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Applications of numerical systems to transcendental

number theory

By

Hajime Kaneko*

§1. Introduction

There are close relations between numerical systems and number theory. For example,
let b be an integer greater than 1. Then base‐b expansions of real numbers are related to

uniform distribution theory. Let  $\xi$ be a nonnegative real number. We write the integral and

fractional parts of  $\xi$ by \lfloor $\xi$\rfloor and respectively. Then  $\xi$ is a normal number in base‐b if and

only if  $\xi$ b^{n}(n=0,1, \ldots) is uniformly distributed modulo 1. Borel [7] conjectured that any

algebraic irrational number is normal in every integral base‐b. If Borel�s conjecture is true, then

it gives strong criteria for transcendence of real numbers. In Section 2 we introduce criteria

for transcendence related to Borel�s conjecture. In Section 3 we consider transcendence of the

values of power series at algebraic points, which is related to the  $\beta$‐expansion of real numbers.

In Section 4 we study algebraic independence of the values of lacunary series. In Section 5 we

give algebraic independence related to the base‐b expansions of real numbers. For references

on base‐b expansions,  $\beta$‐expansions, and more general numerical systems, see [4, 18]. There are

a number of excellent books on uniform distribution theory [8, 12, 17]. In particular, see [8]
for more details on relations between numerical systems and number theory. In this paper we

denote the set of nonnegative integers by \mathbb{N} . We use the Landau symbols 0 and O with its usual

meaning. Namely, we write f=o(g) if f/g tends to zero. Moreover, f=O(g) implies that

|f|\leq cg with certain positive constant c.

§2. Transcendence of the values of power series at certain rational points

Let w(n)(n=0,1, \ldots) be a strictly increasing sequence of nonnegative integers. Put

f(w(n);X):=\displaystyle \sum_{n=0}^{\infty}X^{w(n)}.
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Bugeaud [9] conjectured that if w(n)(n=0,1, \ldots) increases sufficiently rapidly, then f(w(n); $\alpha$)
is transcendental for any algebraic  $\alpha$ with  0<| $\alpha$|<1 . If b is an integer greater than 1, then the

equality

(2.1) $\xi$_{b}(w(n)) :=f(w(n);b^{-1})=\displaystyle \sum_{n=0}^{\infty}b^{-w(n)}
gives the base‐b expansion of $\xi$_{b}(w(n)) . Suppose that w(n)(n=0,1, . :.) fulfills

(2.2) \displaystyle \lim_{n\rightarrow\infty}\frac{w(n)}{n}=\infty.
Then $\xi$_{b}(w(n)) is neither rational nor normal. So, if w(n)(n=0,1, \ldots) satisfies (2.2) and

if Borel�s conjecture is true, then $\xi$_{b}(w(n)) is transcendental. Note for algebraic  $\alpha$ with  0<

| $\alpha$|<1 that if subsums of f(w(n); $\alpha$)=\displaystyle \sum_{n=0}^{\infty}$\alpha$^{w(n)} vanish, then f(w(n); $\alpha$) is not generally
transcendental. In fact, let $\alpha$_{0} be a unique zero of X^{3}+X+1 on the interval (-1,0) . Then we

have

 0=\displaystyle \sum_{n=2}^{\infty}$\alpha$_{0}^{n!}(1+$\alpha$_{0}+$\alpha$_{0}^{3})=$\alpha$_{0}^{2}+$\alpha$_{0}^{3}+$\alpha$_{0}^{5}+$\alpha$_{0}^{6}+$\alpha$_{0}^{7}+$\alpha$_{0}^{9}+\cdots .

Next we consider the case of  b\geq 3 . Then the digits greater than 1 do not appear in the base‐b

expansion of $\xi$_{b}(w(n)) . In particular, $\xi$_{b}(w(n)) is not normal in base‐b. Thus, if Borel�s conjecture

holds, then $\xi$_{b}(w(n)) is rational or transcendental.

However, we know little on the base‐b expansions of algebraic irrational numbers. For

instance, we cannot prove that 1 appears infinitely many times in the decimal expansion of \sqrt{2}.
There is no algebraic number whose normality was proved. There is also no known counter

example on Borel�s conjecture. Here we introduce known partial results on Borel�s conjecture.
In particular, we study the numbers of nonzero digits. Let  $\eta$ be a real number whose base‐b

expansion is written as

 $\eta$=\displaystyle \lfloor $\eta$\rfloor+\sum_{n=1}^{\infty}s_{n}(b; $\eta$)b^{-n},
where s_{n}(b; $\eta$)\in\{0, 1, . . :; b-1\} for any n\geq 1 and s_{n}(b; $\eta$)\leq b-2 for infinitely many n' \mathrm{s} . We

write the number of nonzero digits among the first N digits of  $\eta$ by

 v_{b}( $\eta$;N) :=\mathrm{C}\mathrm{a}\mathrm{r}\mathrm{d}\{n\in \mathbb{N}|n\leq N, s_{n}(b; $\eta$)\neq 0\},

where Card denotes the cardinality. Consider the case of b=2 . Let  $\eta$ be an algebraic irrational

number of degree  D . Then Bailey, Borwein, Crandall, and Pomerance [5] proved that there exist

positive constants C_{1}()_{;} C_{2}() (depending only on  $\eta$ ) satisfying the following: for any integer  N

with N\geq C_{2}() we have

(2.3) v_{2}(; N)\geq C_{1}( $\eta$)N^{1/D}

In the proof of (2.3), the Thue‐Siegel‐Roth theorem [25] was applied. We can verify analogies of

(2.3) in the same way as the proof of Theorem 7.1 in [5]. Moreover, applying Liouville�s inequality
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instead of the Thue‐Siegel‐Roth theorem and modifying the proof, we obtain an effective version

of lower bounds. Namely, there are positive constants C_{3}(b,  $\eta$) , C_{4}(b,  $\eta$) depending only on b and

 $\eta$ such that

(2.4)  v_{b}( $\eta$;N)\geq C_{3}(b,  $\eta$)N^{1/D}

for any integer N with N\geq C_{4}(b,  $\eta$) . In the case of b=2
, Rivoal [24] improved C_{1}() for certain

classes of algebraic irrational  $\eta$ . Adamczewski, Faverjon [3], and Bugeaud [8] independently
calculated explicit formulae for  C_{3}(b,  $\eta$) and C_{4}(b,  $\eta$) in (2.4). Here we introduce the formulae by

Bugeaud as follows: Let A_{D}X^{D}+A_{D-1}X^{D-1}+\cdots+A_{0}\in \mathbb{Z}[X] ,
where A_{D}>0 ,

be the minimal

polynomial of 1+\{ $\xi$\} . Let

H:=\displaystyle \max\{|A_{i}||0\leq i\leq D\}.

Then, for any integer N with N>(20b^{D}D^{2}H)^{2D} ,
we have

(2.5) v_{b}( $\eta$;N)\displaystyle \geq\frac{1}{b-1}(\frac{N}{2(D+1)A_{D}})^{1/D}
Using (2.4) or (2.5), we obtain criteria for transcendence related to the base‐b expansions of real

numbers. Suppose that w(n)(n=0,1, \ldots) satisfies

(2.6) \displaystyle \lim_{n\rightarrow\infty}\frac{w(n)}{n^{R}}=\infty
for any positive real number  R . Then we have

v_{b}($\xi$_{b}(w(n));N)=o(N^{ $\epsilon$})

as N tends to infinity, where  $\epsilon$ is an arbitrary positive real number. We now give examples. Let

 y be a positive real number. Put

(2.7) $\tau$_{y}(n) :=\lfloor\exp((\log y)^{1+y})\rfloor(n=1,2, \ldots)
and

(2.8) $\mu$_{y}(X) :=f($\tau$_{y}(n):X)=\displaystyle \sum_{n=1}^{\infty}X^{$\tau$_{y}(n)}.
It is easily seen that $\tau$_{y}(n)(n=1,2, \ldots) satisfies (2.6) because n=\exp(R\log n) . Hence, $\mu$_{y}(b^{-1})
is transcendental for any integer b greater than 1. However, it is still unknown whether $\mu$_{y}(-b^{-1})
is transcendental or not.

§3. Transcendence of the values of lacunary series at algebraic points

Let  $\beta$ be a real number greater than 1. The  $\beta$‐expansions of real numbers are introduced by

Rényi [22] in 1957. Recall that  $\beta$ transformation is defined on the interval [0 ,
1 ] by T_{ $\beta$} : x\mapsto $\beta$ x

mod1. Let x be a real number with 0\leq x<1 . Then the  $\beta$‐expansion of  x is denoted by

x=\displaystyle \sum_{n=1}^{\infty}\frac{t_{n}( $\beta$;x)}{$\beta$^{n}},
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where  t_{n}( $\beta$;x)=\lfloor $\beta$ T_{ $\beta$}^{n-1}(x)\rfloor\in \mathbb{Z}\cap[0,  $\beta$ ) for  n=1
, 2, . . .. In the case where x is a general

nonnegative real number, we define the  $\beta$‐expansion of  x by using the  $\beta$‐expansion of  $\beta$^{-k}x,
where k is an integer with 0\leq$\beta$^{-k}x<1 . A sequence  s_{1}s_{2}\ldots is called  $\beta$‐admissible if there

exists an  x\in[0 , 1) such that s_{n}=t_{n}( $\beta$;x) for any positive integer n . Here, we put

a_{n}( $\beta$):=\displaystyle \lim_{x\rightarrow 1-}t_{n}( $\beta$;x)
for n=1

, 2, . ::. Then Parry [21] showed that s_{1}s_{2} . :. is  $\beta$‐admissible if and only if

 00\ldots\leq ss_{k+1}\ldots<lexa()a() :. .

for any k=1
, 2, . .

.,
where <lex denotes the lexicographical order.  $\beta$‐expansions are natural

generalizations of base‐b expansions for integral base  b\geq 2 . In particular, consider the case of

 $\beta$>2 . Then every sequence  s_{1}\mathrm{s}_{2}\ldots ,
where  s_{n}\in\{0 ,

1 \} for n=1
, 2, . .

.,
is  $\beta$‐admissible because

 a_{1}() \geq 2 . Let again w(n)(n=0,1, \ldots) be a strictly increasing sequence of nonnegative integers.
Then

$\xi$_{ $\beta$}(w(n)):=f(w(n);$\beta$^{-1})=\displaystyle \sum_{n=0}^{\infty}$\beta$^{-w(n)}
gives the  $\beta$‐expansion of  $\xi$_{ $\beta$}(w(n)) . We discuss the transcendence of $\xi$_{ $\beta$}(w(n)) . We now recall the

following results by Corvaja and Zannier [11]: Assume that w(n)(n=0,1, \ldots) satisfies

(3.1) \displaystyle \lim_{n\rightarrow}\inf_{\infty}\frac{w(n+1)}{w(n)}>1.
Then, for any algebraic  $\alpha$ with  0<| $\alpha$|<1 ,

we get that f(w(n); $\alpha$) is transcendental. If

w(n)(n=0,1, \ldots) fulfills (3.1), then we say that w(n)(n=0,1, \ldots) is lacunary. In particular,

$\xi$_{ $\beta$}(w(n)) is transcendental for any real algebraic number  $\beta$>1 . The proof of the criteria above

is based on the Schmidt subspace theorem. As we mentioned in Section 2, if  $\beta$=b is an integer

greater than 1, then the transcendental results on $\xi$_{b}(w(n)) hold under weaker assumptions than

(3.1). Here we introduce other criteria for transcendence of $\xi$_{b}(w(n)) . Using Ridout�s theorem

[23], we deduce the following: Suppose that

(3.2) \displaystyle \lim_{n\rightarrow}\sup_{\infty}\frac{w(n+1)}{w(n)}>1,
which is weaker than (3.1). Then $\xi$_{b}(w(n)) is transcendental for any integer b\geq 2 . Recall that a

Pisot number is an algebraic integer greater than 1 such that the conjugates except itself have

absolute values less than 1. Moreover, a Salem number is an algebraic integer greater than

1 such that the conjugates except itself have absolute values at most 1 and that at least one

conjugate has absolute value 1. Adamczewski [1] showed for any Pisot or Salem number  $\beta$ that

if  w(n)(n=0,1, \ldots) satisfies (3.2), then $\xi$_{ $\beta$}(w(n)) is transcendental.

Investigating the digits of  $\beta$‐expansions of algebraic numbers, we obtain criteria for tran‐

scendence of real numbers. However,  $\beta$‐expansion of algebraic numbers are mysterious. Bugeaud

[10] studied digits of  $\beta$‐expansions of algebraic numbers, giving lower bounds of the number of

nonzero digits denoted as

 $\gamma$_{ $\beta$}(x;N):=\mathrm{C}\mathrm{a}\mathrm{r}\mathrm{d}\{n\in \mathbb{Z}|1\leq n\leq N, t_{n}(;x)\neq t_{n+1}( $\beta$;x
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where x is a nonnegative real number and N is a positive integer. He proved the following: Let

 $\eta$ be an algebraic number such that  t_{n}( $\beta$;x)\neq 0 for infinitely many positive integer n . Then

there exists an effectively computable positive constant C_{5}( $\beta$,  $\eta$) , depending only on  $\beta$ and  $\eta$,

such that

$\gamma$_{ $\beta$}( $\eta$;N)\geq C_{5}( $\beta$,  $\eta$)(\log N)^{3/2}(\log\log N)^{-3/2}

for any sufficiently large N . Consequently, we obtain the following results on transcendence: Let

again  $\beta$ be a Pisot or Salem number. Let  y be a real number with y>2/3 . Put

$\rho$_{y}(n):=2^{\lfloor n^{y}\rfloor}

for n\geq 1 . Then $\xi$_{ $\beta$}((n)) is transcendental.

§4. Algebraic independence of the values of lacunary series at algebraic points

In Sections 1 and 2 we introduced the transcendence of f(w(n); $\alpha$) related to the rate of

increase of w(n)(n=0,1, \ldots) . In particular, recall that if w(n)(n=0,1, \ldots) is lacunary, then

f(w(n); $\alpha$) is transcendental for any algebraic  $\alpha$ with  0<| $\alpha$|<1 . In this section we study the

algebraic independence of f(w(n); $\alpha$) in the case where the rates of increases of the sequences

w(n)(n=0,1, \ldots) are different. We first consider the case of

(4.1) \displaystyle \lim_{n\rightarrow\infty}\frac{w(n+1)}{w(n)}=\infty.
Schmidt [26] gave criteria for algebraic independence, generalizing Liouville�s inequality. Using
his criteria, we deduce that if  $\alpha$=b is an integer greater than 1, then the set

\{$\xi$_{b} ((kn)!) =\displaystyle \sum_{n=0}^{\infty}b^{-(kn)!}|k=1 , 2, \}
is algebraically independent. In the case where  $\alpha$ is a general algebraic number with  0<| $\alpha$|<1,
Shiokawa [27] gave criteria for algebraic independence. For instance, applying his criteria, we

obtain that the continuum set

(4.2) \displaystyle \{f(\lfloor $\lambda$(n!)\rfloor; $\alpha$)=\sum_{n=0}^{\infty}$\alpha$^{\lfloor $\lambda$(n!)\rfloor}| $\lambda$\in \mathbb{R},  $\lambda$>0\}
is algebraically independent. Note that the algebraic independence of the set (4.2) was proved

by Durand [13] in the case where  $\alpha$ is a real algebraic number with  0< $\alpha$<1.

Next we consider the case where w(n)(n=0,1, \ldots) does not satisfy (4.1). Mahler�s method

for algebraic independence is applicable to power series satisfying certain functional equations.
For instance, let k be an integer greater than 1. Then f(k^{n};X)=\displaystyle \sum_{n=0}^{\infty}X^{k^{n}} satisfies

f(k^{n};X^{k})=\displaystyle \sum_{n=0}^{\infty}X^{k^{n+1}}=\sum_{n=0}^{\infty}X^{k^{n}}-X=f(k^{n};X)-X.
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Using Mahler�s method, Nishioka [19] proved for any algebraic  $\alpha$ with  0<| $\alpha$|<1 that the set

\displaystyle \{f(k^{n}; $\alpha$)=\sum_{n=0}^{\infty}$\alpha$^{k^{n}}|k=2, 3, \}
is algebraically independent. For more details on Mahler�s method, see [20].

§5. Main results

We recall that $\mu$_{y}(X) is defined by (2.7) and (2.8) for a positive real number y and that

transcendental results in Section 2 is applicable even to the case of

\displaystyle \lim_{n\rightarrow\infty}\frac{w(n+1)}{w(n)}=1.
In fact, for a positive real y and a positive integer n

, put

\overline{$\tau$_{y}}(n):=\exp((\log y)^{1+y}) .

Then we have $\tau$_{y}(n)=\lfloor\overline{$\tau$_{y}}(n)\rfloor . Observe that

\log\overline{$\tau$_{y}}(n+1)-\log\overline{$\tau$_{y}}=(\log(n+1))^{1+y}-(\log n)^{1+y}.

The mean value theorem implies that there exists a real number  $\delta$ with  n< $\delta$<n+1 satisfying

\displaystyle \log\overline{$\tau$_{y}}(n+1)-\log\overline{$\tau$_{y}}=(1+y)\frac{(\log $\delta$)^{1+y}}{ $\delta$},
which tends to zero as n tends to infinity. Thus, we obtain

\displaystyle \lim_{n\rightarrow\infty}\frac{$\tau$_{y}(n+1)}{$\tau$_{y}(n)}=\lim_{n\rightarrow\infty}\frac{\overline{$\tau$_{y}}(n+1)}{\overline{$\tau$_{y}}(n)}=1.
We introduce algebraic independence of $\mu$_{y}(b^{-1}) for distinct y.

Theorem 5.1 ([15]). Let b be an integer greater than 1. Then the continuum set

\{$\mu$_{y}(b^{-1})|y\in \mathbb{R}, y\geq 1\}

is algebraically independent.

We recall that the algebraic independence of \{$\mu$_{y}(b^{-1})|y\in \mathbb{R}, y\geq 1\} implies the following:
If we take arbitrary number of distinct real numbers y_{1} ,

.

::, y_{r}\geq 1 ,
then $\mu$_{y_{1}}(b^{-1}) ,

. :.

; $\mu$_{y_{r}}(b^{-1})
are algebraically independent. It is unknown whether the set \{$\mu$_{y}(b^{-1}) y\in \mathbb{R}, y>0\} is

algebraically independent or not. However, we have the following:

Theorem 5.2 ([15]). Let b be an integer greater than 1 and x, y distinct positive real

numbers. Then $\mu$_{x}(b^{-1}) and $\mu$_{y}(b^{-1}) are algebraically independent.
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The lower bounds (2.4) or (2.5) implies the following: Let D be an integer and p a real

number with 2\leq D<p . Then

$\zeta$_{p}(b^{-1}):=\displaystyle \sum_{n=0}^{\infty}b^{-\lfloor n^{p}\rfloor}
is not an algebraic number of degree at most D . The result above holds even in the case of

D=1 . In fact, if p>1 ,
then $\zeta$_{p}(b^{-1}) is irrational because its base‐b expansion is not periodic.

If p=2 ,
then it is known that $\zeta$_{2}(b^{-1}) is transcendental (see [6, 14]). However, if p is a real

number greater than 1, the transcendence of $\zeta$_{p}(b^{-1}) has not been proved.
Here we study further arithmetical properties on $\zeta$_{p}(b^{-1}) . We introduce some notation to

state the results. Let D be an integer greater than 2. Then it is easily seen that the polynomial

(1-X)^{D}+(D-1)X-1

has a unique zero $\sigma$_{D} on the interval (0,1) . Recall that $\xi$_{b}(w(n)) is defined by (2.1).

Theorem 5.3. Let b be an integer greater than 1 and w(n)(n=0,1, . :.) a sequence of

strictly increasing nonnegative integers. Suppose that w(n)(n=0,1, . :.) satises the following
two assumptions:

1. For any positive real number R ,
we have

\displaystyle \lim_{n\rightarrow\infty}\frac{w(n)}{n^{R}}=\infty.
2.

\displaystyle \lim_{n\rightarrow}\sup_{\infty}\frac{w(n+1)}{w(n)}<\infty.
Let D be a positive integer and p a real number. If 1\leq D\leq 3 ,

then assume that p>D. If
D\geq 4 ,

then suppose that p>$\sigma$_{D}^{-1} . Then the set

\{$\zeta$_{p}(b^{-1})^{i}$\xi$_{b}(w(n))^{j}|0\leq i\leq D, 0\leq j\}

is linearly independent over \mathbb{Q}.

For example, we have $\sigma$_{4}^{-1}= 5:278:. :; $\sigma$_{5}^{-1}= 8:942::. ; $\sigma$_{6}^{-1}= 13:60. ::. Note that

Theorem 5.3 gives partial results on algebraic independence. In fact, two complex numbers x

and y are algebraically independent if and only if the set

\{x^{i}y^{j}|0\leq i, j\}

is linearly independent over \mathbb{Q}.

§6. Sketch of the proof of Theorem 5.3

In this section we provide a sketch of the proof of Theorem 5.3 without technical details.

For simplicity, we put

 $\zeta$:=$\zeta$_{p}(b^{-1}) ,  $\xi$:=$\xi$_{b}(w(n)) .
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Then we have 1\leq $\zeta$<2 . If necessary, changing  $\xi$ by \{ $\xi$\}+1 ,
we may assume that 1\leq $\xi$<2.

We write the base‐b expansions of  $\zeta$ and  $\xi$ by

 $\zeta$=:\displaystyle \sum_{m=0}^{\infty}s(m)b^{-m},  $\xi$=:\sum_{n=0}^{\infty}t(n)b^{-n},
respectively, where s(0)=\lfloor $\zeta$\rfloor=1 and t(0)=\lfloor $\xi$\rfloor=1 . In particular, 0\leq s(m) , t(m)\leq b-1 for

any nonnegative integer m . Let D be defined as in Theorem 5.3. Let P(X, Y) be a non‐constant

polynomial with integral coefficients such that the degree in X is not greater than D . For the

proof of Theorem 5.3, we show that P( $\zeta$,  $\xi$)\neq 0 for such a polynomial. If necessary, changing

P(X, Y) by YP(X, Y) ,
we may assume that Y divides P(X, Y) . We denote the coefficients of

P(X, Y) by

P(X, Y)=:\displaystyle \sum_{\mathrm{k}=(k,l)\in $\Lambda$}A_{\mathrm{k}}X^{k}Y^{l},
where  $\Lambda$ is a nonempty finite subset of ([0, D]\cap \mathbb{N})\times \mathbb{N} and A_{\mathrm{k}} is a nonzero integer for each \mathrm{k}\in $\Lambda$.

In order to show that P( $\zeta$,  $\xi$)\neq 0 ,
we search nonzero digits of the base‐b expansion of P( $\zeta$,  $\xi$) ,

using the assumptions on D and w(n)(n=0,1, . :.) in Theorem 5.3. The idea was inspired by
the paper by Knight [16]. For any \mathrm{k}=(k, l)\in $\Lambda$ ,

we get

 $\zeta$^{k}$\xi$^{l}=(\displaystyle \sum_{m=0}^{\infty}s(m)b^{-m})^{k}(\sum_{n=0}^{\infty}t(n)b^{-n})^{l}
=\displaystyle \sum_{i=0}^{\infty}b^{-i}\sum_{m_{1}.'.\cdot.\cdot\cdot,7m_{k},n_{1}n_{l}\geq_{l}07m_{1}++7m_{k}+n_{1}++n=i},\ldots.'..s(m_{1})\cdots s(m_{k})t(n_{1})\cdots t(n_{l})

(6.1) =:\displaystyle \sum_{i=0}^{\infty}b^{-i} $\rho$(\mathrm{k};i) .

It is easily seen that  $\rho$(\mathrm{k};i) is a nonnegative integer. Moreover, let  $\delta$ be the total degree of

 P(X, Y) . Then

 $\rho$(\displaystyle \mathrm{k};i)\leq \sum (b-1)^{k+l}
m_{1}++m_{k}+n_{1}+\cdot+n_{l}=im_{1}.'.\cdot.\cdot\cdot,7m_{k},n_{1},\ldots.'.n_{l}\geq 0

\leq(b-1)^{k+l}(i+1)^{k+l}\leq(b-1)^{ $\delta$}(i+1)^{ $\delta$}

In particular, if i is greater than 1, then

(6.2) \log( $\rho$(\mathrm{k};i))=O(\log i) .

We study the conditions of positivity of  $\rho$(\mathrm{k};i) . Set

S :=\{m\in \mathbb{N}|s(m)\neq 0\}, T :=\{n\in \mathbb{N}|t(n)\neq 0\}.

Then we have S, T\ni 0 because s(0)=t(0)=1 . Moreover, put

kS+lT:=\{m_{1}+\cdots+m_{k}+n_{1}+\cdots+n_{l}|m_{1}, . . :; m_{k}\in S, n_{1}, . :. ; n_{l}\in T\}.
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Let (k, l) , (k', l')\in $\Lambda$ with  k\geq k' and l\geq l' . Then we have

(6.3) kS+lT\supset k'S+l'T

because S, T\ni 0 . We rewrite the conditions of positivity of  $\rho$(\mathrm{k};i) , using the set kS+lT . Observe

that

 $\rho$(\mathrm{k};i)= \displaystyle \sum  S(m) . . . S(m)t(n) . . . t(n_{l}) .

m_{1}, 7m_{k}\in S, n_{1}, n_{l}\in T
7m_{1}+\cdots+7m_{k}+n_{1}+\cdots+n_{l}=i

Thus,  $\rho$(\mathrm{k};i) is positive if and only if i\in kS+lT.

Using (6.1), we obtain

P( $\zeta$,  $\xi$)=\displaystyle \sum_{\mathrm{k}=(k,l)\in $\Lambda$}A_{\mathrm{k}}$\zeta$^{k}$\xi$^{l}=\sum_{\mathrm{k}=(k,l)\in $\Lambda$}A_{\mathrm{k}}\sum_{i=0}^{\infty}b^{-i} $\rho$(\mathrm{k};i)
(6.4) =\displaystyle \sum_{i=0}^{\infty}b^{-i}\sum_{\mathrm{k}=(k,l)\in $\Lambda$}A_{\mathrm{k}} $\rho$(\mathrm{k};i) .

Note that \displaystyle \sum_{\mathrm{k}=(k,l)\in $\Lambda$}A_{\mathrm{k}} $\rho$(\mathrm{k};i) is not generally nonnegative. Let \succ \mathrm{b}\mathrm{e} the lexicographical order

in \mathbb{N}^{2} ,
that is, (k, l)\succ(k', l') if either k>k' ,

or k=k' and l>l' . We write by \mathrm{g}=(g, h) the

maximal element of  $\Lambda$ with respect to \succ . Then  h is positive because P(X, Y) is divisible by Y.

We may assume that A_{\mathrm{g}}>0 . In what follows, we search an integer i such that  $\rho$(\mathrm{g};i)>0 and

that  $\rho$(\mathrm{k};i)=0 for any \mathrm{k}\in $\Lambda$\backslash \{\mathrm{g}\} . Put

$\theta$_{g}(R) :=\displaystyle \max\{n\in gS|n<R\}.

Moreover, let

$\lambda$_{1}(R) :=\{m\in \mathbb{N}|m\in S, m\leq R\},

$\lambda$_{2}(R) :=\{n\in \mathbb{N}|n\in T, n\leq R\}.

Let (k, l)\in \mathbb{N}^{2} with k<g . We use the assumptions on D and the first assumption on w(n)(n=
0 , 1, . :.) in order to check that

(6.5) R-$\theta$_{g}(R)=o(\displaystyle \frac{R}{$\lambda$_{1}(R)^{k}$\lambda$_{2}(R)^{l}})
as R tends to infinity and that, for any nonnegative integer m,

(6.6) \displaystyle \lim_{R\rightarrow\infty}\frac{R}{$\lambda$_{1}(R)^{g}$\lambda$_{2}(R)^{m}\log R}=\infty.
For any interval I=[x, y) \subset \mathbb{R} , we write the length by |I|=y-x . In what follows, N is a

sufficiently large integer. First we construct an interval J(N)=[; $\alpha$_{2} ) \subset[0, N ) satisfying the

following:

1. $\alpha$_{1}\in r_{1}S+u_{1}T for (r_{1}, u_{1})\in $\Lambda$ with  r_{1}<g.
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2. If $\alpha$_{2}<N ,
then $\alpha$_{2}\in r_{2}S+u_{2}T for (r_{2}, u_{2})\in $\Lambda$ with  r_{2}<g.

3. Let m be any integer with $\alpha$_{1}<m<$\alpha$_{2} and (k, l)\in $\Lambda$ with  k<g . Then m\not\in kS+lT.

4.

(6.7) |J(N)|\displaystyle \geq C_{6}\frac{N}{$\lambda$_{1}(N)^{r_{3}}$\lambda$_{2}(N)^{u_{3}}},
where C_{6} is a positive constant and (r_{3}, u_{3})\in $\Lambda$ with  r_{3}<g.

Combining (6.5) and (6.7), we deduce that $\alpha$_{1} and $\alpha$_{2} are approximated by the elements in gS.

Namely, we get the nonempty subinterval J'(N)=[; $\beta$_{2} ) \subset J(N) defined by

$\beta$_{1}:= minm \in gS|m>$\alpha$_{1} },

$\beta$_{2}:=\displaystyle \max\{m\in gS|m<$\alpha$_{2}\},

respectively. We divide J'(N) into subintervals. Recall that h\geq 1 . Using (6.3), we get a

subinterval I(N)=[; $\gamma$_{2} ) \subset J'(N) satisfying the following:

1. $\gamma$_{1}, $\gamma$_{2}\in gS+(h-1)T.

2. Let m be any integer with $\gamma$_{1}<m<$\gamma$_{2} and \mathrm{k}=(k, l)\in $\Lambda$ with \mathrm{g}\succ \mathrm{k} . Then

(6.8) m\not\in kS+lT.

3.

(6.9) |I(N)|\displaystyle \geq C_{7}\frac{N}{$\lambda$_{1}(N)^{g}$\lambda$_{2}(N)^{h-1}},
where C_{7} is a positive constant.

Combining (6.6) and (6.9), we obtain

(6.10) \displaystyle \frac{|I(N)|}{\log N}=\infty.
The second assumption on w(n)(n=0,1, \ldots) implies that there exists a positive constant C_{8}

satisfying

 T\cap(R, C_{8}R)\neq\emptyset

for any sufficiently large  R . In particular, there exists an m_{0}=m_{0}(N)\in T with

\displaystyle \frac{1}{1+C_{8}}|I(N)|\leq m_{0}\leq\frac{C_{8}}{1+C_{8}}|I(N)|=$\gamma$_{2}-$\gamma$_{1}-\frac{1}{1+C_{8}}|I(N)|.
Put U:=$\gamma$_{1}+m_{0} . Then

(6.11) $\gamma$_{1}+\displaystyle \frac{1}{1+C_{8}}|I(N)|\leq U\leq$\gamma$_{2}-\frac{1}{1+C_{8}}|I(N)|.
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Moreover, U\in gS+hT because $\gamma$_{1}\in gS+(h-1)T and m_{0}\in T . Namely,

(6.12)  $\rho$(\mathrm{g};U)>0.

We consider the base‐b expansion of (6.4). Then (6.2) and (6.12) mean that

b^{-U}A_{\mathrm{g}} $\rho$(\mathrm{g};U)

causes O(\log(A_{\mathrm{g}} $\rho$(\mathrm{g};U =O(\log U)=O(\log N) carries to higher digits because A_{\mathrm{g}}>0 . Hence,

combining (6.8), (6.10), and (6.11), we conclude that there are positive digits left in the base‐b

expansion of (6.4), which implies that P( $\eta$,  $\xi$)\neq 0.
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