is self‐ replicating means that if we subdivide the elements in

B^{-1}\mathcal{J}^{l} according to equations (8.2), the resulting collection is again \mathcal{J}^{l}. \mathcal{J}^{l} is quasi‐periodic
means that, if for any ball \mathrm{B}(c, r) ,

there exists R>0 such that the pattern

\mathrm{B}(c, r)\cap \mathcal{J}^{l}:=\{T\in \mathcal{J}^{l};T\cap \mathrm{B}(c, r)\neq\emptyset\}

appears in \mathrm{B}(x, R)\cap \mathcal{J}^{l} for every x\in \mathbb{R}^{d-1}.

A standard argument shows that a self‐replicating and quasi‐periodic collection has multi‐

plicity m for some m\geq 1 (see Kenyon [29]). In particular, each tile X_{j}+a^{*}\in \mathcal{J}^{l} belongs to the

subdivision of B^{n}T for some central tile T and n\geq 1 . Obviously the Rauzy‐Thurston tiling \mathcal{J}^{l}
has multiplicity 1 if and only if the tiles in \mathcal{Z}^{l} are non‐overlapping.

Moreover, Theorem 1.5 asserts that \mathcal{J}^{l} can be decomposed into m �normal� tilings of \mathbb{R}^{d-1}.

§8.2. Regular algebraic solution

Definition 8.4. A family (G_{j})_{j\in V} is called a regular algebraic solution of (8.1) if

(i) (G_{j})_{j\in V} is a solution of (8.1);
(ii) G_{j}\subset[a_{j}, b[K for all j\in V ;

(iii) G_{j}^{*} are relatively dense in \mathbb{R}^{d-1}.
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Clearly ([a_{j}, b_{j}[\cap K)_{j\in V} is a regular algebraic solution of (8.1). Let (G_{j})_{j\in V} and (G_{j}')_{j\in V} be

two solution of (8.1), we say (G_{j}')_{j\in V} is strictly smaller than (G_{j})_{j\in V} if G_{j}'\subset G_{j} for all j\in V
and G_{j}'\neq G_{j} for at least one j . A regular agebraic solution (G_{j})_{j\in V} is minimal if no regular

algebraic solution is strictly smaller than (G_{j})_{j\in V}
We define the k‐th iteration of \mathcal{F} , which we denote by \mathcal{F}^{k} ,

to be the GIFS

(f_{$\gamma$_{1}\circ\cdots 0$\gamma$_{k}})_{$\gamma$_{1}0\cdots 0$\gamma$_{k}\in$\Gamma$^{k}}
Clearly \mathcal{F}^{k} is also a feasible Pisot GIFS, with expanding factor $\beta$^{k} ,

and with the same invariant

sets (I_{j})_{j\in V} . The dual system of \mathcal{F}^{k} is the k‐th iteration of the dual system of \mathcal{F} . Hence \mathcal{F} and

\mathcal{F}^{k} have the same multiplicity.
The following theorem gives a new criterion for tightness.

Theorem 8.5. ([37]) A fe asible Pisot system \mathcal{F} is tight, if and only if ([a_{j}, b_{j}[\cap K)_{j\in V} is

the minimal regular algebraic solution of \mathcal{F}^{k} for any k\geq 1.

The next two examples are systems which are not tight.

Example 8.6. Let  $\sigma$ :  1\mapsto 12, 2\mapsto 13, 3\mapsto 1 be the Rauzy substitution, and let $\sigma$' be

a substitution over the alphabet \{ 1, 2, 3, 1', 2', 3'\} given by

$\sigma$':\left\{\begin{array}{l}
1\mapsto 12, 2\mapsto 13, 3\mapsto 1'\\
1'\mapsto 1'2', 2'\mapsto 1'3', 3'\mapsto 1.
\end{array}\right.
Let I_{1}, I_{2} , I3 be the invariant sets of the IFS induced by  $\sigma$

,
and  J_{1}, J_{2}, J_{3}, J_{1'}, J_{2'}, J_{3'} be the

invariant sets of the IFS induced by $\sigma$' . Then it is easy to see that J_{j}=J_{j'}=I_{j} for 1\leq j\leq 3.
Let X_{1}, X_{2}, X_{3} be the Rauzy fractals of  $\sigma$

,
and  Y_{1}, Y_{2}, Y_{3}, Y_{1'}, Y_{2'}, Y_{3'} be the Rauzy fractals

of $\sigma$' . It is easy to see that Y_{j}=Y_{j'}=X_{j} for 1\leq j\leq 3.
Therefore the Rauzy‐Thurston tiling of $\sigma$' consists of two identical tilings, and the multi‐

plicity is 2.

\mathbb{Z}[ $\beta$] is the containing ideal of the system induced by  $\sigma$ as well as  $\sigma$' . It is well known that

the  $\beta$‐expansion of  x\in \mathbb{Z}[ $\beta$]\cap[0 , 1) are finite since  $\beta$ satisfies an  F‐property ([18]). Let

K_{0}= { a\in \mathbb{Z}[ $\beta$]\cap[0 , 1); �110� appears even times in the  $\beta$‐expansion of  a},

K_{1}= { a\in \mathbb{Z}[ $\beta$]\cap[0 , 1); �110� appears odd times in the  $\beta$‐expansion of  a}.
Let G_{j}=I_{j}\cap K_{0}, G_{j}'=I_{j}'\cap K_{1} . It is easy to see that (G_{j})_{1\leq j\leq 3}\cup(G_{j}')_{1\leq j\leq 3} is a family

satisfying the conditions in Theorem 8.5.

Example 8.7. Let us consider the Rauzy‐Thurston tiling of symmetric  $\beta$‐transformation

 S_{ $\beta$} with $\beta$^{3}=$\beta$^{2}+ $\beta$+1 (See Example 4.5). Since X_{0}=\{0\} and it has no contribution to the

Rauzy‐Thurstion tiling, we need only consider the systems

(8.5) \left\{\begin{array}{l}
 $\beta$ I_{1}=(J_{3}\cup J_{2}\cup J_{1})-1\\
 $\beta$ I_{2}=I_{1}\\
 $\beta$ I_{3}=I_{2}\\
 $\beta$ J_{1}=(I_{1}\cup I_{2}\cup I_{3})+1\\
 $\beta$ J_{2}=J_{1}\\
 $\beta$ J_{3}=J_{2}.
\end{array}\right. and \left\{\begin{array}{l}
X_{1}=(BY_{1}+\mathrm{e}_{1})\cup BX_{2}\\
X_{2}=(BY_{1}+\mathrm{e}_{1})\cup BX_{3}\\
X_{3}=BY_{1}+\mathrm{e}_{1}\\
Y_{1}=(BX_{1}-\mathrm{e}_{1})\cup BY_{2}\\
Y_{2}=(BX_{1}-\mathrm{e}_{1})\cup BY_{3}\\
Y_{3}=BX_{1}-\mathrm{e}_{1},
\end{array}\right.
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Kalle and Steiner [28] proved that the multiplicity  m=2
,

where they used a rather complicated
transducer to show that m\geq 2 . Here we give a short proof of the fact m\geq 2 . Let

K_{0}=\{c_{2}$\beta$^{2}+c_{1} $\beta$+c_{0}\in \mathbb{Z}[ $\beta$];c_{2}+c_{1}+c_{0} is even,

K_{1}= { c_{2}$\beta$^{2}+c_{1} $\beta$+c_{0}\in \mathbb{Z}[ $\beta$];c_{2}+c_{1}+c_{0} is odd}.

Set G_{j}=\tilde{I}_{j}\cap K_{0} and G_{j}'=\tilde{J}_{j}\cap K_{1} for 1\leq j\leq 3 . Then G_{1}, G_{2}, G_{3} , Gí, G_{2}', G_{3}' satisfy the

conditions in Theorem 8.5 and hence m>1.

§8.3. Domain‐exchange transformation

Comparing \mathcal{J}^{l} and \mathcal{J}^{r} ,
we obtain that

Theorem 8.8. Let I_{j}=[a_{j}, b_{j}] be invariant sets of a fe asible Pisot system, then

(8.6) \displaystyle \bigcup_{a_{j}\in K}(X_{j}+a_{j}^{*})=\bigcup_{b_{j}\in K}(X_{j}+b_{j}^{*})
.

For the symmetric  $\beta$‐expansion in Example 4.5, all  a_{j} and b_{j} do not beling to K and hence

both sides of (8.6) are empty sets.

Remark 3. If the algebraic system is induced by a Pisot substitution (see Section 3), then

a_{j}=0 and b_{j}=|I_{j}| for j\in V ,
and all of them belong to K . In this case, (8.6) becomes

(8.7) \displaystyle \bigcup_{j\in V}X_{j}=\bigcup_{j\in V}(X_{j}+b_{j}^{*}) .

Let X=\displaystyle \bigcup_{j\in V}X_{j} . If X_{j} are disjoint in Lebesgue measure, according to (8.7), a domain‐exchange

transfO rmation S can be defined almost everywhere on X as

S(z)=z+b_{j}^{*} ,
if z\in X_{j}.

Arnoux and Ito [6] showed that the dynamical system (X, S, \mathcal{L}^{d-1}|_{X}) is measure theoretically

conjugate to the substitution dynamical system.
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