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Number System Constructions

with Block Diagonal Bases

By

Attila Kovács *

Abstract

This paper deals with number system constructions using block diagonal bases. We show how easy

is creating new generalized number systems from the existing ones via homomorphic constructions. We

prove that diagonal extensions can always be performed even if the basic blocks are not number systems.
As a special case we consider simultaneous systems in the Gaussian ring. We present a searching method

and verify by computer that except 43 cases the Gaussian integers are always able to serve as basic blocks

for simultaneous number systems using dense digit sets.

§1. Introduction

Let  $\Lambda$ be a lattice in \mathbb{R}^{n},  M: $\Lambda$\rightarrow $\Lambda$ be a linear operator such that \det(M)\neq 0 ,
and let D

be a finite subset of  $\Lambda$ containing  0.

Definition 1.1. The triple ( $\Lambda$, M, D) is called a number system (GNS) if every element

x of  $\Lambda$ has a unique, finite representation of the form  x=\displaystyle \sum_{i=0}^{l}M^{i}d_{i} ,
where d_{i}\in D, l\in \mathbb{N} and

d_{l}\neq 0.

In the definition l_{1}=l+1 denotes the length of the expansion. Clearly, (applying a suitable

basis transformation) we may assume that M is integral acting on  $\Lambda$=\mathbb{Z}^{n} . If two elements of  $\Lambda$

are in the same coset of the factor group  $\Lambda$/M $\Lambda$ then they are said to be congruent modulo  M.

Theorem 1.2 ([12]). If ( $\Lambda$, M, D) is a number system then (1) D must be a full residue

system modulo M
, (2) M must be expansive and (3) \det(I-M)\neq\pm 1.

If a system fulfils these conditions then it is a radix system and the operator M is called a

radix base.

Let  $\phi$ :  $\Lambda$\rightarrow $\Lambda$, x\mapsto $\phi$ M^{-1}(x-d) for the unique d\in D satisfying x\equiv d(\mathrm{m}\mathrm{o}\mathrm{d} M) .

Since M^{-1} is contractive and D is finite there exists a norm \Vert.\Vert on \mathbb{R}^{n} and a constant C\in \mathbb{R}
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such that the orbit of every  x\in $\Lambda$ eventually enters the finite set \{x\in $\Lambda$ : \Vert x\Vert<C\} for

the repeated application of  $\phi$ . This means that the sequence  x,  $\phi$(x) , $\phi$^{2}(x) ,
. . . is eventually

periodic for all  x\in $\Lambda$ . If a point  p\in $\Lambda$ is periodic then \Vert p\Vert\leq L=Kr/(1-r) ,
where

r=\displaystyle \Vert M^{-1}\Vert=\sup_{\Vert x\Vert\leq 1}\Vert M^{-1}x\Vert<1 and  K=\displaystyle \max_{d\in D}\Vert d\Vert (see [13]). There are various

problems in the research of lattice‐type number expansions.

\bullet The decision problem for a given ( $\Lambda$, M, D) asks if they form a GNS or not.

\bullet The classification problem means finding all periods (witnesses).

\bullet The parametrization problem means finding parametrized families of GNS.

\bullet The construction problem aims at constructing a digit set  D to a given M for which ( $\Lambda$, M, D)
is a GNS.

In this paper we concentrate on the construction problem regarding block diagonal bases. The

second part of the paper deals with special block diagonal systems, the so‐called simultaneous

systems. To be more precise we investigate simultaneous systems in the ring of Gaussian integers.

§2. Block Diagonal Bases

§2.1. Basic Lemmas

Let the radix systems ($\Lambda$_{i}, M_{i}, D_{i}) be given (1\leq i\leq k) . Let  $\Lambda$=\otimes$\Lambda$_{i} the direct product of

the lattices, M=\oplus_{i=1}^{k}M_{i} the direct sum of the bases and D_{h}=\{(d_{1}^{T}\Vert d_{2}^{T}\Vert\cdots\Vert d_{k}^{T})^{T} : d_{i}\in D_{i}\}
the homomorphic digit set. Here d^{T} is a row vector and \Vert means the concatenation operator.

Lemma 2.1. Using the notations above the following statements hold:

1. The operation \oplus is associative.

2. charpoly (\displaystyle \oplus_{i=1}^{k}M_{i})=\prod_{i=1}^{k}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{y}(M_{i}) .

3. \displaystyle \det(\oplus_{i=1}^{k}M_{i})=\prod_{i=1}^{k}\det(M_{i}) .

4.  $\rho$((\displaystyle \oplus_{i=1}^{k}M_{i})^{-1})=\max( $\rho$(M_{i}^{-1})) where  $\rho$ denotes the spectral radius.

5.  D_{h} is a full residue system modulo M.

6.  $\phi$((x_{1}^{T}\Vert x_{2}^{T}\Vert\cdots\Vert x_{k}^{T})^{T})=($\phi$_{1}(x_{1})^{T}\Vert$\phi$_{2}(x_{2})^{T}\Vert\cdots\Vert$\phi$_{k}(x_{k})^{T})^{T}
This means the function  $\phi$ has a homomorphic property.

Proof. Only the last two statements need some argumentation. Clearly, the set  D_{h} has

\displaystyle \prod_{i=1}^{k}\det(\mathrm{M}) elements. If x, y\in D_{h}, x\equiv y(\mathrm{m}\mathrm{o}\mathrm{d} M) , x\neq y ,
then Mz=x-y for some

 z\in $\Lambda$ ,
i.e.  M_{i}z_{i}=x_{i}-y_{i}(1\leq i\leq k) . But then x_{i}\equiv y_{i}(\mathrm{m}\mathrm{o}\mathrm{d} M_{i}) hold for all i

,
which is

a contradiction. The homomorphic property of the function  $\phi$ is a direct consequence of the

definition. \square 
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Lemma 2.2. ( $\Lambda$, M, D_{h}) is a number system if and only if ($\Lambda$_{i}, M_{i}, D_{i}) are number sys‐

tems.

Proof. The correctness of the lemma follows immediately from the homomorphic property
of the function  $\phi$. \square 

Remark. Many new GNS can be created via the homomorphic construction.

Example 2.3. Different kinds of number systems may serve as basic blocks for construct‐

ing block diagonal systems:

(1) Canonical number systems, where the operator M is the companion of some monic integer

polynomial with constant term c_{0}\geq 2 using 1‐canonical digit sets. These CNS‐polynomials were

extensively studied by S. Akiyama, H. Brunotte, W. Gilbert, I. Kátai, A. Pethó, J. Thuswaldner,
and many many others (see the comprehensive papers [2, 3]).
(2) GNS where charpoly (M)=c_{0}+c_{1}x+\cdots+c_{n-1}x^{n-1}+x^{n} has the strong dominant condition

|c_{0}|>2\displaystyle \sum_{i=1}^{n}|c_{i}| with 1‐symmetric digit sets [9].
(3) GNS where  $\rho$(M^{-1})<1/2 with dense digit sets [9]. This spectral radius condition holds (for
example) if M is strong diagonally‐dominant, i.e., if the j‐th row of M is [m_{1}, . . . m_{j}, . . . , m_{n}]
then Disc(0,2) \displaystyle \cap \mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}(m_{j}, \sum_{i\neq j}|m_{i}|)=\emptyset for all  j . Here Disc (c, r) means the complex disc with

radius r centered at c . Dense digit sets are important for example in public key cryptography

operations [7, 8].
(4) Some special family of GNS: Generalized Balanced Ternary [15].
(5) Simultaneous number systems [10], etc.

§2.2. Diagonal Extensions

Consider the case when the basic blocks of ( $\Lambda$, M, D) are not (all) number systems. Then is

there any (non‐homomorphic) digit set D' for which ( $\Lambda$, M, D') is GNS? Sometimes this question
can easily be answered, and sometimes not.

Example 2.4. Let us see some earlier results:

(1) In dimension 1 there are parametrized families of GNS (see the results of D.W. Matula, A.M.

Odlyzko, A. Pethó, B. Kovács).
(2) In dimension 2 in the imaginary quadratic fields all base M can serve for a GNS with some

digit set D[11].
(3) The situation in the real quadratic fields are unknown, we have only partial results [6].

Conjecture. For every radix M in real quadratic fields there is a corresponding digit set

D for which (\mathbb{Z}^{2}, M, D) is GNS.

It is known that there are some operators for which there does not exist any digit set for

which they form a GNS [4]. The following theorem shows some construction mechanism for these

cases.

Theorem 2.5. For every radix base M_{1}:\mathbb{Z}^{n_{1}}\rightarrow \mathbb{Z}^{n_{1}} either
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1. there is a digit set D_{1} for which (\mathbb{Z}^{n_{1}}, M_{1}, D_{1}) is GNS, or

2. there is a radix M_{2} : \mathbb{Z}^{n_{2}}\rightarrow \mathbb{Z}^{n_{2}}
,

such that (\mathbb{Z}^{n_{1}+n_{2}}, M_{1}\oplus M_{2}, D) is GNS for some digit set

D.

Proof. The main part of the proof was inspired by the paper of S. Akiyama et al. [1]. Let

f(x)\in \mathbb{Z}[x] be the characteristic polynomial of M_{1} . Clearly, f(x) is expanding and \deg(f)=n_{1}.
First we prove that, for any real K>1 ,

there exists a monic polynomial

g(x)=g_{0}+g_{1}x+\cdots+g_{m-1^{X^{m-1}}}+x^{m}\in \mathbb{Z}[x]

such that (1) g(x) is expanding, (2) |g_{0}|>K\displaystyle \sum_{i=1}^{m}|g_{i}| ,
and (3) g(x) is a multiple of f(x) .

Without loss of generality we may assume that 1<|$\alpha$_{1}|\leq|$\alpha$_{2}|\leq\cdots\leq|$\alpha$_{n_{1}}| where f($\alpha$_{i})=0
for all1 \leq i\leq n_{1} . Let k be a positive integer and set

(2.1) G_{k}(x)=\displaystyle \prod_{i=1}^{n_{1}}(x-$\alpha$_{i}^{k})=G_{0}+G_{1}x+\cdots+x^{n_{1}}
Since M_{1} is integral and (-1)^{n_{1}}\det(M_{1}^{k}- $\lambda$ I)=G_{k}( $\lambda$) therefore G_{k}(x)\in \mathbb{Z}[x] for all k\in \mathbb{N}^{+}(I
denotes the identity matrix). Since

\displaystyle \lim_{k\rightarrow\infty}\frac{$\alpha$_{j_{1}}^{k}\cdot.\cdot.\cdot$\alpha$_{j_{\mathrm{s}}}^{k}}{$\alpha$_{1}^{k}\cdot$\alpha$_{n_{1}}^{k}}=0
for any proper subset \{j_{1}, . . . , j_{S}\}\subset\{1, . . . , n_{1}\} therefore

\displaystyle \lim_{k\rightarrow\infty}\frac{|G_{n_{1}-i}|}{|G_{0}|}=\lim_{k\rightarrow\infty}\frac{|\sum_{1\leq j_{1}<\cdots<j_{i}.\leq n_{1}}$\alpha$_{j_{1}}^{k}\cdots$\alpha$_{j_{i}}^{k}|}{|$\alpha$_{1}^{k}\cdot\cdot$\alpha$_{n_{1}}^{k}|}=0.
Hence for any real K>1 there exist a k\in \mathbb{N}^{+} such that

(2.2) \displaystyle \frac{1}{K}>\frac{|G_{1}|}{|G_{0}|}+\frac{|G_{2}|}{|G_{0}|}+\cdots+\frac{|G_{n_{1}-1}|}{|G_{0}|}+\frac{1}{|G_{0}|}
which is equivalent to

|G_{0}|>K\displaystyle \sum_{i=1}^{n_{1}}|G_{i}|.
Finally, let

g(x)=G_{k}(x^{k})=\displaystyle \prod_{i=1}^{n_{1}}(x^{k}-$\alpha$_{i}^{k}) .

It is easy to check that the conditions (1)(3) all hold. Since

\displaystyle \sum_{i=1}^{n_{1}}\frac{|\sum_{1\leq j_{1}<\cdots<j_{i}.\leq n_{1}}$\alpha$_{j_{1}}^{k}\cdots$\alpha$_{j_{i}}^{k}|}{|$\alpha$_{1}^{k}\cdot\cdot$\alpha$_{n_{1}}^{k}|}\leq\prod_{i=1}^{n_{1}}(1+|$\alpha$_{i}^{-k}|)\leq(1+|$\alpha$_{n_{1}}^{-k}|)^{n_{1}}
therefore inequality (2.2) holds provided

(1+|$\alpha$_{n_{1}}^{-k}|)^{n_{1}}<\displaystyle \frac{1}{K}
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which is equivalent to

(2.3) k>-\displaystyle \frac{\log(|K^{-1/n_{1}}-1|)}{\log|$\alpha$_{n_{1}}|}.
Let K=2 in the previous computation and let M_{2} be the companion of g(x)/f(x)\in \mathbb{Z}[x]

with degree n_{2} . Then for the characteristic polynomial p(x) of M_{1}\oplus M_{2} the strong dominant

condition |p_{0}|>2\displaystyle \sum_{i=1}^{n_{1}+n_{2}}|p_{i}| hold, hence (\mathbb{Z}^{n_{1}+n_{2}}, M_{1}\oplus M_{2}, D) is GNS with the 1‐symmetric

digit set [9]. \square 

Remark. (1) The previous construction does not necessarily produces the minimal appro‐

priate M_{2} . The construction of such minimal M_{2} (i.e., n_{2} is minimal) seems to be hard. (2) The

estimation (2.3) is in most cases very crude.

Example 2.6. Let $\Lambda$_{1}=\mathbb{Z}^{4}, M_{1}=\left(\begin{array}{llll}
1 & 1 & -1 & 0\\
-1 & 0 & 1 & 1\\
1 & 0 & -1 & 1\\
-1 & 0 & 0 & 0
\end{array}\right) . It is known that there does not exist

any digit set D_{1} for which ($\Lambda$_{1}, M_{1}, D_{1}) is GNS. The characteristic polynomial of M_{1} is f_{1}(x)=
x^{4}+x^{2}+2 . The smallest index k for which the strong dominant condition in (2.1) holds is 5

(the estimation (2.3) would give 11) and then G_{5}(x)=x^{4}+11x^{2}+32 . Hence g(x)=G_{5}(x^{5})=
x^{20}+11x^{10}+32 and f_{2}(x)=g(x)/f_{1}(x)=x^{16}-x^{14}-x^{12}+3x^{10}-x^{8}+6x^{6}-4x^{4}-8x^{2}+16.
If M_{2} belongs to the integer similarity class of the companion of f(x) then (\mathbb{Z}^{20}, M_{1}\oplus M_{2}, D)
is GNS with the 1‐symmetric digit set D=\{(j, 0, \ldots, 0)^{T} : -16\leq j\leq 15\}.

§3. Simultaneous Systems

§3.1. Basic Notions

In this section we investigate a special block diagonal system. Let  $\Lambda$=\mathbb{Z}^{n}, M_{i} :  $\Lambda$\rightarrow $\Lambda$

(1\leq i\leq k) and consider the system

( $\Lambda$\otimes $\Lambda$\otimes\cdots\otimes $\Lambda$, M_{1}\oplus M_{2}\oplus\cdots\oplus M_{k}, D) ,

where d_{j}=(v^{T}||v^{T}||\cdots||v^{T})^{T}\in D(v\in $\Lambda$) . These systems are called Simultaneous Systems.
Kátai [10] investigated the case when N_{1}, N_{2} ,

. . .

, N_{k} are mutual coprime integers (none of

them is 0, \pm 1 ) and D=\{ $\delta$ e\} where e=(1, 1, . . . , 1)^{T},  $\delta$=1
, 2, . . .

, |N_{1}N_{2} . . . N_{k}|-1 . The proper

work of  $\phi$ is based on Chinese Remaindering. Kátai showed that the system (\mathbb{Z}^{2}, N_{1}\oplus N_{2}, D) is

GNS if and only if N_{1}<N_{2}\leq-2 and N_{2}=N_{1}+1.

Ch. van de Woestijne [16] investigated special polynomial homomorphic systems with canon‐

ical digit sets.

Example 3.1. In order to have a better insight into the proper work of simultaneous

systems let see the following example. Let

M=\left(\begin{array}{ll}
-6 & 0\\
0 & -7
\end{array}\right),
D=\{\left(\begin{array}{l}
0\\
0
\end{array}\right), \left(\begin{array}{l}
1\\
1
\end{array}\right) ,

. . .

, \left(\begin{array}{l}
41\\
41
\end{array}\right)\}
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Then 2012 has the expansion (38,19,22,18,10,1) simultaneously in bases -6 and -7 . To be

more precise the orbit of the point ( 2012, 2012)^{T} is

\left(\begin{array}{l}
2012\\
2012
\end{array}\right)\mapsto^{38}\left(\begin{array}{l}
-329\\
-282
\end{array}\right)\mapsto^{19}\left(\begin{array}{l}
58\\
43
\end{array}\right)\mapsto^{22}\left(\begin{array}{l}
-6\\
-3
\end{array}\right)\mapsto^{18}\left(\begin{array}{l}
4\\
3
\end{array}\right)\mapsto^{10}\left(\begin{array}{l}
1\\
1
\end{array}\right)\mapsto^{1}\left(\begin{array}{l}
0\\
0
\end{array}\right),
where the digit a above means the vector (a, a)^{T}.

Lemma 3.2. Let M_{1}, M_{2} ,
. . .

, M_{k} be pairwise commute n\times n matrices. If ( $\Lambda$\otimes $\Lambda$\otimes\cdots\otimes
 $\Lambda$, M_{1}\oplus M_{2}\oplus\cdots\oplus M_{k}, D) is a simultaneous GNS then \det(M_{i}-M_{j})=\pm 1 for all i\neq j.

Proof. Let z_{1},  z_{2}\in $\Lambda$ be arbitrary vectors and let  z_{1}=d_{0}+M_{i}d_{1}+\cdots+M_{i}^{t}d_{t}, z_{2}=

d_{0}+M_{j}d_{1}+\cdots+M_{j}^{t}d_{t} . Then

(3.1) z_{1}-z_{2}=(M_{i}-M_{j})d_{1}+\cdots+(M_{i}^{t}-M_{j}^{t})d_{t}.

Since each term (M_{i}^{s}-M_{j}^{s})d_{s} in (3.1) can be written in the form

(M_{i}-M_{j})(M_{i}^{s-1}+M_{i}^{s-2}M_{j}+\cdots+M_{j}^{s-1})d_{s}

therefore z_{1}\equiv z_{2}\mathrm{m}\mathrm{o}\mathrm{d} (M_{i}-M_{j}) which means that \det(M_{i}-M_{j})=\pm 1. \square 

Remark. Let \mathrm{K} be a number field with degree n and let \mathcal{O}_{\mathrm{K}} be the ring of its inte‐

gers. It is known that there is always a \mathbb{Z}‐basis of \mathcal{O}_{\mathrm{K}} . Suppose that $\alpha$_{1}, $\alpha$_{2} ,
. . .

, $\alpha$_{k}\in \mathcal{O}_{\mathrm{K}} and

($\alpha$_{1}, $\alpha$_{2}, \ldots, $\alpha$_{k};D) is a simultaneous number system (using the notation of Kátai). Then $\alpha$_{i}-$\alpha$_{j}

must be equal to the units of \mathcal{O}_{\mathrm{K}} for all1 \leq i, j\leq n.

§3.2. Simultaneous systems in the Gaussian ring

G. Nagy [14] investigated the case when  $\Lambda$ is the ring of Gaussian integers. He proved that

(\mathbb{Z}^{2}\otimes \mathbb{Z}^{2}, M_{1}\oplus M_{2}, D) can never be a GNS when D is {1, 3}‐canonical, i.e. D=\{(i, 0, i, 0)^{T} :

0\leq i\leq|\det(M_{1}\oplus M_{2})|-1\} . He conjectured also all the periods in these systems.
In the following we call the operators

\left(\begin{array}{llllll}
a & -b &  & 0 &  & 0\\
b & a &  & 0 &  & 0\\
0 & 0 & a & +1 &  & -b\\
0 & 0 &  & b & a & +1
\end{array}\right), \left(\begin{array}{llllll}
a & -b &  & 0 &  & 0\\
b & a &  & 0 &  & 0\\
0 & 0 &  & a & -(b & +1)\\
0 & 0 & b & +1 &  & a
\end{array}\right)
as type A and type \mathrm{B} operators, respectively (a, b\in \mathbb{Z}) . We denote them shortly by M_{A}(a, b)
and M_{B}(a, b) .

Theorem 3.3. Let M_{1}=\left(\begin{array}{ll}
a & -b\\
b & a
\end{array}\right) and M_{2}\in \mathbb{Z}^{2\times 2} such that \det(M_{2}-M_{1})=\pm 1 . Then

(\mathbb{Z}^{2}\otimes \mathbb{Z}^{2}, M_{1}\oplus M_{2}, D) is simultaneous GNS with the dense digit set except the 43 radix bases

which can be seen in Figure 1.
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(

(

Figure 1. Radix bases for Simultaneous Number Systems in the ring of Gaussian integers with

dense digit sets which are not number systems. A lattice point (a, b) in the picture denotes the

M_{A}(a, b) (left picture) or the M_{B}(a, b) (right picture) operator, respectively. Altogether there are

43 exceptions. We note that M_{A}(i, j) , -1\leq i, j\leq 0, M_{A}(-1,1) , M_{A}(0,1) , M_{A}(1,0) , M_{A}(-2,0) ,

and M_{B}(i, j) , -1\leq i, j\leq 0, M_{B}(0,1) , M_{B}(1,0) , M_{B}(1, -1) , M_{B}(0, -2) are not radix bases.

Proof. The cases when \displaystyle \Vert M_{1}\Vert_{2}>4+\frac{5}{2}\sqrt{2}+\frac{1}{2}\sqrt{98+72\sqrt{2}}(\approx 14.6) has been proved by
G. Nagy [14]. We deal with the remaining cases using a different construction.

Let M=M_{A}(a, b) or M_{B}(a, b) . Since r=\Vert M^{-1}\Vert_{2}<1 always hold therefore in the following
the norm \Vert.\Vert means the 2‐norm. We may assume that for the blocks \Vert M_{1}\Vert\leq\Vert M_{2}\Vert . Let

 S=\{(x, y, x, y)^{T} : x, y\in \mathbb{Z}\} be a linear subspace of \mathbb{Z}^{4}
,

and let D_{1}, D_{2} be full residue systems

\mathrm{m}\mathrm{o}\mathrm{d} M_{1} and M_{2} respectively. First we show that there is a full residue system in S(\mathrm{m}\mathrm{o}\mathrm{d} M) . Let

z=(z_{1}^{T}\Vert z_{2}^{T})^{T}\in \mathbb{Z}^{4} arbitrary and consider the set D'=\{d_{1}+M_{1}d_{2} : d_{1}\in D_{1}, d_{2}\in D_{2}\} . Then,

applying Lemma 3.2 and Chinese Remaindering, the system of equations z_{1}\equiv d(\mathrm{m}\mathrm{o}\mathrm{d} M_{1}) ,

z_{2}\equiv d(\mathrm{m}\mathrm{o}\mathrm{d} M_{2}) can be solved uniquely, where d\in D'

Next, we can observe the integer similarity between (a+1-bba+1) and (a+1b-ba+1) ,
furthermore

between (a-(b+1)) and \left(\begin{array}{ll}
a & b+1\\
-b-1 & a
\end{array}\right) ,
hence it is enough to analyse the cases when b\geq 0 and

b\geq-1 , respectively. Consider the dense digit set D in S modulo M
, i.e, the set of elements

with the smallest norm in each congruent set. We apply the following notations:

K=\displaystyle \max\{\Vert d\Vert:d\in D\}, K^{*}=\displaystyle \max\{\Vert d\Vert:d=(x, y)^{T}, (x, y, x, y)^{T}\in D\},
r=\Vert M^{-1}\Vert, r_{i}=\Vert M_{i}^{-1}\Vert, L=K\displaystyle \frac{r}{1-r}, L_{i}=K^{*}\displaystyle \frac{r_{i}}{1-r_{i}}(i=1,2) .

Let z=(z_{1}^{T}\Vert z_{2}^{T})^{T}\in \mathbb{Z}^{4}, \Vert z\Vert\leq L, z\not\in S be arbitrary. Then

\Vert $\phi$(z_{1})- $\phi$(z_{2})\Vert=

\Vert M_{1}^{-1}(z_{1}-d)-M_{2}^{-1}(z_{2}-d)\Vert=
\Vert M_{1}^{-1}(z_{1}-d)-M_{1}^{-1}(z_{2}-d)+M_{1}^{-1}(z_{2}-d)-M_{2}^{-1}(z_{2}-d)\Vert\leq
\Vert M_{1}^{-1}(z_{1}-d-(z_{2}-d))\Vert+\Vert(M_{1}^{-1}-M_{2}^{-1})(z_{2}-d)\Vert\leq
\Vert M_{1}^{-1}\Vert . \Vert(z_{1}-d)-(z_{2}-d)\Vert+\Vert M_{1}^{-1}M_{2}^{-1}\Vert . \Vert z_{2}-d\Vert\leq

\Vert M_{1}^{-1}\Vert . \Vert(z_{1}-d)-(z_{2}-d)\Vert+\Vert M_{1}^{-1}M_{2}^{-1}\Vert . (L_{2}+K^{*})



212 Attila Kovács

where (d^{T}\Vert d^{T})^{T}\in D . Clearly, if

\Vert M_{1}^{-1} .  M_{2}^{-1}\Vert . (L_{2}+K^{*})<1-\Vert M_{1}^{-1}\Vert

then \Vert $\phi$(z_{1})- $\phi$(z_{2})\Vert<\Vert z_{1}-z_{2}\Vert . Let

 $\kappa$=\displaystyle \frac{\Vert M_{1}^{-1}\Vert\Vert M_{2}^{-1}\Vert(L_{2}+K^{*})}{1-\Vert M_{1}^{-1}\Vert}=K^{*}\frac{r_{1}r_{2}}{(1-r_{1})(1-r_{2})}=L_{1}L_{2}/K^{*}
Since \Vert $\pi$\Vert\leq L holds for each periodic element  $\pi$ we proved the following lemma:

Lemma 3.4. If (1)  $\kappa$<1 and all the points in S\cap L\backslash \{\underline{0}\} are non‐periodic or (2)  $\kappa$\geq 1

and all the points v=(x, y, z, w)^{T}(v\neq 0) for which

(3.2) \Vert v\Vert\leq L, \Vert(x, y)^{T}-(z, w)^{T}\Vert< $\kappa$

are non‐periodic then (\mathbb{Z}^{2}\otimes \mathbb{Z}^{2}, M, D) is a simultaneous number system.

Applying Lemma (3.4) we checked the possible candidates by computer, where \Vert M_{1}\Vert<14.7
( b\geq 0 in type A and b\geq-1 in type \mathrm{B} operators). We got that except 43 cases all the examined

systems are simultaneous number systems with dense digit sets. The exceptional cases can be

seen in Figure 1. The proof of Theorem 3.3 is finished. \square 

Example 3.5. Let us examine the base M=M_{A}(2,2) . Then \Vert M_{1}\Vert=2.828, \Vert M_{2}\Vert=
3.605, the dense digit set D in the subspace S has 104 elements, K^{*}=10.198, L_{1}=5.589,

L_{2}=3.906,  $\kappa$=2.14 . The number of elements satisfying (3.2) are 305, all of them runs to

\underline{0}\in \mathbb{Z}^{4} for the repeated application of  $\phi$ ,
therefore the system is a number system.

Remark. For the computations we used the Maple programming language in a simple

laptop. The total computing time was approximately 15 minutes.

Figure 1 shows the bases for which the dense digit sets are not appropriate for constituting
simultaneous number systems. We plan to examine theses cases applying a digit set construction

algorithm or proving that such constructions are not possible at all.

The author is grateful to the reviewers for their helpful comments, which contributed to

improve the quality of the paper.
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