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Generalized rounding radix systems and simultaneous

radix systems

By

Péter Burcsi *

Abstract

In this short note we define generalized rounding radix systems which are a common generalization
for shift radix systems (SRS), symmetric SRS,  $\epsilon$‐SRS and matrix numeration systems. We investigate
basic properties of such systems. As an application, we propose a possible generalization of simultaneous

number systems to continuous parameter spaces.

§1. Introduction

The introduction and further research [1, 2, 3, 4] of shift radix systems (SRS) unified the

study of canonical number systems (CNS) and  $\beta$‐expansions, as explained in [1], thus revealing

deep connections and raising new questions. One of the main benefits of SRS is the extension

of possible parameters to real values instead of integer coefficient polynomials as in the case of

CNS or  $\beta$‐expansions. With a slight modification, SRS are also capable of describing number

systems with symmetric or shifted digits sets: these are symmetric SRS [5, 9] and  $\epsilon$‐SRS [15],
respectively.

Another possible generalization of CNS is an extension to lattices, first introduced in the

context of self‐replicating plane tilings, see e.g. [11]. These are called matrix numeration systems
in [6], and some algorithmic aspects were discussed in [8, 12].

Simultaneous number systems were introduced in [10], they were investigated and generalized

e.g. in [13, 16]. In all cases considered so far, parameter values have been integers. We propose

a possible generalization for continuous parameter values, using the definition of GRRS. We

consider this as the main section of this paper, as it seems possible that a better understanding
of the dynamics of simultaneous systems can be obtained by investigating this continuous version.

The paper is built up as follows: we define GRRS in section 2, and explain how they

generalize other systems— most are straightforward observations. In section 3 we explain how
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known decision algorithms can be applied to GRRS, mainly based on ideas from other numeration

systems. In section 4, we propose a definition for simultaneous SRS, using GRRS. We present

definitions and formulate some open problems about simultaneous systems. In the final section,
we propose further questions and research directions about GRRS.

§2. Generalized rounding radix systems

In this section we define generalized rounding radix systems and consider how they relate to

other concepts of numeration. First we define genaralized rounding functions— for a motivation

recall that symmetric SRS and  $\epsilon$‐SRS only differ from SRS in the way that rounding of non‐

integer values is performed. We denote by \{x\} the fractional part (x-\lfloor x\rfloor) of x . When \mathrm{x} is

a vector, then \lfloor \mathrm{x}\rfloor and \{\mathrm{x}\} are the vectors where we take the integer, resp. fractional parts

coordinate‐wise.

Definition 2.1. Let d be a positive integer. For any function K:[0, 1)^{d}\rightarrow \mathbb{Z}^{d} ,
we define

a generalized rounding function

p_{K}:\mathbb{R}^{d}\rightarrow \mathbb{Z}^{d}

p_{K}(\mathrm{x})=\lfloor \mathrm{x}\rfloor+K(\{\mathrm{x}\}) .

We say that p_{K} is a bounded generalized rounding function if the image of K is bounded (or
equiavalently, finite).

Example 2.2. If d=1
,

then the floor function is obtained by taking K(u)=0 for all

u\in[0 ,
1 ) . The ceiling function (rounding upwards) is obtained by taking K(u)=1 for u\neq 0

and K(0)=0 . Rounding to the nearest integer is obtained by taking K(u)=0 for 0\leq u<1/2,
K(u)=1 for 1/2\leq u<1.

Remark. Note that the rounding direction only depends on the fractional part, thus round‐

ing towards or from zero is not captured by this concept. Also note that the rounding function

is not defined coordinate‐wise, it is thus possible that the rounded value of one coordinate is

influenced by the fractional parts of other coordinates.

In the following, we use column vectors when we multiply by matrices.

Definition 2.3. Let d be a positive integer, M\in \mathbb{R}^{d\times d}, K : [0, 1)^{d}\rightarrow \mathbb{Z}^{d} such that

K(0)=0 ,
and p_{K} the associated rounding function. We define a mapping $\tau$_{M,K}:\mathbb{Z}^{d}\rightarrow \mathbb{Z}^{d} by

$\tau$_{M,K} ( a_{1} , a2, . . .

, a_{d} ) =p_{K} (M ( a_{1} , a2, . . .

, a ))

We say that the map $\tau$_{M,K} is a generalized rounding radix system (GRRS for short). If for every

\mathrm{a}\in \mathbb{Z}^{d} ,
there exists n\in \mathbb{N} with $\tau$_{M,K}^{n}(\mathrm{a})=0 ,

then we say that the GRRS is a GRRS with

finiteness property.
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Remark. Note that it is possible for K_{1}\neq K_{2} that $\tau$_{M,K_{1}}=$\tau$_{M,K_{2}} . For this to be the

case, it is necessary and sufficient for K_{1} and K_{2} to coincide on the image I\subseteq[0, 1)^{d} of \mathbb{Z}^{d} by
the map \mathrm{a}\mapsto\{M\mathrm{a}\} . Thus the values taken by K outside I are irrelevant for $\tau$_{M,K} . Note further

that K(0)=0 is equivalent to $\tau$_{M,K}(0)=0.

The following observations are immediate from the definition.

Proposition 2.4. Every SRS is a GRRS.

Proof. Recall from [1] that for each \mathrm{r}= (r_{1}, r2, . . . , r_{d})\in \mathbb{R}^{d} we assign a map $\tau$_{\mathrm{r}}(\mathrm{a})=
$\tau$_{\mathrm{r}}(a_{1}, \mathrm{a}_{2}, \ldots, a_{d})=(a_{2}, \mathrm{a}_{3}, \ldots, a_{d}, -\lfloor \mathrm{r}\cdot \mathrm{a}\rfloor) ,

where \mathrm{r} . a denotes the scalar product. It is easy to

check that $\tau$_{\mathrm{r}}=$\tau$_{M,K} ,
where M and K can be chosen as follows:

(2.1) M(x_{1}, x_{2}, \ldots, x_{d})=(x_{2}, x_{3}, \ldots, x_{d}, -(r_{1}x_{1}+r_{2}x_{2}+\cdots+rx))

(2.2) K(u_{1}, u_{2}, \ldots, u_{d-1}, u_{d})=(0,0, \ldots, 0, \lceil u_{d}\rceil) .

Thus $\tau$_{\mathrm{r}} forms an SRS if and only if $\tau$_{M,K} forms a GRRS, and the claim follows. \square 

Proposition 2.5. Every  $\epsilon$-SRS is a GRRS.

Proof. As defined in [15], now $\tau$_{\mathrm{r}}(\mathrm{a})= ( a_{2} , a3, . . .

, a_{d}, -\lfloor \mathrm{r}\cdot \mathrm{a}+ $\epsilon$\rfloor ). The proof is essentially
identical to the SRS case, but with  K(u_{1}, u_{2}, \ldots, u_{d})=(0,0, \ldots, \lceil u_{d}- $\epsilon$\rceil) . \square 

Corollary 2.6. Every symmetric SRS is a GRRS.

Proof. As defined in [5], now $\tau$_{\mathrm{r}}(\mathrm{a})= ( a_{2} , a3, . . .

, a_{d}, -\lfloor \mathrm{r}\cdot \mathrm{a}+1/2\rfloor ). This is thus a special
case of  $\epsilon$‐SRS with  $\epsilon$=1/2. \square 

We now turn our attention to number systems with special digit sets. They have previously
been defined for number fields, but we use the following alternative equivalent form of the general
definition used in [12, 8]. They are also special cases of digits systems of [16].

Definition 2.7. Let L\in \mathbb{Z}^{d\times d} be a matrix with n=|detL|\geq 2 . Let D=\{\mathrm{D}_{1}=
0, \mathrm{D}_{2} ,

. . .

, \mathrm{D}_{n}\}\subseteq \mathbb{Z}^{d} a complete set of representatives of \mathbb{Z}^{d}/L\mathbb{Z}^{d} . We define $\varphi$_{L,D} by letting

$\varphi$_{L,D}(\mathrm{a})=L^{-1}(\mathrm{a}-\mathrm{D}_{i}) ,

where \mathrm{D}_{i}=\mathrm{D}(\mathrm{a}) is the unique element of D such that $\varphi$_{L,D}(\mathrm{a})\in \mathbb{Z}^{d} . We call the arising
numeration system a matrix numeration system.

Proposition 2.8. Every matrix numeration system is a GRRS.

Proof. Define \mathrm{u}(\mathrm{a})=\{L^{-1}\mathrm{a}\}\in[0, 1)^{d} . The proof relies on the fact that \mathrm{D}(\mathrm{a}) is deter‐

mined by \mathrm{u}(\mathrm{a}) . On each coset of \mathbb{Z}^{d}/L\mathbb{Z}^{d} ,
the mapping \mathrm{a}\mapsto \mathrm{u}(\mathrm{a}) is constant, and there is exactly

one element of D in this coset, thus it is sufficient to define K on each \mathrm{u}(\mathrm{D}_{i}) . Define M=L^{-1}

and K(\mathrm{u}(\mathrm{D}_{i}))= −MDi. This gives $\varphi$_{L,D}=$\tau$_{M,K}. \square 
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Remark. Note that SRS,  $\epsilon$‐SRS and matrix numeration systems all give rise to GRRS

with bounded rounding functions.

§3. Decision algorithms for the contractive bounded case

First we show a result that explains why in the subsequent results we require boundedness

of the rounding function. Whenever  d is clear from the context, M denotes a d by d real matrix

and K a function from [0, 1)^{d} to \mathbb{Z}^{d} with K(0)=0 ,
and $\tau$_{M,K} is the associated function as in

definition 2.3.

The following lemma is trivial.

Lemma 3.1. Let M\in \mathbb{Z}^{d\times d} be a diagonal matrix with irrational entries in the diagonal.
Then the map \mathrm{u}(\mathrm{a})=\{Ma\} is injective on \mathbb{Z}^{d}.

Theorem 3.2. For any function f:\mathbb{Z}^{d}\rightarrow \mathbb{Z}^{d} with f(0)=0 ,
there exists M and K such

that f=$\tau$_{M,K}.

Proof. Let M be an arbitrary diagonal matrix of irrational elements. Define K(\{M\mathrm{a}\})=
f(a)Ma. By the lemma, K is well defined on the range of \mathrm{a}\mapsto\{M\mathrm{a}\} . Extend K arbitrarily
to [0, 1)^{d} . Clearly f(\mathrm{a})=$\tau$_{M,K}(a) for all \mathrm{a}\in \mathbb{Z}^{d}. \square 

In what follows, K will always be a bounded rounding function. The following two theorems

are stated without proof. The proofs are essentially identical to the case of SRS, found in [1].

Theorem 3.3. If K is a bounded rounding function and $\tau$_{M,K} forms a GRRS, then the

spectral radius of M is less than or equal to 1.

Theorem 3.4. If K is a bounded rounding function and the spectral radius of M is less

than 1 (i.e. M is contractive), then the orbit of all \mathrm{a}\in \mathbb{Z}^{d} under $\tau$_{M,K} is eventually periodic.

Furthermore, an explicit upper bound (depending on M and K) can be given for the coordinates

of a periodic element.

The latter theorem can be applied for a contractive M to decide if the GRRS property holds.

Remark. When the spectral radius of M is exactly 1, the dynamical properties depend
on K . If, for example if M is the rotation by  $\pi$/3 on the plane, then an analogue of lemma

3.1 applies, so we can define K to obtain arbitrary dynamics. Even if we restrict the range of

K to \{(0,0) , (0,1) , ( 1, 0) , (1, 1 we can obtain different behavior: GRRS, periodic orbits for all

\mathrm{a}\in \mathbb{Z}^{2} ,
or infinite orbits for some \mathrm{a}.

For the contractive case, another algorithm, the construction of the set of witnesses, is also

applicable for the decision of the GRRS property. This algorithm was invented independently in

[7] and [14]. For the SRS version, see [1], and for the matrix numeration system version, [8].
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Theorem 3.5. Let M be contractive, K bounded and  $\tau$=$\tau$_{M,K} . Let V_{0}\in \mathbb{Z}^{d} be the set

consisting of 0 and all vectors of the form (0,0, \ldots, 0, \pm 1,0, \ldots, 0) . Define T(\mathrm{a}) to be the set

\{ $\tau$(\mathrm{a}+\mathrm{v})- $\tau$(\mathrm{a})|\mathrm{a}\in \mathbb{Z}^{d}\} . Let V_{j+1}=V_{j}\cup\{T(\mathrm{v})|\mathrm{v}\in V_{j}\} forj>0 . Then the sequence

V_{0}, V_{1} ,
. . . stabilizes with a value V ,

and we have a GRRS if and only if the only period of  $\tau$ in

 V is the fixed point 0.

Proof. The algorithm terminates because M is contractive and K is bounded. First note

that by construction, for any \mathrm{a}\in \mathbb{Z}^{d} and \mathrm{v}\in V ,
there exists \mathrm{v}'\in V such that  $\tau$(\mathrm{a}+\mathrm{v})= $\tau$(\mathrm{a})+\mathrm{v}'

Using double induction, it follows that for all positive integers n, p ,
and all \mathrm{v}_{1} ,

. . .

, \mathrm{v}_{p}\in V,

$\tau$^{n}(\displaystyle \mathrm{a}+\sum_{i=1}^{p}\mathrm{v}_{\mathrm{i}})=$\tau$^{n}(\mathrm{a})+\sum_{i=1}^{p}\mathrm{v}_{i}'
for some ví, . . .

, \mathrm{v}_{p}'\in V . That means that if a lattice point can be written as the sum of p+1
elements of V ,

then some iterate of it is the sum of p elements of V . Repeating the argument p

more times, we reach an iterate that equals 0.

For detailed computation, see the proofs found in the cited papers, which are easily modified

to the present situation. \square 

Remark. Note that the calculation of the set T(\mathrm{v}) is not trivial, but it can be described in

the case of SRS or matrix numeration systems. For the general case and for practical purposes,

the exact calculation is not neceesary, any set T'(\mathrm{v})\supseteq T(\mathrm{v}) is applicable if the diameter of T' is

uniformly bounded in \mathrm{v} . If K is bounded, we have

 $\tau$(\mathrm{a}+\mathrm{v})- $\tau$(\mathrm{a})=p_{K}(M(\mathrm{a}+\mathrm{v}))-p_{K}(Ma)=

M(\mathrm{a}+\mathrm{v})-\{M(\mathrm{a}+\mathrm{v})\}+K(\{M(\mathrm{a}+\mathrm{v} -(M\mathrm{a}-\{M\mathrm{a}\}+K(Ma)) =

M\mathrm{v}-\{M(\mathrm{a}+\mathrm{v})\}+K(\{M(\mathrm{a}+\mathrm{v} +\{M\mathrm{a}\}-K(Ma))=

 $\tau$(\mathrm{v})+\{M\mathrm{v}\}-K(\{M\mathrm{v}\})-\{M(\mathrm{a}+\mathrm{v})\}+K(\{M(\mathrm{a}+\mathrm{v} +\{M\mathrm{a}\}-K(Ma)) \in

\in $\tau$(\mathrm{v})+(\mathrm{r}\mathrm{n}\mathrm{g}(K)-\mathrm{r}\mathrm{n}\mathrm{g}(K)-\mathrm{r}\mathrm{n}\mathrm{g}(K)+\{0,1\}^{d})

where the last sum is the Minkovski sum of the summands. Intuitively,  $\tau$(\mathrm{a}+\mathrm{v})- $\tau$(\mathrm{a}) is near

 $\tau$(\mathrm{v}) ,
where the error comes from rounding.

§4. Simultaneous systems

In this section we propose a definition for simultaneous SRS.

Simultaneous CNS were defined in [10]. We recall the definition, which we use in a broader

sense for the purposes of the present paper.

Definition 4.1. Let N_{1}, N_{2}\in \mathbb{N} relatively prime, 2\leq N_{1}<N_{2}, D=\{0 , 1, . . .

, N_{1}N_{2}-

1\} . Then the triple (-N_{1}, -N_{2}, D) is a simultaneous number system with finiteness property if

for all z_{1}, z_{2}\in \mathbb{Z} ,
there exists n and b_{0}, b_{1} ,

. . .

, b_{n}\in D such that

z_{1}=\displaystyle \sum_{j=0}^{n}b_{j}(-N_{1})^{j} , z_{2}=\sum_{j=0}^{n}b_{j}(-N_{2})^{j} ,
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It is shown in [10] that N_{1} and N_{2} give a simultaneous number system with finiteness

property if and only if N_{2}=N_{1}+1 . If we reformulate the definition of simultaneous systems
from a dynamical perspective, we can define  $\varphi$-N_{1},-N_{2}(z_{1}, z_{2})=((z_{1}-b)/(-N_{1}), (z_{2}-b)/(N))
for the unique b\in D that gives an integer result. The finiteness property means that  $\varphi$ eventually
takes every point to  0 . We might still be interested in the dynamics of  $\varphi$-N_{1},-N_{2} even if this

finiteness property fails. In the present context we will use the simultaneous number system to

mean any  $\varphi$-N_{1},-N_{2}.

Remark. Note that a matrix numeration system constructed from a diagonal matrix with

entries -N_{1} and -N_{2} ,
and �diagonal� digits \{(0,0), (1, 1), . . . , (N_{1}N_{2}-1, N_{1}N_{2}-1)\} can also

be used to define the dynamics of a simultaneous system.

Example 4.2. Let N_{1}=3, N_{2}=4 and let z_{1}=38, z_{2}=27 . Then the orbit of (z_{1}, z_{2})
at  $\varphi$ is (38, 27)\rightarrow 11(-9, -4)\rightarrow 0(3,1)\rightarrow 9(2,2)\rightarrow 2(0,0) (we put the appropriate values of b on

the arrows). Equivalently

38=11+0\cdot(-3)+9\cdot(-3)^{2}+2\cdot(-3)^{3}

27=11+0\cdot(-4)+9\cdot(-4)^{2}+2\cdot(-4)^{3}

It is tempting to generalize the situation to arbitrary real N_{1}, N_{2} by requiring that for

any z_{1}, z_{2}\in \mathbb{Z} ,
there should exist b\in \mathbb{R} such that ((z_{1}-b)/(-N_{1}), (z_{2}-b)/(-N_{2}))\in \mathbb{Z}^{2}.

Unfortunately, as it is easily verified, whenever at least one of N_{1} or N_{2} is irrational, this is

impossible (in the integer case we can use the Chinese Remainder to obtain such a b). Instead,
we proceed by noting that (classical) simultaneous number systems are GRRS. By the definitions

we have the following proposition.

Proposition 4.3. Let N_{1}, N_{2}\leq 2 integers, D=\{0, 1, . . . , N_{1}N_{2}-1\} . The dynamics of
the simultaneous number system (-N_{1}, -N_{2}, D) is obtained as a GRRS, specifically  $\varphi$-N_{1},-N_{2}=

$\tau$_{M,K} where

M=\left(\begin{array}{ll}
-1/N_{1} & 0\\
0 & -1/(N_{2}
\end{array}\right)
K(\{-j/N_{1}\}, \{-j/(N_{2})\})=-(\lceil-j/N_{1}\rfloor, \lceil-j/(N_{2})\rceil) , j=0 , 1, . . .

, N_{1}N_{2}-1

and K is defined arbitrarily elsewhere.

In order to obtain nicer formulas, we will work with an alternative equivalent formulation

of the rounding function, using \overline{K} : [0, 1)^{d}\rightarrow \mathbb{Z}^{d} defined by

 $\tau$(\mathrm{a})=\lfloor M\mathrm{a}\rfloor+K(\{M\mathrm{a}\})=-\lfloor-M\mathrm{a}\rfloor+\overline{K}(\{-M\mathrm{a}\})

In figure 1, \overline{K} is extended in such a way that it is constant on stripes whose borders have

slope N_{1}/N_{2} . This is not the only possible extension, but it is relatively easy to generalize to

non‐integer N_{1} and N_{2}.
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Figure 1. This figure illustrates a possible definition of \overline{K} for which $\tau$_{M,K} is the GRRS associated

with the simultaneous number system with bases N_{1}=-3, N_{2}=-4 (left), and N_{1}=-2,

N_{2}=-5 (right).

Definition 4.4. Let N_{1}, N_{2}>1 . Let V=\{\{kN_{1}/N_{2}\}|k=1, . . . , \lceil N_{2}\rceil-1\} and H=

\{\{kN_{2}/N_{1}\}|k=1, . . . , \lceil N_{1}\rceil-1\} . Suppose that (V \cup H)\cap \mathbb{Z}=\emptyset . The generalized simultaneous

number system associated to (-N_{1}, -N_{2}) is defined through the following function \overline{K} . Draw

segments in the unit square with slope N_{1}/N_{2} that intersect the left side of the unit square at

the elements of V ,
and segments that intersect the bottom side of the square at the elements

of H (see figure 1). These segments divide the square into stripes. We call the open stripe

containing the origin the central stripe, \overline{K}(x, y)=0 on the central stripe. For points above the

central stripe, we define \overline{K}(x, y)=(k, \lfloor kN_{1}/N_{2}\rfloor) if (x, y) is inside or on the lower boundary
of the stripe bounded below by the segment starting from (0, \{kN_{1}/N_{2}\}) . For points below the

central stripe, we define \overline{K}(x, y)=(\lfloor kN_{2}/N_{1}\rfloor, k) if (x, y) is inside or on the upper boundary of

the stripe bounded above by the segment starting from (\{kN_{2}/N_{1}\}, 0) .

Remark. The condition that the values kN_{2}/N_{1} and kN_{1}/N_{2} are never integers ensures

that the stripes are non‐degenerate, and degenerate cases contain the case when N_{1} and N_{2} are

integers, but not coprime.

We formulate a few conjectures about generalized simultaneous systems. All of them are

supported by empirical evidence.

Conjecture 4.5. Let N_{1}>1 . The generalized simultaneous number system associated to

(-N_{1}, -N_{1}-1) has the finiteness property for every N_{1} . When N_{1} is an integer, this is known

to hold, see [10].

Conjecture 4.6. Let r>1 and 0<s<r . Let N_{1}=N_{1}(k)=kr-s and N_{2}=N_{2}(k)=
(k+1)r-s fork=1 , 2, . . . Then the structure of periodic elements (the number and lengths of

periods) stabilizes as k\rightarrow\infty.
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Figure 2. The two figures illustrate the number of periods and the number of periodic elements

in some simultaneous systems. The base pair components range from 1.1 to 11 by steps of 0.1

on both axes. In the first figure, the number of periods ranges from 1 to 6 (from dark to light),
and in the second one, from 1 to 34. Bases where we do not define systems (e.g. not coprime

integer pairs) are the darkest black.

As a special case, we have a conjecture about the period structure for bases of the form

(-N_{1}, -N_{1}-2) . Empirical results indicate the following.

Conjecture 4.7. If k is large enough, then the simultaneous number system associated

to (2k-1,2k+1) has one‐non zero fixed point (k+1, k) and no other non‐zero periodic elements.

A graphical interpretation of the period structure for some values of (N_{1}, N_{2}) is shown in

figure 2.

§5. Summary

The investigation of GRRS and simultaneous radix systems is subject of our current research.

Apart from the conjectures stated above, we propose the following research directions.

The first natural question to investigate is how simultaneous SRS behave with these defi‐

nition in higher dimensions. It is observed in [13] that Gaussian integers with canonical digit
sets fail to yield simultaneous number systems. Nagy therefore proposed alternative digit sets.

Following these ideas, an important question is how one should define rounding in 4 dimensional

space in order to obtain interesting 2 dimensional simultaneous systems.
Another direction would be to initially only fix M

,
and look for appropriate rounding, i.e. \mathrm{a}

function K that yield a GRRS. It would also be interesting to know how omitting the requirement

K(0)=0 in the definition of GRRS would change the dynamics.

Finally, matrix numeration systems have the property that the iterates of a system are also

matrix numeration systems. SRS and GRRS do not share this property. Is this inherent in the

nature of SRS, or could it be possible to define a generalization that is �closed under taking
iterates�?
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